• No results found

4 (4 Meth­oxy­phen­yl) 3 meth­yl 5 (2 pyrid­yl) 4H 1,2,4 triazole dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "4 (4 Meth­oxy­phen­yl) 3 meth­yl 5 (2 pyrid­yl) 4H 1,2,4 triazole dihydrate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o2033–o2034 doi:10.1107/S1600536805017137 Wanget al. C

15H14N4O2H2O

o2033

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Methoxyphenyl)-3-methyl-5-(2-pyridyl)-4

H

-1,2,4-triazole dihydrate

Zuo-Xiang Wang,* Yan Lan, Lu-Tong Yuan and Chun-Yi Liu

Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People’s Republic of China

Correspondence e-mail: wangzx0908@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.048

wRfactor = 0.115

Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C15H14N4O2H2O, the 1,2,4-triazole, pyridine and benzene rings do not share a common plane. The crystal structure is stabilized by O—H N and O—H O intermolecular hydrogen-bond interactions.

Comment

Substituted 1,2,4-triazoles have attracted considerable atten-tion in recent years (Benciniet al., 1987; Koningsbruggenet al., 1997; Molineret al., 1998; Klingele & Brooker, 2003). This is mainly because of the fact that their ligand strength is in the appropriate region to give spin-crossover complexes with iron(II) salts, which could be used as molecular-based memory devices, displays and optical switches (Garciaet al., 1997; Kahn & Martinez, 1998). We have synthesized a new compound, 4-(p-methoxyphenyl)-3-methyl-5-(2-pyridyl)-1,2,4-triazole, and we report here the crystal structure of its dihydrate, (I).

The three rings of (I) do not share a common plane. The dihedral angle between the 1,2,4-triazole and pyridine rings is 38.22 (9), and that between the 1,2,4-triazole and substituted benzene rings is 82.25 (6).

Two N atoms of the 1,2,4-triazole ring form intermolecular hydrogen bonds with the water molecules (Table 2). An additional strong hydrogen-bond interaction involving the water molecules is observed.

Experimental

The title compound was synthesized by the reaction of 4,40

-dimethoxyphenylphosphazoanilide with N-acetyl-N0

-(2-pyrido-yl)hydrazine in o-dichlorobenzene at 463–473 K (Grimmel et al., 1946; Klingsberg, 1958). Single crystals suitable for X-ray diffraction were obtained by recrystallization from water.

Crystal data

C15H14N4O2H2O

Mr= 302.33 Monoclinic,P21=c

a= 11.629 (3) A˚

b= 9.927 (2) A˚

c= 14.019 (3) A˚

= 106.897 (4)

V= 1548.5 (6) A˚3

Z= 4

Dx= 1.297 Mg m

3 MoKradiation Cell parameters from 793

reflections

= 3.1–25.1

= 0.09 mm1

T= 295 (2) K Block, yellow 0.310.220.20 mm

(2)

Data collection

Bruker SMART APEX CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.97,Tmax= 0.98 7967 measured reflections

3038 independent reflections 2217 reflections withI> 2(I)

Rint= 0.027

max= 26.0

h=14!14

k=6!12

l=17!16

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.048

wR(F2) = 0.115

S= 0.97 3038 reflections 201 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0683P)2 + 0.0126P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.16 e A˚

3 min=0.13 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

C6—N2 1.295 (2) C6—N1 1.379 (2) C7—N3 1.278 (2) C7—N1 1.374 (2)

C11—O1 1.361 (2) C15—O1 1.414 (2) N2—N3 1.396 (2)

N2—C6—N1 110.48 (14) N2—C6—C1 122.70 (15) N1—C6—C1 126.79 (15) N3—C7—N1 111.19 (15) N3—C7—C14 126.65 (15) N1—C7—C14 122.04 (15)

C7—N1—C6 103.61 (14) C7—N1—C8 126.22 (14) C6—N1—C8 130.10 (14) C6—N2—N3 107.09 (14) C7—N3—N2 107.60 (14)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O2—H2D N3i

0.85 2.43 2.906 (2) 116 O3—H3B N2i

0.85 2.29 2.848 (2) 124 O2—H2C O3ii

0.85 2.06 2.783 (2) 143

Symmetry codes: (i)x;y1;z; (ii)x;yþ1 2;zþ

1 2.

