• No results found

Cauchy Means of the Popoviciu Type

N/A
N/A
Protected

Academic year: 2020

Share "Cauchy Means of the Popoviciu Type"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2009, Article ID 628051,16pages doi:10.1155/2009/628051

Research Article

Cauchy Means of the Popoviciu Type

Matloob Anwar,

1

Naveed Latif,

1

and J. Pe ˇcari´c

1, 2

1Abdus Salam School of Mathematical Sciences, 68-B New Muslim Town, GC University,

Lahore 54000, Pakistan

2Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, Zagreb 10000, Croatia

Correspondence should be addressed to Naveed Latif,sincerehumtum@yahoo.com

Received 9 October 2008; Accepted 2 February 2009

Recommended by Wing-Sum Cheung

We discuss log-convexity for the differences of the Popoviciu inequalities and introduce some mean value theorems and related results. Also we give the Cauchy means of the Popoviciu type and we show that these means are monotonic.

Copyrightq2009 Matloob Anwar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

Letfxandpxbe two positive real valued functions withabpxdx1, then from theory of convex meanscf.1–3, the well-known Jensen inequality gives that fort <0 ort >1,

b

a

pxfxtdx

b

a

pxfxdx

t

, 1.1

and vise versa for 0< t <1. In4, Simic has considered the difference

DsDsa, b, f, p

b

a

pxfxsdx

b

a

pxfxdx

s

. 1.2

(2)

Theorem 1.1. Let fx, px be nonnegative and integrable functions for xa, b, with

b

apxdx1, then for0< r < s < t;r, s, t /1, one has

Ds

ss−1

tr

Dr

rr−1

ts D t

tt−1

sr

. 1.3

Remark 1.2. For extension ofTheorem 1.1seecf.4.

Popoviciu6–8,9, pages 214-215has proved the following results.

Theorem 1.3. Letφ : a, b → Rbe convex andf : 0,1 → Rbe continuous, increasing, and convex such thatafxbforx0,1. Then

1

0

φfxdxba−2f ba φa

2fa ba2

b

a

φxdx, 1.4

where

f

1

0

fxdx. 1.5

Ifφis strictly convex, then the equality in1.4holds if and only if

fx a baxλ|xλ|

21−λ , whereλ

ba−2f

ba . 1.6

Theorem 1.4. Letφ :a, b → Rbe continuous and convex, and letf : 0,1 → Rbe convex of order1, . . . , n1such thatafxbforx0,1.

Then

1

0

φfxdx

1

0

φUjf, x

dx for jab j1 ≤f

j−1ab

j , 2≤jn, 1.7

1

0

φfxdxVf forafnab

n1 , 1.8

where

Ujt, x ajj1

tjab j1

j−1ab

jt

x

xj−1, 1.9

Vx bnan1x

ba φa

n1xa nban1/n

b

a

φxdx

(3)

Ifφis strictly convex, then equality in1.7holds if and only if

fx Ujf, x ; 1.11

and equality in1.8holds if

fx a ba

xλ|xλ|

21−λ

n

, whereλ bnan1f

ba . 1.12

With the help of the following useful lemmas we prove our results.

Lemma 1.5. Define the function

ϕsx

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

xs

ss−1, s /0,1;

−logx, s0;

xlogx, s1.

1.13

Thenϕsx xs−2, that is,ϕsxis convex forx >0.

The following lemma is equivalent to definition of convex functionsee9, page 2.

Lemma 1.6. Ifφis a convex function onIfor alls1, s2, s3 ∈Ifor whichs1 < s2< s3, the following is valid

φs1

s3−s2

φs2

s1−s3

φs3

s2−s1

≥0. 1.14

We quote here another useful lemma from log-convexity theorycf.4.

Lemma 1.7. A positive function f is log-convex in the Jensen-sense on an open intervalI, that is, for eachs, tI,

fsftf2

st

2

, 1.15

if and only if the relation

u2fs 2uwf

st

2

w2ft≥0, 1.16

(4)

The following lemma given in 10gives the relation between Beta function β and Hypergeometric functionF.

Lemma 1.8. Supposea, b, c, α, γ∈Rare such thatac > b >0and0< α <2γ,βandFare Beta and Hypergeometric functions, respectively. Then

0

xb−1

1αxa1γxcdxγ

bβb, acbF

a, b ac

γγα. 1.17

The paper is organized in the following way. After this introduction, in the second section we discuss the log-convexity of differences of the Popoviciu inequalities1.4,1.7, and1.8. In the third section we introduce some mean value theorems and the Cauchy means of the Popoviciu-type and discuss its monotonicity.

