• No results found

2 (Imidazol 1 yl) 1 (2 naphthyl)­ethano­ne O propyl­oxime hydro­chloride

N/A
N/A
Protected

Academic year: 2020

Share "2 (Imidazol 1 yl) 1 (2 naphthyl)­ethano­ne O propyl­oxime hydro­chloride"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

e12

SuÈheyla OÈzbeyet al. C18H20N3O+Clÿ Acta Cryst.(2003). E59, e12 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-(Imidazol-1-yl)-1-(2-naphthyl)ethanone

O

-propyloxime hydrochloride. Erratum

SuÈheyla OÈzbey,a* Engin Kendi,a

Arzu Karakurtband

Sevim Dalkarac

aDepartment of Engineering Physics, Hacettepe

University, Beytepe 06532, Ankara, Turkey,

bDepartment of Pharmaceutical Chemistry,

Hacettepe University, Sõhhiye 06100, Ankara, Turkey, andcDepartment of Pharmaceutical

Chemistry, Ankara University, Sõhhiye 06100, Ankara, Turkey

Correspondence e-mail: sozbey@hacettepe.edu.tr

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

(2)

Acta Cryst.(2002). E58, o1269±o1271 DOI: 10.1107/S1600536802018962 SuÈheyla OÈzbeyet al. C18H20N3O+Clÿ

o1269

organic papers

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

2-(Imidazol-1-yl)-1-(2-naphthyl)ethanone

O

-propyloxime hydrochloride

SuÈheyla OÈzbey,a* Engin Kendi,a Arzu Karakurtb and

Sevim Dalkarac

aDepartment of Engineering Physics, Hacettepe

University, Beytepe 06532, Ankara, Turkey, bDepartment of Pharmaceutical Chemistry,

Hacettepe University, Sõhhiye 06100, Ankara, Turkey, andcDepartment of Pharmaceutical Chemistry, Ankara University, Sõhhiye 06100, Ankara, Turkey

Correspondence e-mail: sozbey@hacettepe.edu.tr

Key indicators Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.002 AÊ

Rfactor = 0.032

wRfactor = 0.090

Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The structure of the title compound {systematic name: 1-[2-(2-naphthyl)-2-(propoxyimino)ethyl]-4,5-dihydroimidazol-3-ium chloride}, C18H20N3O+Clÿ, is stabilized by intermolecular

hydrogen bonds. The naphthalene moiety and the imidazole ring are essentially planar. The imidazole N2 atom is protonated and is connected to the Clÿ anion through a

hydrogen bond [Cl N2 = 3.004 (2) AÊ]. The con®guration of the cation isZ.

Comment

Oximes and oxime ethers show geometric isomerism because of the double bond between the N and the O atoms in their structure. Depending on the reaction and the reaction condi-tions,E,Zor a mixture ofE/Zisomers in different proportions may be obtained. Reaction of alkyl halides or alkyl sulfates with oximes is one of the widely used methods to prepare oxime ethers, and the con®guration of the oxime ethers prepared in this way is usually the same as the con®guration of the oxime (March, 1992; Balsamoet al., 1990).

In this study, the title compound, (I), was prepared as a potential anticonvulsant and antimicrobial compound, by

O-alkylation of na®midone oxime (Z), which was synthesized by the reaction of na®midone and hydroxylamine hydro-chloride (Karakurtet al., 2001; Kendiet al., 1998). The struc-tural elucidation of (I) was achieved by IR,1H NMR, MS data

and elemental analysis. The compound exhibits both anti-convulsant and antimicrobial activities