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.85 (O—H), 0.93 (C—H aromatic) and 0.96 A˚ (C—H methyl), withUiso(H) values of 1.2–1.5

timesUeqof the parent atoms.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT (Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication:SHELXTL.

References

Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. & Reedijk, J. (1987).J. Am. Chem. Soc.109, 2926–2931.

Bruker (2000).SMART(Version 5.625),SAINT(Version 6.01),SHELXTL

(Version 6.10) andSADABS(Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997).J. Mater. Chem.7, 857–858.

Grimmel, H. W., Guenther, A. & Morgan, J. F. (1946).J. Am. Chem. Soc.68, 539–542.

Kahn, O. & Martinez, C. J. (1998).Science,279, 44–48.

Klingele, M. H. & Brooker, S. (2003).Coord. Chem. Rew.241, 119–132. Klingsberg, E. (1958).J. Org. Chem.23, 1086–1087.

Koningsbruggen, P. J., Hassnoot, J. G., Kooijman, H., Reedijk, J. & Spek, A. L. (1997).Inorg. Chem.36, 2487–2489.

Moliner, N., Munoz, M. C., Koningsbruggen, P. J. & Real, J. A. (1998).Inorg. Chim. Acta,274, 1–6.

[image:2.610.314.567.72.235.2]

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o2033–o2034

supporting information

Acta Cryst. (2005). E61, o2033–o2034 [https://doi.org/10.1107/S1600536805017137]

4-(4-Methoxyphenyl)-3-methyl-5-(2-pyridyl)-4

H

-1,2,4-triazole dihydrate

Zuo-Xiang Wang, Yan Lan, Lu-Tong Yuan and Chun-Yi Liu

4-(4-Methoxyphenyl)-3-methyl-5-(2-pyridyl)-4H-1,2,4-triazole dihydrate

Crystal data

C15H14N4O·2H2O Mr = 302.33

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 11.629 (3) Å

b = 9.927 (2) Å

c = 14.019 (3) Å

β = 106.897 (4)°

V = 1548.5 (6) Å3

Z = 4

F(000) = 640

Dx = 1.297 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 793 reflections

θ = 3.1–25.1°

µ = 0.09 mm−1

T = 295 K

Block, yellow

0.31 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.97, Tmax = 0.98

7967 measured reflections 3038 independent reflections 2217 reflections with I > 2σ(I) Rint = 0.027

θmax = 26.0°, θmin = 2.6°

h = −14→14

k = −6→12

l = −17→16

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048 wR(F2) = 0.115

S = 0.97

3038 reflections 201 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0683P)2 + 0.0126P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.16 e Å−3 Δρmin = −0.13 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.22833 (15) 1.02561 (18) 0.00021 (12) 0.0352 (4)

C2 0.14031 (17) 1.08828 (18) −0.07416 (12) 0.0393 (4)

H2 0.0675 1.1121 −0.0638 0.047*

C3 0.16146 (16) 1.11542 (18) −0.16445 (13) 0.0397 (4)

H3 0.1031 1.1579 −0.2152 0.048*

C4 0.26977 (17) 1.07894 (18) −0.17843 (13) 0.0404 (4)

H4 0.2858 1.0968 −0.2384 0.048*

C5 0.35391 (17) 1.01550 (19) −0.10162 (13) 0.0397 (4)

H5 0.4266 0.9906 −0.1117 0.048*

C6 0.21045 (15) 0.99934 (17) 0.09708 (12) 0.0340 (4)

C7 0.20174 (15) 0.90787 (17) 0.23488 (12) 0.0349 (4)

C8 0.30703 (15) 0.76918 (17) 0.13809 (12) 0.0344 (4)

C9 0.24634 (16) 0.66852 (17) 0.07924 (12) 0.0363 (4)

H9 0.1647 0.6788 0.0473 0.044*

C10 0.30350 (15) 0.55065 (17) 0.06571 (13) 0.0364 (4)

H10 0.2606 0.4819 0.0258 0.044*

C11 0.42424 (16) 0.53663 (18) 0.11190 (13) 0.0389 (4)

C12 0.48557 (16) 0.63860 (17) 0.17119 (13) 0.0365 (4)

