• No results found

Airport Capacity. Limits, Technology, Strategy

N/A
N/A
Protected

Academic year: 2021

Share "Airport Capacity. Limits, Technology, Strategy"

Copied!
70
0
0

Loading.... (view fulltext now)

Full text

(1)

MIT

ICAT

MIT

ICAT

Airport Capacity

Limits, Technology, Strategy

Prof. R. John Hansman

MIT International Center for Air Transportation

Department of Aeronautics & Astronautics

(2)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability

 Gates

 Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(3)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors



Runways

 Weather

 Capacity Variability

 Gates

 Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(4)

MIT

ICAT

MIT

ICAT

ACARS Constraint

Identification (Departure)

Normalized Total Departure Delay

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 Ram p D e la y s Taxi Con gest Clo seou t Inf o Fie l d Tr affic ATC Enr t Clr A/C Sys Che ck TO P e rf R e -Ca lc Rnw y C hang e ATC Hol d D e p Oth r Flts L/D TO W x M ins BOS ATL OR D DFW One Airline, Ten M onths (Jan-Oct. 97)

(5)

MIT

ICAT

MIT

ICAT

Separation Requirements for

Arrival (Same Runway)

 Wake Turbulence Requirement

Radar Separation requirements

Visual Separation requirements  Pilots Discretion

 Preceding arrival must be clear of runway at touchdown

Runway Occupancy time

Leading Aircraft

Heavy

Large

Small

Heavy

4

5

5

B757

4

4

5

Large

3(2.5)

3(2.5)

4

Small

3(2.5)

3(2.5)

3(2.5)

(6)

MIT

ICAT

MIT

ICAT

Separation Requirements for

Departure (Same Runway)

 Wake Turbulence is NOT a Factor

- Takeoff roll after leading takeoff is airborne AND: satisfied distance separations, OR

cleared runway end or turned out of conflict

 Wake Turbulence Application

- Trailing takeoff clearance min after leading Heavy or B757 takeoff roll, OR - Insure radar separations (miles), when trailing aircraft is airborne

 Takeoff clearance is granted when preceding landing is clear of the runway

Heavy Large Small

Heavy 4 5 5

B757 4 4 5

Cat I Cat II Cat III Cat I (small, single prop) 3000 4500 6000

Cat II (small, twin prop) 3000 4500 6000 Cat III (all other) 6000 6000 6000

Trailing departure

Leading departure

Trailing departure

(7)

MIT

ICAT

MIT

ICAT

BOS Queuing Model

27/22L-22R Configuration

(8)

MIT

ICAT

MIT

ICAT

Runway Configuration

Capacity Envelops

R unw ay Configuration C apacity Envelops

(Source: ETMS / Tow er Records, 7-9 AM, 4-8 PM, July 1-15 1998 except Saturdays, Logan Airport)

0 5 10 15 20 25 0 5 10 15 20 25

Actual Departure Rate (per 15 minutes)

A c tu a l A rr iv a l R a te ( per 1 5 m inut e s ) 4L/4R-9 (reported average 68 AAR - 50 DEP) 27/22L-22R (reported average 60 AAR - 50 DEP) 33L/33R-27 (reported average 44 AAR - 44 DEP)

Single Runway (January 1999, reported average 34 AAR 34 DEP)

(9)

MIT

ICAT

MIT

ICAT

Demand vs. Capacity at

Logan Airport (1987)

(10)

MIT

ICAT

MIT

ICAT

(11)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways



Weather

 Capacity Variability

 Gates

 Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(12)

MIT

ICAT

MIT

ICAT

(13)

MIT

ICAT

MIT

ICAT

Variable Capacity Effects

1995 Delays vs Operations

1000000 800000 600000 400000 200000 0 0 10 20 30 40 50 60

Total Operations (CY95) SFO LGA EWR STL LAX ORD DFW ATL BOS JFK PHX LAS SJU HNL PIT DEN CLT IAH MEM

Data from FAA Capacity Office, CY95

(14)

MIT

ICAT

MIT

ICAT

Weather Factors

 IMC/VMC Capacity Variability

 Ceiling and Visibility  Start Time  Finish Time

 Convective Weather

 Airport  Arrival/Departure Gates

 Windshear

 Wind

 Runway Configuration

 Precipitation

 Breaking Action  Plowing

(15)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability



Gates

 Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(16)

MIT

ICAT

MIT

ICAT

ACARS Constraint

Analysis (Arrival)