As shown in Fig. 1, the present compound is a salt. The con®guration of the cation is Z. This result is in accordance with the literature, in that oxime ethers obtained by alkylation of oximes with alkyl halides are generally expected to have the same con®guration as the oximes (Balsamoet al., 1990). The X-ray crystal structure of na®midone oxime, which was obtained as a single isomer in high yield, showed that this compound was in theZcon®guration (Kendiet al., 1998). As expected, the naphthalene moiety and the imidazole ring, are essentially planar [maximum deviations ÿ0.012 (2) AÊ for C7 andÿ0.004 (2) AÊ for C15]. The dihedral angle between these two planes is 66.91 (6). The CÐN bond distances in the

imidazole ring are not the expected single- and double-bond lengths [N2ÐC13 1.312 (2) AÊ and N1ÐC13 1.325 (2) AÊ], as

(3)

o1270

SuÈheyla OÈzbeyet al. C18H20N3O+Clÿ Acta Cryst.(2002). E58, o1269±o1271

reported in other imidazole oxime derivatives (Karakurtet al., 2001; Kendi et al., 1998; Grassi et al., 1993). The positive charge on imidazole atom N2 results from proton transfer from the HCl. A strong hydrogen bond exists between the imidazole NH+group and the Clÿ anion and, therefore, the

CÐN bonds mentioned above have intermediate values between the expected single- and double-bond lengths.

The orientation of the naphthalene system is de®ned by the torsion angles C8ÐC11ÐC12ÐN1 [91.7 (2)] for the

imida-zole ring and C1ÐC8ÐC11ÐN3 [164.6 (1)] for the oxime.

These angles are 91.5 (3) and 162.8 (2) in

1-(2-naphthyl)-2-(imidazole-1-yl)ethanone O-(2-propen)oxime hydrochloride (Karakurt et al., 2001); the oxime in 2-(imidazol-1-yl)-1-(2-naphthyl)ethanone oxime (Kendiet al., 1998) is twisted out of the naphthalene plane by 36.2 (1).

The crystal structure of (I) is stabilized by intermolecular hydrogen bonds (Table 2).

Experimental

Na®midone oxime (0.01 mol) was added to a solution of sodium ethoxide prepared from sodium (0.011 mol) and anhydrous ethanol (25 ml), and the resulting solution was re¯uxed for 30 min. After ethanol was evaporated under reduced pressure, the residue was dissolved in anhydrous dimethylformamide (DMF, 20 ml) and propyl bromide (0.01 mol) was added. The mixture was re¯uxed for 3 h at 343 K, then the DMF was evaporated to dryness. The oily residue was dissolved in dry benzene and treated with HCl gas to obtain the hydrochloride salt. The residue was recrystallized from methanol/ ethyl acetate. Yield = 84%, m.p. = 443±445 K. UVmax(log"): 297.2 (4.14), 286.0 (4.17), 243.6 (4.47), 212.6 (4.38) nm. IR: 3147 (aromatic

CÐH stretching), 2962, 2880 (aliphatic CÐH stretching), 2412 (N+Ð H stretching), 1032 (CÐO deformation), 934 (NÐO deformation), 871, 830, 761 (naphthalene CÐH deformation) cmÿ1. 1H NMR (CDCl3-d, p.p.m.):d1.00 (t; 3H; ±CH3), 1.8 (m; 2H; CH2±CH3), 4.35 (t; 2H; CH2ÐO), 5.70 (s; 2H; CH2ÐN), 7.10±8.10 (m; 8H; naphthalene H3±8 and imidazole H4, H5), 8.40 (s; 1H; naphthalene H1), 9.60 (s; 1H; imidazole H2). Mass spectrum (EI, 70 eV):m/e293 (78%,M+), 262, 234, 207, 195, 170, 153 (100%, base peak), 127, 81, 69 and 43. Elemental analysis, C18H20ClN3O0.5H2O (338.84): calculated C 63.81, H 6.25, N 12.40%; found: C 63.33%, H 5.77%, N 12.21%.