2. Main Results

Theorem 2.1. Letf:0,1 → Rbe continuous, increasing, and convex such that0< afxb forx∈0,1, and letfbe defined in1.5and

Ωsf

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

1

ss−1

ba−2f

ba a

s 2fa

ba2s1

bs1as1

1

0

fxsdx

, s /0,1;

2fa

ba

1

0

logfxdxba−2f ba loga

2fa

ba2blogbaloga, s0;

ba−2f

ba aloga

fa ba2

b2logba2loga

faba

2ba

1

0

fxlogfxdx, s1,

2.1

and letΩsfbe positive.

One has thatΩsfis log-convex and the following inequality holds for−∞< r < s < t <,

Ωtr

s f≤ΩtrsfΩstrf. 2.2

Proof. Consider the function defined by

ωx u2ϕsx 2uwϕrx w2ϕtx, 2.3

wherer st/2,ϕsis defined by1.13andu, w∈R. We have

ωx u2xs−22uwxr−2w2xt−2

uxs/2−1wxt/2−12>0, x >0.

(5)

Therefore,ωxis convex forx >0. UsingTheorem 1.3,

ba−2f ba

u2ϕ

sa 2uwϕra w2ϕta

2fa ba2

b

a

u2ϕsx 2uwϕrx w2ϕtx

dx

1

0

u2ϕsfx 2uwϕrfx w2ϕtfx

dx,

u2

ba−2f ba ϕsa

2fa ba2

b

a

ϕsxdx

1

0

ϕsfxdx

2uw

ba−2f ba ϕra

2fa ba2

b

a

ϕrxdx

1

0

ϕrfxdx

w2

ba−2f ba ϕta

2fa ba2

b

a

ϕtxdx

1

0

ϕtfxdx

≥0,

2.5

since

Ωsf b

a−2f ba ϕsa

2fa ba2

b

a

ϕsxdx

1

0

ϕsfxdx, f

1

0

fxdx, 2.6

we have

usf 2uwΩrf wtf≥0. 2.7

ByLemma 1.7, we have

ΩsfΩtf≥Ω2rf Ω2st/2f, 2.8

that isΩsfis log-convex in the Jensen-sense fors∈R. Since

lim

s→0Ωsf Ω0f, slim→1Ωsf Ω1f. 2.9

This impliesΩsfis continuous, therefore it is log-convex.

Since Ωsf is log-convex, that is, logΩsf is convex, therefore by Lemma 1.6 for

−∞< r < s < t <∞and takingφslogΩs, we get

logΩtsrf≤logΩrtsf logΩtsrf, 2.10

(6)

Theorem 2.2. Letf,Ωsfbe defined inTheorem 2.1and lett, s, u, vbe real numbers such that

su,tv,s /t,u /v, one has

Ω

tf

Ωsf

1/ts

Ω

vf

Ωuf

1/vu

. 2.11

Proof. Incf.9, page 2, we have the following result for convex functionf withx1 ≤ y1, x2≤y2,x1/x2,y1/y2:

fx2

fx1

x2−x1 ≤ fy2

fy1

y2−y1 .

2.12

Since byTheorem 2.1,Ωsfis log-convex, we can set in2.12:

fx logΩxandx1s,x2t,y1u,y2v. We get

logΩtf−logΩsf

ts

logΩvf−logΩuf

vu ,

log

Ω

tf

Ωsf

1/ts

≤log

Ω

vf

Ωuf

1/vu

,

2.13

and after applying exponential function, we get2.11.

Theorem 2.3. Letf :0,1 → Rbe convex of order1, . . . , n1such that0 < afxbfor x∈0,1, and letfbe defined in1.5and

Λsf

1

0 ϕs

Uj f, x

dx

1

0

ϕsfxdx, 2.14

where

Uj f, x

ajj1

fjab j1

j−1ab

jf

x

xj−1, 2.15

for

jab j1 ≤f

j−1ab

j , 2≤jn, 2.16

and letΛsfbe positive.