Normalized Total Arrival Delay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Me c h M alfu nctio n Red Vis , Sno w, I ce Fie l d T raffi c Ram p C onge st Ga t e A ssig nm nt Ga t e O ccup ied Wa i t G uide ma n Tow -In P robs BOS ATL ORD DFW One Airline, Ten M onths (Jan-Oct. 97)

(17)

MIT

ICAT

MIT

ICAT

Gate Dynamics

Low Predictability of Departure Demand based on Schedule

"Scheduled Departure Tim e" to "R eady for Pus h or Taxi"

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 0 :0 0 0 :0 8 0 :1 6 0 :2 4 0 :3 2 0 :4 0 0 :4 8 0 :5 6 1 :0 4 1 :1 2 1 :2 0 1 :2 8 1 :3 6 Tim e (hr:m in) F req ue nc y

Mean = 14 min (abs olute) Std. Dev = 17 min 22 sec

(18)

MIT

ICAT

MIT

ICAT

On Gate Departure Preparation

(19)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability

 Gates



Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(20)

MIT

ICAT

MIT

ICAT

(21)

MIT

ICAT

MIT

ICAT

Downstream Restrictions

Ground Stops

Downstream Restrictions Effect on Departure Rate (source: CODAS/ETMS, Logan Airport, July 17-1998)

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 6:00:00 8:24:00 10:48:00 13:12:00 15:36:00 18:00:00 20:24:00 22:48:00 Time (Local) D epar tur e R a te ( per 15 m inutes )

Average Departure Rate July 17, All day restrictions

GS to EWR, LGA, IAD, PHL, ORD and BWI 15:15 - 21:00, ACK GS 11:00 - 13:00

ADP ADP

Downstream Restrictions Effect on Delays (Source: ASQP, Logan Airport, All Airlines, July 17-1998)

-50 -30 -10 10 30 50 70 90 110 130 150 6:00:00 8:24:00 10:48:00 13:12:00 15:36:00 18:00:00 20:24:00 22:48:00 Time (Local) T ime ( m inutes )

Taxi Out Push Delay

GS to EWR, LGA, IAD, PHL, ORD and BWI 15:15 - 21:00, ACK GS 11:00 - 13:00

(22)

MIT

ICAT

MIT

ICAT

Downstream Restrictions

Local Departure Fix (MHT)

Downstream Restrictions Effect on Delays (Source: ASQP, Logan Airport, All Airlines, July 23-1998)

-50 -30 -10 10 30 50 70 90 110 130 150 6:00:00 8:24:00 10:48:00 13:12:00 15:36:00 18:00:00 20:24:00 22:48:00 Time (Local) Ti me (mi nut es )

Taxi Out Push Delay

Thunderstorms, BOSOX, MHT and PSM (exit gates): GS and INTRAIL 12:30 - 20:30

Downstream Restrictions Effect on Departure Rate (source: CODAS/ETMS, Logan Airport, July 23-1998)

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 6:00:00 8:24:00 10:48:00 13:12:00 15:36:00 18:00:00 20:24:00 22:48:00 Time (zooloo) D epart u re R a te (per 15 mi nut es )

Average Departure Rate July 23, All day restrictions

Thunderstorms , BOSOX, MHT and PSM: GS and MINIT 12:30 - 20:30

ADP ADP

ADP

(23)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability

 Gates

 Downstream Constraints



Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(24)

MIT

ICAT

MIT

ICAT

ATC Workload as a

System Constraint

(25)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability

 Gates

 Downstream Constraints

 Controller Workload



Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions

 Safety

(26)

MIT

ICAT

MIT

ICAT

Landside Limits

 Passenger System Throughput

 Road Access Limits

 1000 Originating Seats/15 min/Terminal  Parking

 Security Throughput

 Passengers  Baggage (x 20)

(27)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability

 Gates

 Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access



Environmental

 Community Noise  Emissions

 Safety

(28)

MIT

ICAT

MIT

ICAT

BOS (4R Departure)

Community Noise Impact

 Example: Louisville Runway

 30 > 70 ops/hr  Runway

 $447 M

 Property within 65 DNL  $350 M

(29)

MIT

ICAT

MIT

ICAT

Runway Departure Queue Costs

Boston, Logan Airport

(30)

MIT

ICAT

MIT

ICAT

Airport System

Capacity Limit Factors

 Runways

 Weather

 Capacity Variability

 Gates

 Downstream Constraints

 Controller Workload

 Landside Limits

 Terminals  Road Access

 Environmental

 Community Noise  Emissions



Safety

(31)

MIT

ICAT

MIT

ICAT

Safety vs Capacity

 The current airborne system is extremely safe but conservative

 Runway Incursions are an area of concern

 Increased capacity with current infrastructure implies Reduced

Operational Separation

 Airborne Separation Standards  Runway Occupancy Times  Wake Vortex

 Controller Personal Buffers  ...