Crystal data

C18H20N3O+Clÿ

Mr= 329.82 Triclinic,P1 a= 8.6832 (16) AÊ b= 9.5662 (13) AÊ c= 11.3595 (16) AÊ

= 104.967 (11)

= 107.547 (13)

= 94.120 (14)

V= 857.6 (2) AÊ3

Z= 2

Dx= 1.277 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections

= 10.3±18.1

= 0.23 mmÿ1

T= 295 (2) K Prism, colorless 0.460.420.24 mm

Data collection

Enraf±Nonius CAD-4 diffractometer Non-pro®led!scans Absorption correction: scan

(Northet al.1968) Tmin= 0.899,Tmax= 0.946

3444 measured re¯ections 3216 independent re¯ections 2561 re¯ections withI> 2(I)

Rint= 0.007

max= 26.2

h= 0!10 k=ÿ11!11 l=ÿ13!13 3 standard re¯ections

frequency: 120 min intensity decay:ÿ1%

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.032

wR(F2) = 0.090

S= 1.02 3216 re¯ections 248 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(Fo2) + (0.0448P)2

+ 0.1717P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.24 e AÊÿ3

min=ÿ0.15 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1ÐN3 1.4040 (17)

O1ÐC16 1.436 (2)

C8ÐC11 1.476 (2)

C11ÐN3 1.2872 (19)

C11ÐC12 1.510 (2)

N1ÐC13 1.3249 (19)

N1ÐC15 1.365 (2)

N1ÐC12 1.4749 (19)

N2ÐC13 1.312 (2)

N2ÐC14 1.357 (2)

N2ÐH10 1.00 (2)

C15ÐC14 1.341 (3)

C16ÐC17 1.496 (3)

C17ÐC18 1.515 (3)

N3ÐO1ÐC16 109.95 (12)

N3ÐC11ÐC8 116.87 (13)

C8ÐC11ÐC12 120.37 (13)

C13ÐN1ÐC15 108.00 (14)

C13ÐN2ÐC14 108.40 (15)

C13ÐN2ÐH10 126.8 (13)

C11ÐN3ÐO1 111.29 (12)

N2ÐC13ÐN1 109.10 (15)

N1ÐC12ÐC11 112.42 (12)

C14ÐC15ÐN1 106.93 (16)

O1ÐC16ÐC17 106.55 (15)

C15ÐC14ÐN2 107.56 (17)

C16ÐC17ÐC18 113.02 (19)

Figure 1

(4)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N2ÐH10 Cl1 1.00 (2) 2.02 (3) 3.004 (2) 172.5 (17)

C12ÐH12A Cl1i 0.99 (2) 2.79 (2) 3.748 (2) 163.3 (13)

C15ÐH15 Cl1i 1.00 (3) 2.69 (3) 3.623 (2) 155.5 (16)

Symmetry code: (i) 1‡x;y;z.

The H atoms attached to C12, C15, C16, C17 and N2 and were located from a difference map and re®ned freely. The other H atoms were positioned geometrically at distances of 0.93 and 0.97 AÊ for aromatic and methyl H atoms, respectively, and re®ned riding on their parent atoms.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement:CAD-4EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication:WinGX(Farrugia, 1999).

References

Balsamo, A., Macchia, B., Martinelli, A., Orlandini, E., Rossello, A., Macchia, F., Brocalli, G. & Domiano, P. (1990).Eur. J. Med Chem.25, 227±233. Enraf±Nonius (1994).CAD-4EXPRESS. Enraf±Nonius, Delft, The

Nether-lands.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Grassi, G., Foti, F., Risitano, F., Bruno, G., Nicolo, F. & De Munno G. (1993).J. Chem. Soc. Perkin Trans.1, pp. 2615±2619.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Johnson, C. K. (1965). ORTEP.Report ORNL-3794. Oak Ridge National

Laboratory, Tennessee, USA.

Karakurt, A., Dalkara, S., OÈzalp, M., OÈzbey, S., Kendi, E. & Stables, J. P. (2001).Eur. J. Med. Chem.36, 421±433.