One has thatΛsfis log-convex and the following inequality holds for−∞< r < s < t <,

Λtr

s f≤ΛtrsfΛstrf. 2.17

(7)

Theorem 2.4. Letf,Λsfbe defined inTheorem 2.3andt, s, u, vbe real numbers such thatsu,

tv,s /t,u /v, one has

Λ

tf

Λsf

1/ts

Λ

vf

Λuf

1/vu

. 2.18

Proof. Similar to the proof ofTheorem 2.2.

Lemma 2.5. Letf :0,1 → Rbe convex of order1, . . . , n1such that0 < afxbforx∈ 0,1,fbe defined in1.5andV be defined in1.10, and letβandFare Beta and Hypergeometric functions respectively, and

Γsf V f

1

0

ϕsfxdx. 2.19

Then

Γsf

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1

ss−1

bnan1f

ba a

s n1fa

nban1/na

s1/n

ba b

1/n

×β

1

n,1

F ⎛ ⎜ ⎜ ⎝

s1 n1,

1

n

1

n1

ba b ⎞ ⎟ ⎟ ⎠− 1 0

ftsdt

⎤ ⎥ ⎥

, s /0,1;

bnan1f

ba −loga

n1fa nban1/n

× ⎡ ⎢

nlogbba1/nna1/n

ba b

1/n1 β

1

n1,1

F ⎛ ⎜ ⎝ 1

n1,

1

n1

1

n2

ba b ⎞ ⎟ ⎠ ⎤ ⎥ ⎦ 1 0

logftdt, s0;

bnan1f

ba aloga

n1fa nban1/n

×

naba1/nlogb n

n1logbba

1/n1a1/n

ba b

1/n1 β

1

n1,1

×F ⎛ ⎜ ⎝ 1

n1,

1

n1

1

n2

ba b ⎞ ⎟ ⎠ n n1 na

⎤ ⎥ ⎦−

1

0

ftlogftdt, s1,

(8)

for

afnab

n1 . 2.21

Proof. First, we solve these three integrals

I1

b

a

ts

tan−1/ndt, I2

b

a

logt

tan−1/ndt, I3

b

a

tlogt

tan−1/ndt. 2.22

Take

I1

b

a

ts

tan−1/ndt. 2.23

Substitute

t abx

1x , dt ba

1x2dx, A

and limits, whentathenx → 0, whentbthenx → ∞. So,

I1

b

a

ts

tan−1/ndt

0

abx/1xs abx/1xa1−1/n·

ba 1x2dx

ba1/n

0

abxs1x1−1/n 1xs2x1−1/n dx,

I1 ba1/nas

0

x1/n−1

1xs1/n11 b/axsdx.

2.24

By usingLemma 1.8withas1/n1,b1/n,cs,α1,γb/asuch that 1/n1>

1/n >0 and 0<1<2b/a, we get

I1 as1/nba1/nβ

1

n,1

F

⎛ ⎜ ⎜ ⎝

s 1 n1,

1

n

1

n1

ba b

⎞ ⎟ ⎟

. 2.25

Take second integral

I2

b

a

logt

(9)

using integration by parts, we have

I2nlogbba1/nn

b

a

t−1ta1/ndt. 2.27

Let

I4

b

a

t−1ta1/ndt. 2.28

By using same substitutionAas above, we get

I4

0

1x abx ·

abx

1xa

1/n

· ba

1x2dx

ba1/n1 a

0

x1/n1−1

1x1/n11 b/axdx. 2.29

By usingLemma 1.8witha1/n1,b1/n1,c1,α1,γb/asuch that 1/n2 >

1/n1>0 and 0<1<2b/a, we get

I2nlogbba1/nna1/n

ba b

1/n1 β

1

n1,1

F

⎛ ⎜ ⎜ ⎝

1

n1,

1

n1

1

n2

ba b

⎞ ⎟ ⎟

. 2.30

Now, take third integral

I3

b

a

tlogt

tan−1/ndt. 2.31

Using integration by parts, we get

I3naba1/nlogb n

n1logbba

1/n1 n n1

b

a

ta1/n1

t dtna

b

a

ta1/n

t dt.