 How do you dependably predict the safety impact of changes in

a complex interdependent system?

 Statistics of small numbers

 Differential analysis limited to small or isolated changes  Models??

(32)

MIT

ICAT

MIT

ICAT

RUNWAY INCURSION

STATISTICS

28 51 50 60 73 51 84 66 125 146 132 183 74 83 65 69 87 91 0 50 100 150 200 250 300 350 1993 1994 1995 1996 1997 1998

Vehicle/pedestrian deviations Pilot deviations Operational errors

(33)

MIT

ICAT

MIT

ICAT

SEPARATION ASSURANCE

BUDGET COMPONENTS

NOTE: budget components not to scale (relative sizes have changed over time) CONTROLLER: • DETECTION • COMPREHENSION • RESOLUTION (INTENT) COMMUNICATION SAFETY BUFFER PILOT: • DETECTION • COMPREHENSION • ACTION (AIRCRAFT DYNAMICS) SURVEILLANCE SYSTEM: • POSITION UNCERTAINTY • UPDATE RATE

• VELOCITY & ACCEL

(34)

MIT

ICAT

MIT

ICAT

Potential Technology Impact

Examples

 Runway Efficiency, Reduced Volatility

 Single Stream Compression  Close Parallel Approach

 Wake Vortex Sensing (Dynamic)  Pairwize Self Separation

 VFR Performance in IFR

 Terminal Area Efficiency

 Flow to Final  Load Balancing

 Multi-Runway Coordination

 More Efficient Use of Resources (Systemwide and Local)

 Collaborative Decision Making  Information Sharing

 Wx Prediction

 Environmental Benefits

 Minimal Noise Procedures

(35)

MIT

ICAT

MIT

ICAT

ATM Technology Components

 Physical Infrastructure

 Runways  Gates  Terminals  Landside

 Communication

 Navigation

 Surveillance

 Information Architecture

 Information Sharing Tools  Decision Support

 Weather  Databases

(36)

MIT

ICAT

MIT

ICAT

Infrastructure

 Runways (Concrete)

 Marginal Increase in Peak Capacity Available at Existing High Demand Airports (less than 40%)

 New Runways Politically Difficult

 Noise

 Emissions

 Gates

 Terminals

 Landside

(37)

MIT

ICAT

MIT

ICAT

ACARS Messages -2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000 16,000,000 Year

Communications

 Satellite Communications

 Datalink

 CPDLC

 Latency Problems  Terminal Area  Approach Routing  Taxi Routing

 ACARS

 PDC Clearance  Airline Coordination



Limited direct impact on Airport Capacity

(38)

MIT

ICAT

MIT

ICAT

Navigation

 GPS

 Initial Approach (CA)

 Cat I (WAAS)

 Cat II, III (LAAS)

 Surface (WAAS)

 WAAS

 In trouble, integrity Issues

 LAAS

 Carrier Phase  Code Based



Approach Guidance Potential Benefits

 Noise, Close Parallel Approaches



Surface Guidance



Issues

 Jamming

 Surveying, TERPS

(39)

MIT

ICAT

MIT

ICAT

3° Decelerating Approach Existing ILS Approach

3° Decelerating Approach

(JFK 13L)

(40)

MIT

ICAT

MIT

ICAT

Surveillance

 Enhanced Digital Radar Performance

 Precision, Weather

 ADS-B

(Compression Benefits)

 AMSS

(Safety, Runway Incursions)

 Radar

 Multilateration

 AVOSS

(Dynamic Vortex Separation)

 Synthetic/ Enhanced Vision

 Aircraft (VMC Separation in IMC) (Compression)

 Tower (Safety)



Compression Benefits

 Tighter Control Loops

 Close Parallel Approaches

 Pairwize Self Separation

(41)

MIT

ICAT

MIT

ICAT

Vectors Aircraft Flight Management Comp uter State Navigation Flight Plan Amendments Autop ilot Autothrust MCP Controls ATC Flight Strip s Surveillance: Enroute: 12.0 s Terminal: 4.2 s State Commands Trajectory Commands Initial Clearances CDU ADS: 1 s Disp lays AO C: Airline O perations Center Pilot Disp lays Manual Control Voice ACARS (Datalink) Decision Aids