H12 0.5673 0.6287 0.2029 0.044*

C13 0.42917 (15) 0.75344 (17) 0.18435 (13) 0.0354 (4)

H13 0.4723 0.8218 0.2244 0.043*

C14 0.21062 (16) 0.80429 (18) 0.31344 (12) 0.0360 (4)

H14A 0.1651 0.8329 0.3570 0.054*

H14B 0.2933 0.7928 0.3512 0.054*

H14C 0.1792 0.7203 0.2828 0.054*

C15 0.42748 (17) 0.31490 (18) 0.04835 (14) 0.0409 (4)

H15A 0.3825 0.2709 0.0869 0.061*

H15B 0.4842 0.2527 0.0352 0.061*

H15C 0.3736 0.3453 −0.0136 0.061*

N1 0.24568 (13) 0.88606 (15) 0.15523 (10) 0.0346 (3)

N2 0.15425 (14) 1.08210 (15) 0.13926 (11) 0.0390 (4)

N3 0.14852 (13) 1.02171 (15) 0.22771 (10) 0.0384 (3)

N4 0.33564 (12) 0.98628 (14) −0.01134 (10) 0.0352 (3)

O1 0.48953 (11) 0.42649 (12) 0.10208 (9) 0.0416 (3)

O2 0.02270 (14) 0.08536 (13) 0.37332 (11) 0.0545 (4)

H2D 0.0293 0.1283 0.3227 0.065*

H2C 0.0233 0.1406 0.4198 0.082*

O3 0.06182 (14) 0.34200 (13) 0.07192 (11) 0.0527 (4)

H3B 0.1137 0.3079 0.1218 0.063*

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o2033–o2034

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0384 (9) 0.0360 (9) 0.0325 (9) −0.0038 (7) 0.0124 (7) 0.0003 (7)

C2 0.0446 (10) 0.0421 (10) 0.0316 (9) −0.0011 (8) 0.0119 (8) −0.0021 (7)

C3 0.0438 (10) 0.0408 (9) 0.0320 (9) 0.0025 (8) 0.0073 (7) 0.0016 (7)

C4 0.0560 (11) 0.0377 (9) 0.0293 (9) 0.0001 (8) 0.0153 (8) 0.0004 (7)

C5 0.0465 (9) 0.0436 (10) 0.0313 (9) −0.0029 (8) 0.0147 (7) 0.0021 (8)

C6 0.0408 (9) 0.0341 (9) 0.0305 (8) 0.0021 (7) 0.0156 (7) 0.0029 (7)

C7 0.0422 (9) 0.0354 (9) 0.0313 (8) 0.0020 (7) 0.0174 (7) −0.0001 (7)

C8 0.0430 (9) 0.0352 (9) 0.0287 (8) −0.0011 (7) 0.0161 (7) 0.0001 (7)

C9 0.0417 (9) 0.0367 (9) 0.0318 (9) −0.0041 (7) 0.0125 (7) −0.0001 (7)

C10 0.0408 (9) 0.0320 (9) 0.0365 (9) −0.0061 (7) 0.0114 (7) −0.0049 (7)

C11 0.0473 (10) 0.0336 (9) 0.0363 (10) 0.0009 (8) 0.0127 (8) 0.0010 (7)

C12 0.0431 (10) 0.0321 (8) 0.0352 (9) 0.0007 (7) 0.0130 (7) −0.0011 (7)

C13 0.0391 (9) 0.0314 (8) 0.0358 (9) −0.0038 (7) 0.0110 (7) −0.0012 (7)

C14 0.0429 (9) 0.0398 (9) 0.0301 (9) 0.0012 (7) 0.0180 (7) 0.0006 (7)

C15 0.0491 (10) 0.0309 (9) 0.0445 (10) 0.0011 (8) 0.0164 (8) −0.0052 (7)

N1 0.0417 (8) 0.0354 (7) 0.0301 (7) 0.0000 (6) 0.0155 (6) 0.0005 (6)

N2 0.0508 (8) 0.0343 (8) 0.0352 (8) 0.0035 (7) 0.0176 (7) −0.0004 (6)

N3 0.0504 (8) 0.0369 (8) 0.0322 (8) 0.0008 (7) 0.0186 (6) −0.0031 (6)