2.32

Let

I5

b

a

ta1/n1

t dt. 2.33

By using same substitutionAas above, we get

I5

0

abx/1xa1/n1 abx/1x ·

ba 1x2dx

ba1/n1 a

0

x1/n1−1

(10)

By usingLemma 1.8witha1/n1,b1/n1,c1,α1,γb/asuch that 1/n2 >

1/n1>0 and 0<1<2b/a, we get

I5a1/n

ba b

1/n1 β

1

n1,1

F

⎛ ⎜ ⎜ ⎝

1

n1,

1

n1

1

n2

ba b

⎞ ⎟ ⎟

. 2.35

Let

I6

b

a

ta1/n

t dt. 2.36

By using same substitutionAas above, we have

I6

0

abx/1xa1/n abx/1x ·

ba 1x2dx

ba1/n1 a

0

x1/n1−1

1x1/n11 b/axdx. 2.37

By usingLemma 1.8witha1/n1,b1/n1,c1,α1,γb/asuch that 1/n2 >

1/n1>0 and 0<1<2b/a, we get

I6a1/n

ba a

1/n1 β

1

n1,1

F

⎛ ⎜ ⎜ ⎝

1

n1,

1

n1

1

n2

ba b

⎞ ⎟ ⎟

. 2.38

Then

I3naba1/nlogb n

n1logbba

1/n1 a1/n

ba a

1/n1

×β

1

n1,1

F

1

n1,

1

n1,

1

n2

bbann1 na

.

2.39

Fors /0,1,

Γsf

1

ss−1

bnan1f

ba a

s n1fa

nban1/n

b

a

ts

tan−1/ndt

1

0

ftsdt

.

(11)

UsingI1, we have

Γsf 1

ss−1

bnan1f

ba a

s n1fa

nban1/na

s1/n

ba b

1/n

×β

1

n,1

F ⎛ ⎜ ⎜ ⎝

s1 n1,

1

n

1

n1

ba b ⎞ ⎟ ⎟ ⎠− 1 0

ftsdt

⎤ ⎥ ⎥ ⎦.

2.41

Fors0,

Γ0f

bnan1f

ba −loga

n1fa nban1/n

b

a

logt tan−1/ndt

1

0

logftdt. 2.42

UsingI2, we have

Γ0f bnan

1f

ba −loga

n1fa nban1/n

× ⎡ ⎢ ⎢

nlogbba1/nna1/n

ba b

1/n1 β

1

n1,1

F ⎛ ⎜ ⎜ ⎝ 1

n1,

1

n1

1

n2

ba b ⎞ ⎟ ⎟ ⎠ ⎤ ⎥ ⎥ ⎦ 1 0

logftdt.

2.43

Fors1,

Γ1f

bnan1f

ba aloga

n1fa nban1/n

b

a

tlogt tan−1/ndt

1

0

ftlogftdt.

2.44

UsingI3, we have

Γ1f

bnan1f

ba aloga

n1fa nban1/n

×

naba1/nlogb n

n1logbba

1/n1 a1/n

ba b

1/n1 β

1

n1,1

×F ⎛ ⎜ ⎜ ⎝ 1

n1,

1

n1

1

n2

ba b ⎞ ⎟ ⎟ ⎠ n n1na

⎥ ⎦−

1

0

ftlogftdt.

(12)

Theorem 2.6. Letf :0,1 → Rbe convex of order1, . . . , n1such that0 < afxbfor x∈0,1,fbe defined in1.5and letΓsfdefined in2.20be positive.

One has thatΓsfis log-convex and the following inequality holds for−∞< r < s < t <,

Γtr

s f≤ΓtrsfΓstrf. 2.46

Proof. As in the proof ofTheorem 2.1, we useTheorem 1.4instead ofTheorem 1.3.

Theorem 2.7. Letf,Γsfbe defined inTheorem 2.6andt, s, u, vbe real numbers such thatsu,

tv,s /t,u /v, one has

Γ

tf

Γsf

1/ts

Γ

vf

Γuf

1/vu

. 2.47

Proof. Similar to the proof ofTheorem 2.2.

3. Cauchy Means

Let us note that 2.11 has the form of some known inequalities between means e.g., Stolarsky’s means, etc.. Here we prove that expressions on both sides of2.11 are also means.

Lemma 3.1. LethC2Ibe such thath is bounded, that is,m h M.Then the functions φ1, φ2defined by

φ1t M2 t2−ht, φ2t htm2t2, 3.1

are convex functions.

Theorem 3.2. LethC2I

1, I1 is a compact interval inRandf be a continuous, increasing and convex such thatafxbforx∈0,1,fbe defined in1.5thenξa, b, ξ /0such that

ba−2f ba ha

2 fa ba2

b

a

hxdx

1

0

hfxdx

2

ba−2f

ba a

22 fa

b2baa2

3ba

1

0

fx2dx

.