(42)

MIT

ICAT

MIT

ICAT

Radar Display Example

CO 123 350C

(43)

MIT

ICAT

MIT

ICAT

Information Architecture

 Information Sharing

 Collaborative/Informed Decision Making  Strategic

 Tactical

 Decision Support Tools

 Weather

 Databases



Improved/Use of Existing Resources

 Capacity

 Predictability, volatility



Note: Must consider degraded mode operation

 If high Traffic Density or Reduced Separation are Dependant on

Surveillance, Navigation, Information Sharing, or Decision Support Tools need recovery strategy for failures.

(44)

MIT

ICAT

MIT

ICAT

Proposed CNS/ATM Information

Technologies

Aircraft Guidance and Navigation AC State Sensor Traffic Control Traffic Sensor Vectors Clearances Sector Traffic Planning National Flow Planning Approved Flight Plans Approved Handoffs Desired Sector Loads Clearance Requests Other Aircraft States Flight Planning Weather NAS Status Flight Schedule Filed Flight Plans Negotiate Handoffs Schedule of Capacities < 5 min 5 min 5-20 min hrs - day Facility Flow Planning hrs Execution Planning Planned Flow Rates CTAS CTAS AOCNET CDM ASDI ATN Radar Net CPDLC CPDLC ADS-B CDTI Tracker ADS-A ADS-B AOC CTAS Voice Voice NASWIS Delay Est. Information Sharing Surveillance Decision Support SMA UPR URET SMA

(45)

MIT

ICAT

MIT

ICAT

Collaborative Decision Making

 Strategic Level

 Schedule  Cancellations

 Response to Severe Weather

 Response to Capacity Restrictions  Airport  Enroute

 Tactical Level

 Diversions  Prioritization  Routing  Sequencing  Arrival  Departure Airlines ATC/Airport Facilities Flow Control AOC Dispatch Aircraft ATC Information Sharing Paths

(46)

MIT

ICAT

MIT

ICAT

CDM Tools AOC Net ETMS

ATM Strategic Information

Architecture

Airline C Airline Operations Center Central Flow Control Host TMC Tower C Tower B TMC Tower A Supervisor TMC TRACON C TRACON B TMC TRACON A Supervisor TMC ARTCC C ARTCC B TMC ARTCC A Supervisor Airline B Airline Operations Center Airline A Airline Operations Center NADIN

(47)

MIT

ICAT

MIT

ICAT

ETMS

(48)

MIT

ICAT

MIT

ICAT

ATM Tactical Information

Architecture

Future Controller Airline Dispatch AOC Active Controller Host Computer and ATC Information Network

Flight Crew

ACARS Flight Plan

OAG

Flight Plan

Decision Aids (CTAS) Procedures

Flight Strips, Flight Information Object

(49)

MIT

ICAT

MIT

ICAT

CTAS

Decision Aid/Information Sharing

Example

TMA

Traffic Management Advisor

DA

Descent Advisor

FAST

Final Approach Spacing Tool

p FAST

a FAST

UPR

User Preferred Routing

D2

Direct-To Tool

EDP

Expedite Departure Path

CAP

Collaborative Arrival

Future (?)

SMS

Surface Movement System

DP

Departure Planner

(50)

MIT

ICAT

MIT

ICAT

ATC Coordination Example CTAS

Traffic Management Advisor (TMA)

TMA Provides

- Decision Support

- Scheduling

- Resource Allocation (Runways)

- Information Sharing

- TRACON

- Center (ARTCC)

- TMU/TMC

(51)

MIT

ICAT

MIT

ICAT

CTAS Load Graph

A rri v a l Ra te (pe r10 m in )

(52)

MIT

ICAT

MIT

ICAT

FAST

p FAST Sequencing Runway Advisory a FAST Speed Advisory Turn Advisory

(53)

MIT

ICAT

MIT

ICAT

Passive FAST vs. Current

Passive FAST vs. Current

(DFW Trials)

(DFW Trials)

0 20 40 60 80 100 120 140 160 IFR, 2 Runways IFR, 3 Runways VFR, 3 Runways Arri val Rate (ai rcraft/ hour) Baseline FAST 11:30 am rush,

VFR corrected for inboard landings

(54)

MIT

ICAT

MIT

ICAT

Passive FAST vs. Current

Passive FAST vs. Current

(Excess in

(Excess in

-

-

trail Separations)

trail Separations)