Kendi, E., OÈzbey, S., Karakurt, A. & Dalkara, S. (1998).Acta Cryst.C54, 1513± 1515.

March, J. (1992).Advanced Organic Chemistry: Reactions, Mechanism and Structure. 4th ed. Toronto: John Wiley and Sons.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Acta Cryst.(2002). E58, o1269±o1271 SuÈheyla OÈzbeyet al. C18H20N3O+Clÿ

o1271

(5)

sup-1 Acta Cryst. (2002). E58, o1269–o1271

supporting information

Acta Cryst. (2002). E58, o1269–o1271 [https://doi.org/10.1107/S1600536802018962]

2-(Imidazol-1-yl)-1-(2-naphthyl)ethanone

O

-propyloxime hydrochloride

S

ü

heyla

Ö

zbey, Engin Kendi, Arzu Karakurt and Sevim Dalkara

(I)

Crystal data

C18H20N3O+·Cl−

Mr = 329.82

Triclinic, P1

a = 8.6832 (16) Å

b = 9.5662 (13) Å

c = 11.3595 (16) Å

α = 104.967 (11)°

β = 107.547 (13)°

γ = 94.120 (14)°

V = 857.6 (2) Å3

Z = 2

F(000) = 348

Dx = 1.277 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 10.3–18.1°

µ = 0.23 mm−1

T = 295 K Prism, colorless 0.46 × 0.42 × 0.24 mm

Data collection

Enraf-Nonius CAD-4 diffractometer non–profiled ω scans

Absorption correction: ψ scan

Tmin = 0.899, Tmax = 0.946

3444 measured reflections 3216 independent reflections 2561 reflections with I > 2σ(I)

Rint = 0.007

θmax = 26.2°, θmin = 2.5°

h = 0→10

k = −11→11

l = −13→13

3 standard reflections every 120 min intensity decay: −1%

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.090

S = 1.02 3216 reflections 248 parameters 0 restraints

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0448P)2 + 0.1717P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.24 e Å−3

Δρmin = −0.15 e Å−3

Special details

(6)

supporting information

sup-2 Acta Cryst. (2002). E58, o1269–o1271

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(7)

sup-3 Acta Cryst. (2002). E58, o1269–o1271

Atomic displacement parameters (Å)