3.2

Proof. SupposemminhxhxMmaxhxforxI1. Then by applyingφ1and φ2defined inLemma 3.1forφin1.4, we have

ba−2f ba φ1a

2 fa ba2

b

a

φ1xdx

1

0

φ1fxdx,

ba−2f ba φ2a

2 fa ba2

b

a

φ2xdx

1

0

φ2fxdx,

(13)

that is,

M

2

ba−2f

ba a

22 fa

b2baa2

3ba

1

0

fx2dx

ba−2f

ba ha

2 fa ba2

b

a

hxdx

1

0

hfxdx,

3.4

ba−2f ba ha

2 fa ba2

b

a

hxdx

1

0

hfxdx

m

2

ba−2f

ba a

22 fa

b2baa2

3ba

1

0

fx2dx

.

3.5

By combining3.4and3.5and using the fact that formρMthere existsξI1such

that ρwe get3.2.

Theorem 3.3. Letk, lC2I

1and satisfy3.2, f be a continuous, increasing and convex such that afxbforx∈0,1,fbe defined in1.5, and

fx/a baxλ|xλ|

21−λ , whereλ

ba−2f

ba , 3.6

then there existsξI1such that

ba−2f/baka 2fa/ba2abkxdx−10kfxdx

ba−2f/bala 2fa/ba2ablxdx−10lfxdx . 3.7

Provided that denominators are non-zero.

Proof. Consider the linear functionalsΨandηsuch thatΨm ηmξfor some function

mC2I

1andξI1. Consider the following linear combination

mc1kc2l, 3.8

wherec1andc2are defined as follows:

c1 Ψl ba

2f ba la

2 fa ba2

b

a

lxdx

1

0

lfxdx,

c2 Ψk

ba−2f ba ka

2 fa ba2

b

a

kxdx

1

0

kfxdx.

3.9

Sincek, lC2I

1and satisfy3.2, thereforemas linear combination ofkandlshould also

(14)

Letηbe defined as follows:

ηkξ k

ξ

2

ba−2f

ba a

22 fa

b2baa2

3ba

1

0

fx2dx

. 3.10

Obviously, we have

Ψm 0. 3.11

On the other hand, there is anξI1such that

ηmξ Ψm 0. 3.12

By using the linearity property of the operatorη

0 Ψlηkξ−Ψkηlξ. 3.13

NowΨl/0 andηlξ/0, we have from the last equation

Ψk Ψl

ηkξ

ηlξ. 3.14

After putting values, we get3.7.

Corollary 3.4. Let f be a continuous, increasing and convex such thatafxbforx∈0,1, then for−∞< s /t /0, 1/s <there existsξI1such that

ξts ss−1 tt−1

DatLbt1at1/t11 0fx

t

dx

DasLbs1as1/s11 0fx

sdx

, 3.15

whereDdenotesba−2f/baandLdenotes2fa/ba2.

Proof. Setkx ϕtxandlx ϕsx, t /s /0,1 in3.7we get3.15.

Remark 3.5. Since the functionξξtsis invertible, therefore from3.15we have

a

ss−1

tt−1 ·

DatLbt1at1/t11 0fx

t

dx

DasLbs1as1/s11 0fx

s

dx

1/ts

(15)

In fact, similar result can also be given for3.7. Namely, suppose thatk/lhas inverse function. Then from3.7we have

ξ

k l

−1Dka Lb

akxdx

1

0kfxdx

Dla Lablxdx−10lfxdx

. 3.17

The expression on the right-hand side of3.17is also a mean.

From the inequality3.16, we can define meansMt,sfas follows:

Mt,sf

ss−1

tt−1 ·

DatLbt1at1/t11 0fx

tdx

DasLbs1as1/s11 0fx

s dx

1/ts

, 3.18

for−∞< s /t /0, 1/s <∞. Moreover we can extend these means in other cases. By limit we have

Ms,sf exp

μaslogaν/s1bs1logbas1logaν/s12bs1as1E

μas ν/s1bs1−as1−1 0fx

s

dx

− 2s−1

ss−1

, s /0,1;

M0,0f exp

1

0logfx 2

dx210logfxdx− H −νblogb2−aloga2−G

2νba 210logfxdx−2μloga−2νblogbaloga

;

M1,1f exp

K

ν/2b2logb2a2loga23/2νb2logba2logaH

2μalogaνb2logba2logaν/2b2a221

0fxlogfxdx

3/4ν

b2a22μaloga21

0fxlogfxdx

2μalogaνb2logba2logaν/2b2a221

0fxlogfxdx

;

M1,0f

μaloga ν/2b2logba2logaν/4b2a21

0fxlogfxdx νba 10logfxdxμlogaνblogbaloga

;

Ms,0f

μas ν/s1bs1as11 0fx

s

dx

ss−1νba 10logfxdxμlogaνblogbaloga

1/s

, s /0,1;

Ms,1f

μas ν/s1bs1as11 0fx

s

dx

ss−1μalogaν/2b2logba2logaν/4b2−a2−O

1/s−1

, s /0,1,

(16)

whereEdenotes10fxslogfxdx,Hdenotesμloga2,Gdenotes 2μloga,Kdenotes

μaloga2,Hdenotes10fxlogfx2dx, andOdenotes10fxlogfxdx, where

μ ba−2f

ba , ν

2fa

ba2. 3.20

In our next result we prove that this new mean is monotonic.

Theorem 3.6. Lettu, rs, then the following inequality is valid

Mt,rf;wMu,sf;w. 3.21

Proof. SinceΩsfis log-convex, therefore by2.11we get3.21.

Remark 3.7. Similar results of the Cauchy means and related results can also proved for Theorems2.3and2.6.

Acknowledgments

This research work is funded by Higher Education Commission Pakistan. The research of the third author is supported by the Croatian Ministry of Science, Education and Sports under the Research Grants 117-1170889-0888.

References

1 G. H. Hardy, J. E. Littlewood, and G. P ˆolya,Inequalities, Cambridge University Press, Cambridge, UK, 1978.

2 D. S. Mitrinovi´c,Analytic Inequalities, Springer, New York, NY, USA, 1970.

3 H.-J. Rossberg, B. Jesiak, and G. Siegel,Analytic Methods of Probability Theory, vol. 67 ofMathematische Lehrb ¨ucher und Monographien, Abteilung 2: Mathematische Monographien, Akademie, Berlin, Germany, 1985.

4 S. Simic, “On logarithmic convexity for differences of power means,” Journal of Inequalities and Applications, vol. 2007, Article ID 37359, 8 pages, 2007.

5 M. Anwar and J. Peˇcari´c, “On logarithmic convexity for differences of power means and related results,”Mathematical Inequalities & Applications, vol. 12, no. 1, pp. 81–90, 2009.

6 T. Popoviciu, “Sur quelques in´egalit´es entre les fonctions convexes—I,”Comptes Rendus des S´eances de l’Institut des Sciences de Roumainie, no. 2, pp. 449–454, 1938.

7 T. Popoviciu, “Sur quelques in´egalit´es entre les fonctions convexes—II,”Comptes Rendus des S´eances de l’Institut des Sciences de Roumainie, no. 2, pp. 454–458, 1938.

8 T. Popoviciu, “Sur quelques in´egalit´es entre les fonctions convexes—III,”Comptes Rendus de l’Academie des Sciences de Roumanie, no. 3, pp. 396–402, 1939.

9 J. Peˇcari´c, F. Proschan, and Y. L. Tong,Convex Functions, Partial Orderings, and Statistical Applications, vol. 187 ofMathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1992.

References

Related documents

The Qasr El Sagha Formation starts at the base with the first bed of the large anomiid bivalve Carolia placunoides and ends at the top with the ‘Bare Limestone.’

The plots of THR (MJ/m 2 ) against pHRR/TTI (kW/m 2 .s) values obtained from cone calorimetry data with mauve arrows signifying improvement in flame retardancy performance for PLA,

Venkov, S´e ries de croissance et s´e ries d’ehrhart associ´e es aux r´e seaux de racines, Comptes Rendus de l’Acad´e mie des Sciences-Series I-Mathematics 325 (1997), no.

Je vais aborder (1) la question des objectifs possibles d’un cours d’histoire des mathématiques dans la formation des enseignants ; (2) les contraintes propres au contexte

To complete this assessment task satisfactorily you need to write a reflective journal based on your experience as a health and safety management professional.. The completed

Re- cause washing stringency was low, some multicopy probes detected a strong single copy (major) band over- lying less homologous (minor) copies. Forty-four of the

Since we don’t generate a collision pair but a tail collision pair, exactly the same message modification as Wang et al.’s attack cannot be applied.. However, since tail part of x is