• No results found

N,N′ Bis(N,N di­methyl p toluidine)bis­­(eth­oxy­carbon­yl)glycoluril

N/A
N/A
Protected

Academic year: 2020

Share "N,N′ Bis(N,N di­methyl p toluidine)bis­­(eth­oxy­carbon­yl)glycoluril"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2632

Yinet al. C

28H32N6O6 doi:10.1107/S1600536805022725 Acta Cryst.(2005). E61, o2632–o2634

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N,N

000

-Bis(N,N-dimethyl-p-toluidine)bis(ethoxy-carbonyl)glycoluril

Guo-Dong Yin, Bao-Han Zhou, Yun-Feng Chen and An-Xin Wu*

Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China

Correspondence e-mail: chwuax@mail.ccnu.edu.cn

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.048

wRfactor = 0.132

Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound (systematic name: diethyl 4,8-dioxo-2,6-di-p -tolyl-1,3,5,7-tetrahydro-2,3a,4a,6,7a,8a-hexaazacyclo-penta[def]fluorene-8b,8c-dicarboxylate), C28H32N6O6, the

dihedral angles between the two fused five-membered rings in the glycoluril unit and between the two terminal benzene rings are 71.8 (2) and 88.5 (1), respectively.

Comment

Since Mock and co-workers first characterized the chemical nature and structure of cucurbit[6]uril (CB[6]; Freemanet al., 1981), many receptors based on glycoluril have been reported, including Nolte’s molecular clips and molecular baskets (Rowanet al., 1999), Rebek’s molecular capsules (Hofet al., 2002), CB[n] homologues (n= 5,7 and 8; Leeet al., 2003) and CB[n] (n= 5–7) derivatives (Lee et al., 2003; Lagona et al., 2003). In this paper, we report the crystal structure of the title compound, (I), a new type of receptor based on glycoluril (Fig. 1).

Selected bond lengths and angles are listed in Table 1. The crystal packing is mainly governed by intermolecular C— H O interactions (Table 2 and Fig. 2). The dihedral angle between the two fused five-membered rings in the glycoluril unit is 71.8 (2) and that between the two terminal benzene

rings is 88.5 (1).

Experimental

p-Tolylamine (2.14 g, 20 mmol) and formaldehyde (4.8 g, 80 mmol) were added to a solution of diethoxycarbonyl glycoluril (2.86 g, 10 mmol) in dimethyformamide (50 ml) under a nitrogen atmo-sphere. The mixture was stirred overnight. The solvent was then evaporated to dryness and the residue purified by column chroma-tography (hexane–ethyl acetate, 4:1), to obtain the title compound as a white solid (yield 60%, 3.27 g). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a dichloromethane– methanol (2:1) solution of the title compound under ambient conditions.

(2)

Crystal data

C28H32N6O6

Mr= 548.60

Monoclinic, P21=n

a= 9.7963 (7) A˚ b= 11.3007 (8) A˚ c= 24.0399 (17) A˚

= 93.9220 (10)

[OR 93.922 (1)

]

V= 2655.1 (3) A˚3 Z= 4

Dx= 1.372 Mg m

3

MoKradiation Cell parameters from 5116

reflections

= 2.3–21.9

= 0.10 mm1

T= 292 (2) K Block, colourless 0.300.200.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: none 21931 measured reflections 5746 independent reflections

4052 reflections withI> 2(I) Rint= 0.036

max= 27.0

h=12!12 k=14!14 l=28!30

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.048

wR(F2) = 0.132 S= 1.02 5746 reflections 365 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0585P)2

+ 0.6281P] whereP= (Fo

2

+ 2Fc 2

)/3 (/)max= 0.004

max= 0.28 e A˚

3

min=0.17 e A˚

[image:2.610.118.554.75.413.2]

3

Table 1

Selected geometric parameters (A˚ ,).

C5—N1 1.406 (3)

C8—N1 1.440 (3)

C8—N3 1.467 (2)

C9—N1 1.442 (3)

C9—N2 1.464 (2)

C16—N4 1.446 (2)

C16—N5 1.449 (2)

C20—N4 1.444 (2)

C20—N6 1.475 (2)

C22—N6 1.436 (2)

N1—C8—N3 110.60 (16)

N1—C9—N2 111.20 (16)

N4—C20—N6 110.61 (14) N5—C21—N6 109.79 (14)

N3—C8—N1—C5 120.5 (2) N2—C9—N1—C5 120.8 (2)

N5—C21—N6—C22 176.08 (14) N4—C20—N6—C22 175.80 (14)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C18—H18B O5i

0.97 2.53 3.336 (2) 141

Symmetry code: (i)xþ1;yþ1;z.

All H atoms were positioned geometrically (C—H = 0.93–0.97 A˚ ) and refined as riding, allowing for free rotation of the methyl groups. The constraintUiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied.

Data collection:SMART(Bruker, 1997); cell refinement:SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication:SHELXTL.

The authors are grateful to the Central China Normal University, the National Natural Science Foundation of China (grant No. 20472022) and the Hubei Province Natural Science Fund (grant Nos. 2004ABA085 and 2004ABC002) for finan-cial support.

References

Bruker (1997).SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999).SAINT. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981).J. Am. Chem. Soc.103, 7367–7368.

Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Jr. (2002).Angew. Chem. Int. Ed.

41, 1488–1508.

organic papers

Acta Cryst.(2005). E61, o2632–o2634 Yinet al. C

28H32N6O6

o2633

Figure 1

[image:2.610.318.565.412.581.2]

A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

(3)

Lagona, J., Fettinger, J. C. & Isaacs, L. (2003). Org. Lett. 5, 3745– 3747.

Lee, J. W., Samal, S., Selvapalam, N., Kim, H. J. & Kim, K. (2003).Acc. Chem. Res.36, 621–630.

Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999).Acc. Chem. Res.

32, 955–1006.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

organic papers

o2634

Yinet al. C

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o2632–o2634

supporting information

Acta Cryst. (2005). E61, o2632–o2634 [https://doi.org/10.1107/S1600536805022725]

N

,

N

-Bis(

N

,

N

-dimethyl-

p

-toluidine)bis(ethoxycarbonyl)glycoluril

Guo-Dong Yin, Bao-Han Zhou, Yun-Feng Chen and An-Xin Wu

Diethyl 4,8-dioxo-2,6-di-p-tolyl-1,3,5,7-tetrahydro-2,3a,4a,6,7a,8a- hexaazacyclopenta[def]fluorene-8

b,8c-dicarboxylate

Crystal data

C28H32N6O6 Mr = 548.60 Monoclinic, P21/n Hall symbol: -P2yn a = 9.7963 (7) Å b = 11.3007 (8) Å c = 24.0399 (17) Å β = 93.922 (1)° V = 2655.1 (3) Å3 Z = 4

F(000) = 1160 Dx = 1.372 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5116 reflections θ = 2.3–21.9°

µ = 0.10 mm−1 T = 292 K Block, colourless 0.30 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

21931 measured reflections 5746 independent reflections

4052 reflections with I > 2σ(I) Rint = 0.036

θmax = 27.0°, θmin = 1.7° h = −12→12

k = −14→14 l = −28→30

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048 wR(F2) = 0.132 S = 1.03 5746 reflections 365 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0585P)2 + 0.6281P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.004 Δρmax = 0.28 e Å−3 Δρmin = −0.17 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o2632–o2634

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o2632–o2634

C20 0.06913 (17) 0.18153 (14) 0.06289 (8) 0.0386 (4) H20A 0.0461 0.1036 0.0764 0.046* H20B 0.1171 0.1716 0.0292 0.046* C21 −0.02406 (18) 0.36961 (14) 0.03209 (8) 0.0408 (4) H21A 0.0228 0.3658 −0.0021 0.049* H21B −0.1076 0.4148 0.0248 0.049* C22 −0.15066 (17) 0.18803 (15) 0.01167 (8) 0.0370 (4) C23 −0.1840 (2) 0.22592 (17) −0.04231 (8) 0.0481 (5) H23 −0.1463 0.2956 −0.0550 0.058* C24 −0.2730 (2) 0.16081 (19) −0.07762 (8) 0.0511 (5) H24 −0.2939 0.1881 −0.1137 0.061* C25 −0.33176 (18) 0.05680 (16) −0.06091 (8) 0.0444 (5) C26 −0.3002 (2) 0.02148 (16) −0.00636 (9) 0.0467 (5) H26 −0.3393 −0.0475 0.0064 0.056* C27 −0.21240 (18) 0.08536 (16) 0.02966 (8) 0.0431 (4) H27 −0.1945 0.0596 0.0662 0.052* C28 −0.4260 (2) −0.01417 (19) −0.10009 (10) 0.0618 (6) H28A −0.5114 0.0269 −0.1065 0.093* H28B −0.4419 −0.0902 −0.0839 0.093* H28C −0.3847 −0.0245 −0.1349 0.093* N1 0.0511 (2) 0.42966 (16) 0.24513 (8) 0.0695 (6) N2 0.19975 (14) 0.31725 (12) 0.19006 (6) 0.0380 (3) N3 0.11522 (16) 0.50804 (12) 0.15830 (6) 0.0406 (4) N4 0.15708 (14) 0.24132 (11) 0.10461 (6) 0.0346 (3) N5 0.06230 (14) 0.42731 (12) 0.07490 (6) 0.0364 (3) N6 −0.05734 (14) 0.25002 (12) 0.05008 (6) 0.0375 (3) O1 −0.09907 (14) 0.54211 (12) 0.11467 (7) 0.0579 (4) O2 0.09622 (15) 0.13432 (11) 0.18109 (6) 0.0551 (4) O3 0.38907 (16) 0.56791 (13) 0.17714 (7) 0.0713 (5) O4 0.45356 (13) 0.38474 (12) 0.15453 (6) 0.0512 (4) O5 0.32248 (15) 0.48640 (11) 0.03966 (6) 0.0574 (4) O6 0.35394 (12) 0.28994 (10) 0.03618 (5) 0.0422 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o2632–o2634

C13 0.0443 (11) 0.0483 (11) 0.0401 (11) −0.0093 (9) 0.0052 (8) −0.0071 (9) C14 0.0358 (11) 0.0806 (16) 0.0815 (17) −0.0162 (11) −0.0005 (11) −0.0084 (13) C15 0.0404 (12) 0.0850 (18) 0.109 (2) 0.0002 (12) 0.0058 (13) 0.0004 (16) C16 0.0309 (9) 0.0290 (8) 0.0412 (10) −0.0018 (7) 0.0058 (7) 0.0021 (7) C17 0.0337 (9) 0.0358 (9) 0.0398 (10) −0.0029 (7) 0.0051 (7) 0.0006 (8) C18 0.0414 (11) 0.0533 (11) 0.0560 (13) 0.0023 (9) 0.0214 (9) 0.0029 (9) C19 0.0747 (16) 0.0973 (19) 0.0502 (14) 0.0191 (14) 0.0177 (12) 0.0141 (13) C20 0.0353 (9) 0.0309 (8) 0.0497 (11) −0.0016 (7) 0.0036 (8) 0.0011 (8) C21 0.0374 (10) 0.0337 (9) 0.0508 (11) −0.0008 (7) 0.0000 (8) 0.0058 (8) C22 0.0306 (9) 0.0373 (9) 0.0433 (11) 0.0011 (7) 0.0050 (7) −0.0003 (8) C23 0.0472 (11) 0.0479 (11) 0.0496 (12) −0.0093 (9) 0.0052 (9) 0.0062 (9) C24 0.0501 (12) 0.0613 (12) 0.0416 (11) −0.0001 (10) 0.0010 (9) 0.0044 (10) C25 0.0385 (10) 0.0441 (10) 0.0500 (12) 0.0054 (8) −0.0009 (8) −0.0058 (9) C26 0.0454 (11) 0.0364 (9) 0.0576 (13) −0.0061 (8) −0.0022 (9) 0.0015 (9) C27 0.0430 (10) 0.0402 (10) 0.0457 (11) −0.0051 (8) −0.0012 (8) 0.0048 (8) C28 0.0612 (14) 0.0615 (13) 0.0603 (14) −0.0027 (11) −0.0135 (11) −0.0086 (11) N1 0.0861 (14) 0.0548 (11) 0.0735 (13) 0.0293 (10) 0.0479 (11) 0.0238 (10) N2 0.0386 (8) 0.0368 (8) 0.0393 (9) 0.0020 (6) 0.0076 (6) 0.0032 (6) N3 0.0453 (9) 0.0334 (7) 0.0444 (9) 0.0024 (6) 0.0128 (7) 0.0002 (7) N4 0.0319 (7) 0.0289 (7) 0.0433 (9) −0.0021 (6) 0.0050 (6) 0.0029 (6) N5 0.0318 (7) 0.0291 (7) 0.0486 (9) −0.0007 (6) 0.0049 (6) 0.0014 (6) N6 0.0315 (8) 0.0322 (7) 0.0486 (9) −0.0020 (6) 0.0012 (6) 0.0035 (6) O1 0.0451 (8) 0.0470 (8) 0.0827 (11) 0.0154 (6) 0.0127 (7) 0.0018 (7) O2 0.0631 (9) 0.0419 (7) 0.0616 (9) −0.0086 (6) 0.0141 (7) 0.0151 (7) O3 0.0635 (10) 0.0575 (9) 0.0937 (12) −0.0198 (8) 0.0108 (9) −0.0297 (9) O4 0.0327 (7) 0.0521 (8) 0.0686 (9) −0.0071 (6) 0.0011 (6) −0.0061 (7) O5 0.0616 (9) 0.0366 (7) 0.0778 (10) −0.0061 (6) 0.0325 (8) 0.0071 (7) O6 0.0403 (7) 0.0400 (7) 0.0482 (8) −0.0001 (5) 0.0160 (6) 0.0007 (6)