N4 0.0426 (8) 0.0342 (8) 0.0328 (8) −0.0021 (6) 0.0171 (6) −0.0005 (6)

O1 0.0503 (7) 0.0324 (7) 0.0403 (7) −0.0003 (5) 0.0102 (6) 0.0004 (5)

O2 0.0815 (10) 0.0385 (7) 0.0486 (8) 0.0095 (7) 0.0269 (7) −0.0004 (6)

O3 0.0656 (9) 0.0363 (7) 0.0560 (9) 0.0154 (6) 0.0173 (7) −0.0002 (6)

Geometric parameters (Å, º)

C1—N4 1.361 (2) C9—H9 0.9300

C1—C2 1.379 (2) C10—C11 1.372 (3)

C1—C6 1.456 (2) C10—H10 0.9300

C2—C3 1.384 (2) C11—O1 1.361 (2)

C2—H2 0.9300 C11—C12 1.371 (2)

C3—C4 1.378 (3) C12—C13 1.354 (2)

C3—H3 0.9300 C12—H12 0.9300

C4—C5 1.379 (3) C13—H13 0.9300

C4—H4 0.9300 C14—H14A 0.9600

C5—N4 1.374 (2) C14—H14B 0.9600

C5—H5 0.9300 C14—H14C 0.9600

C6—N2 1.295 (2) C15—O1 1.414 (2)

C6—N1 1.379 (2) C15—H15A 0.9600

C7—N3 1.278 (2) C15—H15B 0.9600

C7—N1 1.374 (2) C15—H15C 0.9600

C7—C14 1.488 (2) N2—N3 1.396 (2)

C8—C9 1.356 (2) O2—H2D 0.8500

C8—C13 1.388 (2) O2—H2C 0.8500

C8—N1 1.419 (2) O3—H3B 0.8500

(6)

N4—C1—C2 122.96 (16) O1—C11—C12 116.57 (15)

N4—C1—C6 116.36 (15) O1—C11—C10 123.95 (16)

C2—C1—C6 120.68 (16) C12—C11—C10 119.47 (17)

C1—C2—C3 119.28 (17) C13—C12—C11 121.12 (17)

C1—C2—H2 120.4 C13—C12—H12 119.4

C3—C2—H2 120.4 C11—C12—H12 119.4

C4—C3—C2 119.44 (17) C12—C13—C8 120.09 (16)

C4—C3—H3 120.3 C12—C13—H13 120.0

C2—C3—H3 120.3 C8—C13—H13 120.0

C3—C4—C5 118.65 (17) C7—C14—H14A 109.5

C3—C4—H4 120.7 C7—C14—H14B 109.5

C5—C4—H4 120.7 H14A—C14—H14B 109.5

N4—C5—C4 123.45 (17) C7—C14—H14C 109.5

N4—C5—H5 118.3 H14A—C14—H14C 109.5

C4—C5—H5 118.2 H14B—C14—H14C 109.5

N2—C6—N1 110.48 (14) O1—C15—H15A 109.5

N2—C6—C1 122.70 (15) O1—C15—H15B 109.5

N1—C6—C1 126.79 (15) H15A—C15—H15B 109.5

N3—C7—N1 111.19 (15) O1—C15—H15C 109.5

N3—C7—C14 126.65 (15) H15A—C15—H15C 109.5

N1—C7—C14 122.04 (15) H15B—C15—H15C 109.5

C9—C8—C13 118.83 (16) C7—N1—C6 103.61 (14)

C9—C8—N1 120.48 (15) C7—N1—C8 126.22 (14)

C13—C8—N1 120.63 (15) C6—N1—C8 130.10 (14)

C8—C9—C10 121.33 (16) C6—N2—N3 107.09 (14)

C8—C9—H9 119.3 C7—N3—N2 107.60 (14)

C10—C9—H9 119.3 C1—N4—C5 116.21 (15)

C11—C10—C9 119.14 (16) C11—O1—C15 118.03 (14)

C11—C10—H10 120.4 H2D—O2—H2C 109.5

C9—C10—H10 120.4 H3B—O3—H3C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2D···N3i 0.85 2.43 2.906 (2) 116

O3—H3B···N2i 0.85 2.29 2.848 (2) 124

O2—H2C···O3ii 0.85 2.06 2.783 (2) 143

Figure

Figure 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical