• No results found

Signal prediction based on empirical mode decomposition and artificial neural networks

N/A
N/A
Protected

Academic year: 2021

Share "Signal prediction based on empirical mode decomposition and artificial neural networks"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

Geodesy and Geodynamics 2012,3 ( 1) :52 -56

http://www. jgg09. com

Doi:10.3724/SP.J.1246.2012.00052

Signal prediction based on empirical mode decomposition and

artificial neural networks

Wang Y ong1 , Liu Y anping2 and Yang Jing3

1 School of Surveying

& Umd lnfonnation EngiMering, Henan Polyteclmic University, Ji.oozuo 454000, China 2

School of Civil Engineering, Central South University, Changsha 410075, China 3

College of Mining EngiMering, Hebei United University, Tangslw.n 063009 , Chino

Abstract: In view of the usefulness of Empirical Mode Decomposition ( EMD) , Artificial Neural Networks ( ANN) , and Most Relevant Matching Extension ( MRME) methods in dealing with nonlinear signals , we pro-pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone.

Key words: EMD (Empirical Mode Decomposition); ANN (Artificial Neural Networks); MRME (Most Rel-evant Matching Extension) ; IMF (Intrinsic Mode Function) ; endpoint problem; RBF ( Radial Basis Func-tion)

1 Introduction

Empirical mode decomposition ( EMD) is a method of transforming an empirical time series into a few Intrin-sic Mode Function ( IMF) components and a tendency term, which is the final drab and smooth part of the o-riginal sequence['-'l. It is usually applied to deal with some nonlinear or non stationary series. Because of its certain characteristics , such as parallel processing, self adaptivity, self-organization, associative memory,

fault

tolerance , robustness , it is suitable for application to prediction studies.

In this paper, we show how to use EMD to decom-pose a simulation signal into several IMF components and a tendency , how to treat the endpoint problem in two ways, how to do signal prediction by using RBF

Received,2012.()2.05; Aooepted,2012.Q2·12

Corresponding author: Tel: + 86-13785091437, E-mail: Wangyongiz@ 126. com

This work was supporteal. by the Notional Natural Scince Foundation of

Hebei Provinoe ( 0201000921)

(Radial Basis Function) neural network for each com-ponent separately, and how to reconstroct the final pre-diction results.

2 EMD and endpoint problem

During the EMD decomposition, the resultant IMF components must meet the following conditions : 1 ) The number of maximum and minimum points and the number of zero-crossing in different directions must be approximately equal; 2) the mean value of the

maxi-mum and minimaxi-mum at any point must be zero. The decomposition process is as follows[3J :

1) For a signal x ( t) , connecting all the maxima

with a 3 -order spline curve to get the upper envelope , and from the minima to get a lower envelope similarly. Generating a new signal by subtracting the mean of the upper and lower envelope from the original signal.

2) Checking whether the new signal meets the a-bove-mentioned basic requirement of IMF, or whether the residual r is a monotonic function. IT not, repeating step1).

(2)

No.1

3) At the ead, s(a) is

deeompaeed intD

a time

oe-riel ~

of

R

m....J.er

<4 JMF

O"C!!pp"'IIllll

aDd

r(a).

1D

~to

aborteD

du:

~

p:oee.., a

SD

pa-- i l

defined. Whell

SD

il ~ dwla

-ram

•al-ue,

U8lolallr

choeea

tD

be 0.

2 -

0.

3,

the

~ ~

eada.

Since the

algorithm

UJM a cubic lpline

iDI£rpcWdim>.

..m..a

the IWIIIher rL - ul""" il

... Ibm

two.

the

pzooeH

aho end..

Cubie

lp1iDe

iD-IlllpaloliOD

illtllldu-

...mr

wloiah

will

opread

to the

ill-tcmal data

aad

.&et tbe

br-frequmcr data,

e~ the~ endpoint

p!Ob1em.

To

deal with

dlia

prob-1-, ...., apply the

rwlial

baoie fimrtioo _,...)

...m.k

aad the

wa•e£orm

metcbiq

metbdl.

2.1

Dlftd

EMD mrt. rJ

Fint

we

lhow how

to apply

EMD

clizectly to a

time -ri ..

S (I) by

uaiJII

tDcJboK

in

MaiJab

p~.

SiDce ill

the mil

woild,

a data ~

u.uall.y

ecm-taina noile, 110 we

add

aome

whill& CauMian

noile 11(

r)

with SNR

=

10 dB

intD

our

simulalioD

oipal,

21r

(2'1r""

(

2'1r )

s(r) =0.7C!08(

10

r) +O.&coa

30

. , +coa

fiJ'

+

I

.:~

53

0.

6oin(::,~>

u(l)

,1=

[5,95]

(1)

...L.:re

s(

a)

.,.,..;m. af

the

faii....U..

mnr-

aad

the

21r (2'1r ) (2"' )

:r

1

=O.

1 -

10

a

.~

=O. Boo.

30

,:r, = -

fiJ' •

:r..

=0.61in(:~r)

,n(a)

(Z)

l'igure

I

abowa the

llimulelioD

aigual

aDd

the

DIF

<'"'~•>nenlll aft£r

dimct

EMD.

It may

be """" that

IMF1

i1 dzawD

out u

noi.e,

111111

the

remailling

compo-nealll

Ullld

tD

be

b&oically the - aa the

OCimllpOIId-iag

oridAal

~ eompoz~a~t., a<>ept at du: eDb,

o-peeially

after

the third-order.

2.2 EMD with ANN

""""hqd

JW...,.,[

4]

aaed a

flirlP

layer,

oin&le

ll.llU1'CIG,

ad

linear

neural

~~elw<llk to

peratc

two

aclditional

CK·

a-eme valuea at

flllda

of dte -won

of

the date.

In

thil

~,

....,

uoe a rwlial

b&oie &mc1ion _,...)

networlt, aeleet

IS

conaeeutive

data

aampl•

u illput

!6o

UlO

100

:

~

~=,l=il=l

:

.

·

:

~

~

~

~

~

~

~

·

~:

:

~

::

:

1

·

.

:

·

·

:n:II:Li

:

~

:

t:

li

:~

:::

I

~

~~

~

~

---TI

111•1

'

I

·

1

11

1

111

11

.

4 111:*

~W:

:

.

"

"

"

·2 10

:w

so

40 ~ 60 10 110

oo

uio

'

r

p,nlllllliillltil

~~~~ ~"

2

""~' '"

'

"~~.,

.

~~.

'jjU

I ,.

.

1111

Iiiii

I

0- , , - - ' ' ' ' I

II\~

-1 10 20 30 40 $0 60 70 10 90 100

(3)

and die-

12

ump'lee

Ill

die

oulpllt,

and by

rUera·

tioa i«*al&

60

poupe <I~

ympl". We

the

IIC!ect S

(!ll)llpl u

tcort

umpla

ad fcecl lhem

illto

the

lllllllab

JU:Wal

aetwolk

t.oon-.

A&z

tcstiq diff!ftat

~

TWea we

ehooee

the the

~~.etwozk

w!W:h

b.

the

hm perf.omw>c>e

to peqlc eoh-

ftluN

at

both

end.

of the data.

A. . .

_

in 6pue

2. allir

tbe

tre•hn..,t.

the

clill'ero--

betwCCD tbe

DIF compoae«dt lllld

lhe

real

slpal

Ia

algnl6cantly mluced, mdlcaling that the

DeUJal

Del·

'ling

tbe

pmlilfm.

2. 3 EMD

wllll

MIIMB IDCibol

Rued

oa ...re...,.,.

[5,6],...,

p~

lb&

I!IIDIII;ond&o

-~ (HRME) mellmd u :li>Dmn:

1)

lfmk

all

mnjmo

£n-

left to ,qltlM M1

,JI,. ... ,

111

wilh

ounap.mdin1 time

ami•

u

T

M

,T

Jlt, •••,

7' •;

mad.

all

of

lite

millimum

point u N

1 ,

N

2 , ••• ,

N

1

ad

tho

~"I time

IND'i.ee

aa 1'111 ,

TMZ, •••,

T,.,

mad.

left

point

of

lhe

,qnal

us, and lite

~nil

a-

lle!i•

u

r,.

l.ellhe Wlmlf'orm

&om "• to

N,

bo .,,

and

aet ila ~

u

N

1

let

lite

~

lrom "•

to

Ill,

bo

~

"'

U:

41

Jl,

andN>JI.

2)

Hake

r.~~~

ulhe

- - p o i n t

in

the wamozm

lllld 1M

11ft

mo-.e

to

the

ri&l4

to

ovedap

2'

14

tmd

2'

.Ill I

calculate Qlllllld

ila

eozzdatiOD

codlicicat

m61jo

3) Take

the

,....efOZIIl

tollteoJKIII"'ing

to

the

lllllli--

eone1ation eoeft'ieient u tho

- 1 n:cenl

wave.

Doote tltc

eoneepoading

mayimum

nlue

<I M

0 at tb!.

time u

M,,

UJd

e.lco•Jate tbe

~

between

.11

0

aDd M.,....J

demote

tbe diffcreaee •

'I•

'l'ben tbe

~

~ ... ~to ...

should be

Add to thc

a

cla!a and e:dzll1d

tho

actual .... -.elimn

to

the

lall.

4) Emmel

the

llllhlal

wa .. &vm to the

ri&l4

oimilady.

Cboooe

0. 9

ar '"""' .. oarn!l.dion

CXHJ!Iim..m.o

senw-ly.

H

tbe

..,...;-t

ia Dill """"• ...., may .td cliD!ally the ...

ft1oe

m

three

...a,hbo!iq

fldleme valu .. at

the

Mdpoinll,

111 tb!. way, -

C>all pt

lhe IMF

llOIIIp"'Wl'" ohOWII in fipm

3.

Flom

IIIia

qu-

we

may

-!hat the dilr.

eDCe ~ee~~

IMF

aompo!MDIII

and

the IIUe

ojp

ia

100

'2 10 40 50 60 10 80 ~ 100

-t

10 100

~2

r-pm-

tl.J-Ittfmo!pll (d-.IIlDea) with Ia llD' "'}'

1!-

(tlllaliDco) a f t r r -w!1b -doe ri ... !l.d!oall

(4)

No.1

~f

.0.) 10 20 JO <40 50 60 70 80 90

100

"1 10 20 30 <40 .50 60 70 80 90

10 20 30 40 50 60 70 80 90

tOo

l

=

Ill I

HI':

2

1'1'~11 p!lttl~?ll!!l!oi:'PI"

:

II

Ill

!I~

L

.

:

- -

- - - -

II II!

I:·

II

'

ill~?

·I 10 20 30 <40 SO 60 70 80 90

tOo

. , _ 3 Campori-<i .;mo~,;., q,..l ( d....a lmoo) 'lrilh IMF 1 " , ..

(llliD liDoo) . . - 'lrilh tbo 111110 ...

Reamlllttllmb ,. ,. rm !lldlud DID

0.719 0.955 0.953 0.961 0.984 0,!)76 IMF4 0.!12S 0.983

O.Sl&S

0.43

0.97

0.962

IIDI4IIller

thaD

in fi&un

1 ,

mel

aho

the u.ld linM fit

helt.ar.

'fbi. ..,_,.. the

<llfeoti'l'lln-

«

tiWI

method

in

-1-rinJ

the

fmdpoim

prcblrml.

Tllllk 2 Oaopilwa d -ollllllrwol

.,.

...

AJ!.r

the ""'....!an by tbe cllfl'eren?:

methoda

ami. """""'"

IIIUclilla

ci

tbe pm!ieted val11e11

of each

coapmc:Dt,

cllfl'creat

mulb

ue

~

A.

thown in IDle 2,

che

belt

r.ult

il

olui-'

by che

ANN

me!hod

wilh an

mean cllfl'crenae

«

Cll!y

0. 45.

Prediction

&em

the

EMD deomq~.Gtico

....Wt

il

ri~Uifioantly

Leila'

than

dJD

prediatina

of the

dinHJt

....Will,

al1lt4>111h '""""

iodi--.idual emn (ouch u poiDI

9) ..., Imp.

'lite,...;,.

1!1111111 cmJI'

in the

rmJll.

of lhe

two

mc:tbod8

oJoe.

DOl

csceed

2.

+1

whm:a the maimlllll

eD:or

<Jf the dizo:et

pmlictico

~

3.17.

1 1 3 4

s

6 7

a

9 10 11 12. Rllll

2.1

1.156 Z.OOil 3.3&9 2.1171

1.656

1.611

1.186

1.445 2,15 1.lilll 3.171 2.073

0.164

0.3$6

0.219

0.136

o.m

0.271

0.319

0.455 1.06 1,18

0.709

0.153

0.45 O.QS3

o.

006 0.:101 0.133 0.159 0.515 0.991 0.84S 1.883 1,333 1.771 1.137 0.136

(5)

4

Conclusion

The neural network extension and the most relevant match extension methods are both good solutions to the endpoint-effect problem. EMD decomposition can sup-ply input variables with higher quality to the RBF neu-ral network. The new prediction method presented here can achieve higher precision.

References

[ 1 ] Huang N E , Shen Z , Long S R , et al. The empirical mode

de-composition and the Hilbert spectrum for nonlinear non-stationary time series analysis. Proceedings of the Poyal. Society A, 1998 , 454(1971)' 903-995.

[2] Zhen Zuguang and Liu Hongli. The empirical mode decomposition

[3]

and wavelet analysis and application. Beijing: China

Meteorologi-cal Press, 2010, 1 -83. (in Chinese)

Zhu Jinlong and Qiu Xiaohui. Application with orthogonal

polyno-mial algorithm in the empirical mode decomposition endpoint problem. Computer Engineering and Application, 2006, 23 ( 2) : 72

-74. (in Chinese)

[ 4] Deng Yongjun, Wang Wei, Qian Chengchun, et al. Treatment the

boundary problem in the empirical mode decomposition and the

Hilbert transfonn. Science Bulletin, 2001 , 46 ( 3) : 257 - 263.

( in Chinese)

[5] Shao Chenxi, Wang Jian, Fan Jinfeng, et al. An adaptive

exten-sion method of the empirical mode decomposition endpoint. Elec-tronics Journal, 2007, 35 (10) : 1944 -1948. (in Chinese) [ 6] Wang Ting, Yang Shenyuan and li Bingbing. A new method to

improve the empirical mode decomposition endpoing effect. Harbin Univemity of Science Journal, 2009, 14 (5) : 23 -26. (in Chi-nese)

[7] Dong Changhong. Matlab neuml network and application. Beijing: National Defence Industry Press, 2005: 121 -142. (in Chinese)

References

Related documents

However, effects of forest fire in the tropical for- ests are not very clear as the effects of fire on tropical forest soils can be extremely variable and there are very limited

€ 3.7bn Net Equity Commitment across Europe at 30.06.2009 Austria 63 Belgium 79 Bulgaria 2 Cyprus 4 Czech Republic 19 Denmark 96 Estonia 4 Finland 105 France 660 Germany 502 Greece

Various performance related parameters including dynamic power consumption, radio link failure and Carbon emission are investigated to validate proposed work..

Overexpression of scleraxis in human embryonic stem cell-derived MSCs seeded onto knitted silk-collagen scaffolds increased tenogenic gene expression, cell alignment, and

The proposed Wavelet based morphological gradient binary cross diagonal shape descriptors texture matrix (WMG-BCDSDTM) using wavelets is experimented on wide range of textures for

Students from other universities are welcome to spend up to two semesters at HSE, where they can create their own curricula from English- or Russian-taught courses in

The aim of the present paper is to defi ne, on a selected sample of US stocks, the most suitable method for optimal portfolio compilation (i.e. whether it is appropriate to

Crystal structure of BRCT repeat region from the breast cancer associated protein, BRCA1(1JNX) from breast cancer, Bovine lipocalin allergen BOS D2 (1BJ7) from