Geometric parameters (Å, º)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, o2632–o2634

C8—H8A 0.9700 C20—H20A 0.9700 C8—H8B 0.9700 C20—H20B 0.9700 C9—N1 1.442 (3) C21—N5 1.442 (2) C9—N2 1.464 (2) C21—N6 1.463 (2) C9—H9A 0.9700 C21—H21A 0.9700 C9—H9B 0.9700 C21—H21B 0.9700 C10—O1 1.209 (2) C22—C23 1.384 (3) C10—N5 1.377 (2) C22—C27 1.391 (2) C10—N3 1.384 (2) C22—N6 1.436 (2) C11—O2 1.207 (2) C23—C24 1.386 (3) C11—N2 1.380 (2) C23—H23 0.9300 C11—N4 1.388 (2) C24—C25 1.380 (3) C12—N3 1.450 (2) C24—H24 0.9300 C12—N2 1.458 (2) C25—C26 1.385 (3) C12—C13 1.539 (2) C25—C28 1.504 (3) C12—C16 1.560 (2) C26—C27 1.381 (3) C13—O3 1.190 (2) C26—H26 0.9300 C13—O4 1.315 (2) C27—H27 0.9300 C14—C15 1.455 (3) C28—H28A 0.9600 C14—O4 1.456 (2) C28—H28B 0.9600 C14—H14A 0.9700 C28—H28C 0.9600 C14—H14B 0.9700

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, o2632–o2634

N1—C8—H8A 109.5 H21A—C21—H21B 108.2 N3—C8—H8A 109.5 C23—C22—C27 118.03 (17) N1—C8—H8B 109.5 C23—C22—N6 123.40 (16) N3—C8—H8B 109.5 C27—C22—N6 118.56 (16) H8A—C8—H8B 108.1 C22—C23—C24 120.53 (18) N1—C9—N2 111.20 (16) C22—C23—H23 119.7 N1—C9—H9A 109.4 C24—C23—H23 119.7 N2—C9—H9A 109.4 C25—C24—C23 122.08 (19) N1—C9—H9B 109.4 C25—C24—H24 119.0 N2—C9—H9B 109.4 C23—C24—H24 119.0 H9A—C9—H9B 108.0 C24—C25—C26 116.76 (17) O1—C10—N5 125.74 (19) C24—C25—C28 121.45 (19) O1—C10—N3 126.27 (18) C26—C25—C28 121.79 (18) N5—C10—N3 107.82 (15) C27—C26—C25 122.14 (18) O2—C11—N2 125.98 (18) C27—C26—H26 118.9 O2—C11—N4 125.96 (17) C25—C26—H26 118.9 N2—C11—N4 107.96 (14) C26—C27—C22 120.41 (18) N3—C12—N2 112.28 (13) C26—C27—H27 119.8 N3—C12—C13 111.92 (14) C22—C27—H27 119.8 N2—C12—C13 110.50 (15) C25—C28—H28A 109.5 N3—C12—C16 103.86 (14) C25—C28—H28B 109.5 N2—C12—C16 102.83 (13) H28A—C28—H28B 109.5 C13—C12—C16 115.03 (14) C25—C28—H28C 109.5 O3—C13—O4 126.92 (18) H28A—C28—H28C 109.5 O3—C13—C12 124.17 (18) H28B—C28—H28C 109.5 O4—C13—C12 108.90 (15) C5—N1—C8 123.48 (17) C15—C14—O4 108.59 (18) C5—N1—C9 124.11 (17) C15—C14—H14A 110.0 C8—N1—C9 112.33 (17) O4—C14—H14A 110.0 C11—N2—C12 111.53 (15) C15—C14—H14B 110.0 C11—N2—C9 121.92 (15) O4—C14—H14B 110.0 C12—N2—C9 115.71 (14) H14A—C14—H14B 108.4 C10—N3—C12 110.52 (14) C14—C15—H15A 109.5 C10—N3—C8 119.70 (16) C14—C15—H15B 109.5 C12—N3—C8 115.88 (15) H15A—C15—H15B 109.5 C11—N4—C20 120.64 (14) C14—C15—H15C 109.5 C11—N4—C16 110.73 (14) H15A—C15—H15C 109.5 C20—N4—C16 116.35 (13) H15B—C15—H15C 109.5 C10—N5—C21 123.29 (15) N4—C16—N5 111.11 (13) C10—N5—C16 111.84 (15) N4—C16—C17 115.21 (13) C21—N5—C16 116.28 (13) N5—C16—C17 108.74 (13) C22—N6—C21 113.93 (14) N4—C16—C12 104.19 (13) C22—N6—C20 111.51 (13) N5—C16—C12 102.85 (13) C21—N6—C20 110.21 (13) C17—C16—C12 114.05 (13) C13—O4—C14 118.40 (16) O5—C17—O6 126.60 (16) C17—O6—C18 116.47 (14)

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, o2632–o2634

(11)

supporting information

sup-8 Acta Cryst. (2005). E61, o2632–o2634

N4—C11—N2—C12 15.94 (18) C12—C13—O4—C14 177.77 (17) O2—C11—N2—C9 −24.9 (3) C15—C14—O4—C13 −173.3 (2) N4—C11—N2—C9 158.63 (15) O5—C17—O6—C18 −0.5 (3) N3—C12—N2—C11 102.77 (16) C16—C17—O6—C18 179.37 (15) C13—C12—N2—C11 −131.51 (15) C19—C18—O6—C17 −89.2 (2) C16—C12—N2—C11 −8.25 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C18—H18B···O5i 0.97 2.53 3.336 (2) 141

Figure

Table 1

References

Related documents

The third and fourth variables, central bank’s bills rate ( por ) and money supply ( mon ), are the indicators to represent the monetary policy stance of the Bank of

In Pro- ceedings of the 53rd Annual Meeting of the Associ- ation for Computational Linguistics and the 7th In- ternational Joint Conference on Natural Language Processing (Volume

To show that our model can select sentence parts that are related to domain aspects, we visualize the self-attention results on some tweet examples that are correctly classified by

Concerning evidence of insulin resistance and the cutaneous proof of dyslipidemia in this study, we did show in similarity to Boza JC et al., that central obesity is associated

The left and the right contexts for each word segment are encoded by FOFE method, and then a simple neural net- work can be trained to make a precise recogni- tion for each

The most recent ap- proaches for Chinese is-a relation extraction ( Fu et al. , 2014 ; Wang and He , 2016 ) use word em- bedding based linear projection models to map embeddings

En analysant le graphique 4, on s’aperçoit que , pour 2011, la proportion des ménages dans la classe moyenne dont le revenu principal détient au minimum un diplôme

We report significant improvements in do- main adaptation for statistical machine translation when using a translation model trained on the sentence pairs extracted from