U11 U22 U33 U12 U13 U23

Cl1 0.0385 (2) 0.0534 (2) 0.0655 (3) 0.01445 (16) 0.02465 (18) 0.02299 (19) O1 0.0669 (8) 0.0551 (7) 0.0534 (7) 0.0165 (6) 0.0307 (6) 0.0196 (5) C8 0.0311 (7) 0.0397 (8) 0.0492 (8) 0.0075 (6) 0.0115 (6) 0.0156 (7) C11 0.0319 (7) 0.0432 (8) 0.0467 (8) 0.0065 (6) 0.0118 (6) 0.0164 (7) N1 0.0348 (6) 0.0389 (6) 0.0484 (7) 0.0087 (5) 0.0174 (5) 0.0151 (5) N2 0.0383 (7) 0.0616 (9) 0.0653 (9) 0.0163 (6) 0.0196 (7) 0.0245 (7) N3 0.0488 (8) 0.0474 (7) 0.0519 (8) 0.0113 (6) 0.0205 (6) 0.0159 (6) C9 0.0398 (8) 0.0422 (8) 0.0533 (9) 0.0089 (6) 0.0157 (7) 0.0131 (7) C1 0.0448 (8) 0.0376 (8) 0.0545 (9) 0.0108 (6) 0.0173 (7) 0.0173 (7) C13 0.0392 (9) 0.0589 (10) 0.0647 (10) 0.0129 (7) 0.0236 (8) 0.0284 (9) C6 0.0380 (8) 0.0371 (8) 0.0659 (10) 0.0074 (6) 0.0126 (7) 0.0191 (7) C12 0.0325 (7) 0.0413 (8) 0.0479 (9) 0.0071 (6) 0.0135 (7) 0.0133 (7) C7 0.0335 (7) 0.0453 (8) 0.0568 (9) 0.0057 (6) 0.0136 (7) 0.0221 (7) C10 0.0336 (8) 0.0405 (8) 0.0584 (10) 0.0076 (6) 0.0118 (7) 0.0119 (7) C15 0.0488 (10) 0.0809 (13) 0.0786 (13) 0.0196 (9) 0.0301 (9) 0.0485 (11) C2 0.0616 (11) 0.0530 (10) 0.0600 (10) 0.0135 (8) 0.0254 (9) 0.0191 (8) C5 0.0527 (10) 0.0455 (9) 0.0746 (12) 0.0133 (8) 0.0215 (9) 0.0082 (8) C3 0.0627 (11) 0.0696 (12) 0.0562 (11) 0.0115 (9) 0.0272 (9) 0.0122 (9) C16 0.0574 (11) 0.0648 (11) 0.0498 (10) 0.0086 (9) 0.0210 (8) 0.0214 (9) C4 0.0609 (11) 0.0587 (11) 0.0675 (12) 0.0136 (9) 0.0264 (10) 0.0016 (9) C14 0.0568 (11) 0.0902 (15) 0.0826 (14) 0.0277 (10) 0.0256 (10) 0.0542 (12) C17 0.0609 (12) 0.0824 (14) 0.0514 (10) 0.0175 (11) 0.0212 (9) 0.0192 (10) C18 0.0885 (16) 0.127 (2) 0.0580 (12) 0.0274 (15) 0.0324 (12) 0.0251 (13)

Geometric parameters (Å, º)

(8)

supporting information

sup-4 Acta Cryst. (2002). E58, o1269–o1271

C6—C10 1.415 (2) C18—H18A 0.96

C6—H6 0.93 C18—H18B 0.96

C12—H12A 0.992 (16) C18—H18C 0.96

N3—O1—C16 109.95 (12) C6—C10—C9 118.31 (14) C1—C8—C7 118.72 (14) C14—C15—N1 106.93 (16) C1—C8—C11 120.80 (13) C14—C15—H15 134.3 (11) C7—C8—C11 120.48 (14) N1—C15—H15 118.8 (11) N3—C11—C8 116.87 (13) C3—C2—C9 120.83 (17) N3—C11—C12 122.76 (14) C3—C2—H2 119.6 C8—C11—C12 120.37 (13) C9—C2—H2 119.6 C13—N1—C15 108.00 (14) C4—C5—C10 120.68 (17) C13—N1—C12 127.15 (13) C4—C5—H5 119.7 C15—N1—C12 124.81 (13) C10—C5—H5 119.7 C13—N2—C14 108.40 (15) C2—C3—C4 120.22 (18) C13—N2—H1′ 126.8 (13) C2—C3—H3 119.9 C14—N2—H1′ 124.8 (13) C4—C3—H3 119.9 C11—N3—O1 111.29 (12) O1—C16—C17 106.55 (15) C2—C9—C1 122.01 (14) O1—C16—H16A 110.5 (11) C2—C9—C10 118.84 (14) C17—C16—H16A 113.6 (11) C1—C9—C10 119.15 (14) O1—C16—H16B 107.7 (12) C8—C1—C9 121.63 (14) C17—C16—H16B 112.6 (12) C8—C1—H1 119.2 H16A—C16—H16B 105.7 (16) C9—C1—H1 119.2 C5—C4—C3 120.66 (17) N2—C13—N1 109.10 (15) C5—C4—H4 119.7 N2—C13—H13 127.0 (13) C3—C4—H4 119.7 N1—C13—H13 123.8 (13) C15—C14—N2 107.56 (17) C7—C6—C10 121.53 (14) C15—C14—H14 132.3 (13) C7—C6—H6 119.2 N2—C14—H14 120.1 (13) C10—C6—H6 119.2 C16—C17—C18 113.02 (19) N1—C12—C11 112.42 (12) C16—C17—H17B 108.1 (13) N1—C12—H12A 105.7 (9) C18—C17—H17B 110.0 (13) C11—C12—H12A 110.9 (9) C16—C17—H17A 106.2 (13) N1—C12—H12B 107.8 (9) C18—C17—H17A 109.6 (12) C11—C12—H12B 109.4 (9) H17B—C17—H17A 109.8 (18) H12A—C12—H12B 110.5 (13) C17—C18—H18A 109.5 C6—C7—C8 120.63 (15) C17—C18—H18B 109.5 C6—C7—H7 119.7 H18A—C18—H18B 109.5 C8—C7—H7 119.7 C17—C18—H18C 109.5 C5—C10—C6 122.92 (15) H18A—C18—H18C 109.5 C5—C10—C9 118.75 (16) H18B—C18—H18C 109.5

(9)

sup-5 Acta Cryst. (2002). E58, o1269–o1271

C16—O1—N3—C11 −166.33 (14) C1—C9—C10—C6 −1.3 (2) C7—C8—C1—C9 1.4 (2) C13—N1—C15—C14 0.6 (2) C11—C8—C1—C9 −178.85 (13) C12—N1—C15—C14 −177.25 (17) C2—C9—C1—C8 −179.90 (15) C1—C9—C2—C3 −179.59 (16) C10—C9—C1—C8 0.1 (2) C10—C9—C2—C3 0.4 (3) C14—N2—C13—N1 0.2 (2) C6—C10—C5—C4 −178.99 (16) C15—N1—C13—N2 −0.5 (2) C9—C10—C5—C4 −0.4 (3) C12—N1—C13—N2 177.30 (14) C9—C2—C3—C4 −0.4 (3) C13—N1—C12—C11 51.4 (2) N3—O1—C16—C17 −176.39 (14) C15—N1—C12—C11 −131.15 (17) C10—C5—C4—C3 0.4 (3) N3—C11—C12—N1 −89.44 (18) C2—C3—C4—C5 0.0 (3) C8—C11—C12—N1 91.69 (16) N1—C15—C14—N2 −0.5 (2) C10—C6—C7—C8 0.5 (2) C13—N2—C14—C15 0.2 (2) C1—C8—C7—C6 −1.7 (2) O1—C16—C17—C18 −176.37 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H1′···Cl1 0.99 (3) 2.02 (3) 3.004 (2) 172.5 (17) C12—H12A···Cl1i 0.99 (2) 2.79 (2) 3.748 (2) 163.3 (13)

C15—H15···Cl1i 1.00 (3) 2.69 (3) 3.623 (2) 155.5 (16)

References

Related documents

There's no need for an extensive knowledge on the authentication process through biometric values to figure out that the equalizer function's process will be

β -Carotene and vitamin C content of tomato pulp became unavailable as the tomato pulp is subjected to thermal processing (boiling or frying) However, thermal

In the patients with left-sided injection, to determine any abnor- mality in the mediastinum or compression of the left brachiocephalic vein between the arch of the aorta and

Triple positive CD4 + T cells also had significantly higher expression of the differentiation marker for antigen-experienced T cells, KLRG1 (14), when compared with single

On the causal dynamics between economic growth, renewable energy consumption, CO 2 emissions and trade openness: fresh evidence from BRICS countries. Available

Using two tasks that are designed such that their accuracy reflects directly whether the underlying rule-based system is learned – the lookup table task ( Liˇska et al. , 2018 ) –

Inspired by the potential of quantum-inspired models to represent word relations, we seek to build quantum models to represent words and word combinations, and explore the use of

Moreover, the result from the OLS (Ordinary Least square) regression showed that education level of household head, household size, potato cultivated land size, quantity of potato