0.0 1.0 2.0 3.0

Baseline P-FAST Baseline P-FAST

IFR VFR 4.0 5.0 -1.0 DFW 11:30 am rush, measured at Outer Marker

(55)

MIT

ICAT

MIT

ICAT

Departure Planning Tools

 Decision Aiding Tools to Improve the Efficiency of the Departure

Process

 Meter and Sequence Departure Queues to:

 Utilize system resources efficiently (primarily at peak traffic)

 Maximize runway throughput

 Minimize taxi time delays (pushback and other clearances)

 Balance runway loads

 Minimize environmental impact

 Engine emissions during taxiing

 Noise regulations

 Reduce economic inefficiencies

 Minimize “engine-run” (taxi) times

 Guarantee fair treatment among all airport users

(56)

MIT

ICAT

MIT

ICAT

Departure Planning Tool 1

(N Control)

Runway 9-4R Configuration 34 departures/hr

(57)

MIT

ICAT

MIT

ICAT

340263_15.PPT CBS 4-05-2000

Weather Decision Aid Example

New York City ITWS

Sensor Fusion Common User Displays NYC Situational Display One-Minute Coverage Region PHL JFK ISP HVN SWP EWR ITWS Displays

Source: MIT Lincoln Laboratory Command Center Washington Center Newark Teterboro Boston Center La Guardia Airport JFKNY TRACON NY Center

(58)

MIT

ICAT

MIT

ICAT

Future Synoptic Civil Weather

340522_1.ppt CBS 4-7-2000 GOES-P GOES-0 Thunderstorms NEXRAD TDWR

(59)

MIT

ICAT

MIT

ICAT

Database Example

Flight Information Object (FIO)

Flight Information

Object

Airline

Aircraft Station/Ramp

Air Traffic Control

Customers & Family

Passenger Service Providers

(60)

MIT

ICAT

MIT

ICAT

Capacity Increase Potential

Free Flight Phase 1

 Collaborative Decision Making

 Improved Coordination of Limited Resources

 URET Conflict Probe

 No Direct Impact

 Traffic Management Advisor

 Improved Runway Balancing

 Flow Coordination

 p FAST

 Runway Load Balancing

 Runway Schedule Compression (10-15%)

 Surface Movement Advisor

 Limited Gate Coordination

 Controller Pilot Datalink Communication (CPDLC)

(61)

MIT

ICAT

MIT

ICAT

Potential Future Improvements

to Capacity Management

 Time Based ATM Operations

 Required Time of Arrival (RTA)

 Formation Approach Procedures

 Integrated Terminal Multi-Airport Operations

 Airport Capacity Markets

 Arrival Departure Balancing

 Automated Passenger Screening

(62)

MIT

ICAT

MIT

ICAT

Suggested Political

Solutions to Capacity Shortfall

 Privatization, the silver bullet?

 May improve modernization,costs and strategic management  Limited impact on capacity

 Re-regulation

 Increased Costs

 Peak Demand Pricing

 Reduced service to weak markets

 Run System Tighter

 Requires improved CNS  Safety vs Capacity Trade

 Build more capacity

 Local community resistance

(63)

MIT

ICAT

MIT

ICAT

Conclusion

 Technology in Pipeline will have limited impact on peak

Capacity at Currently Stressed Airports

 20% to 40%

 System will become (is) Capacity Restricted

 Airlines will Schedule in Response to Market Demand

 Delay Homeostasis

 Increased Traffic at Secondary Airports  High Frequency Service

 Technology will not be a panacea

 Overall system response is not clear

 Need for leadership

(64)

MIT

ICAT

MIT

ICAT

Capacity Limit Factors

 Airport Capacity

 Runways  Gates  Landside Limits  Weather

 Airspace Capacity

 Airspace Design  Controller Workload

 Demand

 Peak Demand

 Hub & Spoke Networks

 Environmental Limits

 Noise (relates to Airport)

(65)

MIT

ICAT

MIT

ICAT

Schedule Factors

 Peak Demand/Capacity issue driven by airline Hub and Spoke

scheduling behavior

 Peak demand often exceeds airport IFR capacity (VFR/IFR Limits)  Depend on bank spreading and lulls to recover

 Hub and Spoke amplifies delay

 Hub and spoke is an efficient network  Supports weak demand markets

 Schedules driven by competitive/market factors  Operations respond to marketing

 Trend to more frequent services, smaller aircraft  Ratchet behavior

 Impact of regional jets

 Ultimately, airlines will schedule rationally

 To delay tolerance of the market (delay homeostasis)

(66)

MIT

ICAT

MIT

ICAT

Capacity Limits as Market

Drivers for Large Aircraft ?

 Do large aircraft increase passenger throughput?

 Wake Vortex Separation Requirements  Runway Occupancy Time

 Taxi Speeds

 Aircraft Turn Time

 Southwest (25-30 min)  International (3-5 hours)

 Can you incentivize/require larger aircraft?

 Landing Fees

 Currently charge by weight/size (disincentive)  Peak period pricing

Impact on secondary markets (cost, schedule) Political Issues

 Slots

 Used in Europe (still have large delays)

(67)

MIT

ICAT

MIT

ICAT

Airport Issues

 Gate Design

 80m box, jetways,

 Taxiway Design (80m box)

 Runway Loading/Wear

 Taxiway Loading

 Tenerife

 Emergency Response Capacity

 Community Noise

 Landside limits

(68)

MIT

ICAT

MIT

(69)

MIT

ICAT

MIT

ICAT

WEATHER

SYNTHETIC VISION (LANDING)

SINGLE STREAM COMPRESSION

TERMINAL AREA SYSTEM LEVEL

CDTI/ELECTRONIC VFR

DYNAMIC WAKE SPACING - ARRIVALS

WAKE VORTEX DEPARTURE AID FMS/ATM INTEGRATION

CONVERGING RWY SPACING AID

DEPARTURE SEQUENCE OPTIMIZATION

HOLDING STACK MANAGEMENT DST

ADVANCED TFM DSTs FINAL SPACING DST

DECELERATION OPTIMIZATION HIGH SPEED EXITS

LANDING SEQUENCE OPTIMIZATION

WINDS ALOFT

NEW TFM PROCEDURES RWY ASSIGNMENT DST

DYNAMIC RESECTORIZATION RWY CONFIGURATION DST PARALLEL RWY MONITORING

WORKLOAD REDUCTION

TAXI GUIDANCE

WX IMPACTED ROUTING DST CONVECTIVE WEATHER PREDICITON CEILING/VISIBILITY PREDICTION ARRIVAL COMPRESSION DEPARTURE COMPRESSION MULTI-RUNWAY INTERACTIONS SURFACE CURVED APPROACHES ARRIVAL/DEPARTURE PLANNING

LOW/ZERO VISIBILITY TOWER

NOISE REDUCTION

MISSED APPROACH GUIDANCE

- improved CHI

AIRSPACE REDESIGN - datalink

SURFACE SURVEILLANCE

GENERAL

ARRIVAL FLOW MANAGEMENT

WX FORECAST PRODUCTS RWY EXIT GUIDANCE

PAIRED PARALLEL APPROACHES REVISED IN-TRAIL SEP STANDARDS

REVISED MULTI-RWY STANDARDS

REVISED DEPARTURE STANDARDS

WEATHER PENETRATION

SURFACE MOVEMENT DSTs CAPACITY ENHANCEMENT

(70)

MIT

ICAT

MIT

ICAT

PAIRED PARALLEL APPROACHES

A->B blunder protection A->B wake protection A B C D B->D wake protection A->C wake protection

DEPENDENT PARALLEL APPROACHES

2

2

2

INDEPENDENT PARALLEL APPROACHES

3

References

Related documents

The program is a municipal management training program that offers an intense and fulfilling 12-month fellowship designed to provide successful Fellows a jump start on a career

 Invited Session Chair – Supply Chain Demand Management, INFORMS Annual Meeting, Atlanta, GA, October 2003.  Session Coordinator – Carnegie Bosch Institute Closed-Loop

For example, a subcontractor in a megaproject can use this framework to identify its internal and external stakeholders and strat- egise how to create value- from project

But the fact that the unit of account used to measure the tributes and all the economic relations that took place in the temple was the cereal grain does not mean that grain was

Number of Salmonberry Plants table that supports that scientific reason OR describes a scientific reason for the results in the forest habitat and includes data from the Habitat

The liberalisation of the sugar trade causes changes in the exchange rate, which means that the prices of all traded commodities are subject to change and therefore the

Individuals with less compact probability distributions over expected future retirement ages are more likely to give a don’t know response or, if they do give a point expectation,

Are dining dollars billed to the University as part of the meal plan daily rate or billed separately as used.. The Munch Money portion of the meal plan is