• No results found

Tetra­kis­(μ N acetyl N phenyl­glycinato)­bis­­[(N acetyl N phenyl­glycinato)(1,10 phenanthroline κ2N,N′)­lanthanum(III)] dihydrate

N/A
N/A
Protected

Academic year: 2020

Share "Tetra­kis­(μ N acetyl N phenyl­glycinato)­bis­­[(N acetyl N phenyl­glycinato)(1,10 phenanthroline κ2N,N′)­lanthanum(III)] dihydrate"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1346

Fuet al. [La2(C10H10NO3)6(C12H8N2)2].2H2O DOI: 10.1107/S1600536804020793 Acta Cryst.(2004). E60, m1346±m1348 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tetrakis(

l

-

N

-acetyl-

N

-phenylglycinato)-bis[(

N

-acetyl-

N

-phenylglycinato)(1,10-phenanthroline-

j

2

N,N

000

)lanthanum(III)]

dihydrate

Ai-Yun Fu,a* Da-Qi Wangband

Qing-Jun Shena

aDepartment of Chemistry, Dezhou University,

Shandong Dezhou 253023, People's Republic of China, andbDepartment of Chemistry, Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail: aiyunfu@yahoo.com.cn

Key indicators Single-crystal X-ray study T= 298 K

Mean(C±C) = 0.006 AÊ Rfactor = 0.025 wRfactor = 0.070

Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title complex, [La2(C10H10NO3)6(C12H8N2)2]2H2O, the

LaIIIatoms are bridged by two terdentate and two bidentate

carboxylate groups with an inversion centre between the two LaIIIions. Each La atom is nine-coordinated by two N atoms

of 1,10-phenanthroline and seven O atoms belonging to N -acetyl-N-phenylglycine molecules, and exhibits distorted tricapped trigonal prismatic geometry. The crystal structure is stabilized by intermolecular OÐH O hydrogen bonds.

Comment

The title complex, (I) (Fig. 1), contains one dinuclear lanthanum/phenanthroline/N-acetyl-N-phenylglycinate com-plex and two uncoordinated water molecules. Each lanthanum ion is coordinated by one 1,10-phenanthroline (L1) ligandvia

atoms N4 and N5 (Table 1), one chelating bidentate carboxylate group of anN-phenyl-N-acetylglycine (L2) ligand viaO7 and O8, two bridging bidentate carboxylate groups of

L2viaO5i(see Table 1 for symmetry code) and O4, and one

bridging terdentate carboxylate group of L2 via O1i and

chelating terdentate carboxytate groups ofL2viaO1 and O2.

Overall, the coordination geometry around La is that of a distorted tricapped trigonal prism, with the capping positions occupied by atoms N5 ofL1and O1 and O7 of twoL2ligands.

The two La ions are connected by four L2 ligands via two

bidentate and two terdentate carboxylate bridges with an inversion centre between the two La ions. The average of the bridging bidentate LaÐO bonds (2.452 AÊ) is slightly shorter than that of the bridging terdentate LaÐO bonds (2.467 AÊ), which in turn is shorter than the average of the chelating terdentate LaÐO bonds (2.584 AÊ).

(2)

The LaÐO bonds in (I) are shorter than the equivalent bonds in the related compound bis(1,10-phenanthroline)-tris(trans-2,3-dimethylacrylato)lanthanum(III) (Lu et al., 2001), where the corresponding LaÐO bridging bidentate, LaÐO bridging terdentate, and LaÐO chelating terdentate distances are 2.473, 2.474 and 2.661 AÊ, respectively. The other bond lengths and angles in (I) are unexceptional.

The water O atom in (I) does not coordinate to La but participates in intermolecular OÐH O hydrogen bonds

Experimental

La(NO3)3nH2O (1 mmol) and L1(1 mmol) were dissolved in

an-hydrous ethanol (20 ml). To this solution, an aqueous mixture (30 ml) ofL2(2 mmol) and NaOH (2 mmol) was added dropwise at 313 K.

The mixture was stirred for 4 h and about half of the solvent was evaporated in a rotary vacuum evaporator at the same temperature. The resulting solution was ®ltered and left to stand in air for about 20 d. Large yellow block-shaped crystals of (I) were obtained (m.p. 531.5 K). Elemental analysis found: C 55.13, H 4.32, N 7.52%; calculated for C84H80La2N10O20: C 55.21, H 4.41, N 7.66%.

Crystal data

[La2(C10H10NO3)6(C12H8N2)2]

-2H2O

Mr= 1827.40 Triclinic,P1

a= 11.777 (3) AÊ

b= 13.574 (3) AÊ

c= 14.114 (3) AÊ

= 65.372 (2)

= 86.194 (3)

= 81.600 (3)

V= 2029.0 (8) AÊ3

Z= 1

Dx= 1.496 Mg mÿ3 MoKradiation Cell parameters from 7895

re¯ections

= 2.3±28.3

= 1.12 mmÿ1

T= 298 (2) K Block, yellow 0.450.320.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Bruker, 1999)

Tmin= 0.633,Tmax= 0.824

10710 measured re¯ections

7083 independent re¯ections 6303 re¯ections withI> 2(I)

Rint= 0.014

max= 25.0

h=ÿ11!14

k=ÿ15!16

l=ÿ13!16

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.025

wR(F2) = 0.070

S= 1.00 7083 re¯ections 529 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0402P)2 + 1.0763P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.004

max= 1.15 e AÊÿ3 min=ÿ0.57 e AÊÿ3

Table 1

Selected bond distances (AÊ).

La1ÐO4 2.431 (2) La1ÐO1i 2.4672 (19)

La1ÐO5i 2.474 (2)

La1ÐO8 2.513 (2) La1ÐO7 2.573 (2)

La1ÐO1 2.5762 (19) La1ÐN4 2.658 (2) La1ÐN5 2.674 (2) La1ÐO2 2.675 (2) La1 La1i 4.0167 (9)

Symmetry code: (i) 2ÿx;ÿy;2ÿz.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O10ÐH1 O3ii 0.912 (10) 1.960 (14) 2.858 (5) 168 (3)

O10ÐH2 O9iii 0.910 (10) 1.927 (12) 2.836 (5) 178 (4)

Symmetry codes: (ii)xÿ1;y;zÿ1; (iii)xÿ1;y;z.

The water H atoms were located in a difference map and the OÐH distances were restrained to 0.90 (1) AÊ; the Uiso(H) values were

Figure 2

The crystal packing of (I), showing the O O hydrogen-bonded interactions as dashed lines (all H atoms and the water molecules have been omitted for clarity).

Figure 1

(3)

tions and constrained to ride on their parent atoms, with CÐH distances of 0.93±0.97 AÊ andUiso(H) = 1.2Ueq(C). The highest peak in

the difference map is 1.57 AÊ from atom C35.

Data collection:SMART(Bruker, 1999); cell re®nement: SAINT-Plus(Bruker, 1999); data reduction:SAINT-Plus; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997a); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

References

Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Lu, W.-M., Wu, B. & Wang, L.-N. (2001).Chem. J. Chin. Univ. 22, 535± 538.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL.Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

(4)

supporting information

Acta Cryst. (2004). E60, m1346–m1348 [https://doi.org/10.1107/S1600536804020793]

Tetrakis(

µ

-

N

-acetyl-

N

-phenylglycinato)bis[(

N

-acetyl-

N

-phenylglycinato)(1,10-phenanthroline-

κ

2

N,N

)lanthanum(III)] dihydrate

Ai-Yun Fu, Da-Qi Wang and Qing-Jun Shen

Tetrakis(µ-N-acetyl-N-phenylglycinato)bis[(N-acetyl-N-phenylglycinato)(1,10-

phenanthroline-κ2N,N)lanthanum(III)] dihydrate

Crystal data

[La2(C10H10NO3)6(C12H8N2)2]·2H2O

Mr = 1827.40

Triclinic, P1 Hall symbol: -P 1

a = 11.777 (3) Å

b = 13.574 (3) Å

c = 14.114 (3) Å

α = 65.372 (2)°

β = 86.194 (3)°

γ = 81.600 (3)°

V = 2029.0 (8) Å3

Z = 1

F(000) = 928

Dx = 1.496 Mg m−3

Melting point: 531.5 K

Mo radiation, λ = 0.71073 Å Cell parameters from 7895 reflections

θ = 2.3–28.3°

µ = 1.12 mm−1

T = 298 K Block, yellow

0.45 × 0.32 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1999)

Tmin = 0.633, Tmax = 0.824

10710 measured reflections 7083 independent reflections 6303 reflections with I > 2σ(I)

Rint = 0.014

θmax = 25.0°, θmin = 1.8°

h = −11→14

k = −15→16

l = −13→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.025

wR(F2) = 0.070

S = 1.00 7083 reflections 529 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difmap and geom H atoms treated by a mixture of independent

and constrained refinement

w = 1/[σ2(F

o2) + (0.0402P)2 + 1.0763P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.004

Δρmax = 1.15 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1346–m1348 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

La1 1.034103 (13) 0.154924 (11) 0.926361 (11) 0.02832 (6) N1 0.9110 (2) 0.0678 (2) 1.32144 (18) 0.0414 (6) N2 0.5950 (2) 0.2062 (2) 0.90618 (19) 0.0410 (6) N3 1.1874 (3) 0.3758 (3) 0.5559 (2) 0.0577 (8) N4 0.9836 (2) 0.36825 (19) 0.87479 (19) 0.0420 (6) N5 1.1822 (2) 0.25640 (19) 0.97731 (19) 0.0389 (5) O1 1.01965 (17) −0.00338 (15) 1.10715 (14) 0.0370 (4) O2 0.98733 (19) 0.15731 (16) 1.11354 (15) 0.0436 (5) O3 1.0967 (2) 0.0654 (2) 1.3499 (2) 0.0694 (7) O4 0.82923 (17) 0.14975 (16) 0.95840 (16) 0.0415 (5) O5 0.79049 (17) −0.02212 (16) 1.04858 (16) 0.0472 (5) O6 0.6118 (2) 0.3425 (2) 0.9547 (2) 0.0686 (7) O7 0.96223 (19) 0.25042 (17) 0.73715 (16) 0.0477 (5) O8 1.14818 (19) 0.23557 (18) 0.76139 (16) 0.0520 (6) O9 1.2194 (4) 0.2255 (3) 0.5242 (3) 0.1212 (14) O10 0.2744 (3) 0.1919 (4) 0.3403 (3) 0.1045 (11) C1 0.9867 (2) 0.0573 (2) 1.1558 (2) 0.0322 (6) C2 0.9452 (3) −0.0020 (2) 1.2664 (2) 0.0423 (7)

H2A 0.8804 −0.0380 1.2649 0.051*

H2B 1.0060 −0.0584 1.3053 0.051*

C3 0.9959 (3) 0.0987 (3) 1.3593 (2) 0.0480 (8) C4 0.9620 (3) 0.1747 (3) 1.4128 (3) 0.0620 (10)

H4A 0.8800 0.1914 1.4129 0.093*

H4B 0.9955 0.2411 1.3761 0.093*

H4C 0.9892 0.1401 1.4833 0.093*

C5 0.7911 (3) 0.1046 (3) 1.3255 (2) 0.0437 (7) C6 0.7309 (3) 0.0640 (3) 1.4176 (3) 0.0624 (10)

H6 0.7679 0.0140 1.4784 0.075*

C7 0.6134 (4) 0.0990 (4) 1.4185 (4) 0.0824 (14)

H7 0.5719 0.0719 1.4803 0.099*

C8 0.5587 (4) 0.1732 (4) 1.3288 (4) 0.0833 (14)

H8 0.4807 0.1968 1.3301 0.100*

C9 0.6195 (3) 0.2124 (4) 1.2372 (4) 0.0707 (11)

H9 0.5824 0.2623 1.1765 0.085*

(6)

H10 0.7755 0.2043 1.1725 0.063* C11 0.7624 (2) 0.0798 (2) 1.0037 (2) 0.0348 (6) C12 0.6358 (2) 0.1222 (2) 1.0064 (2) 0.0393 (7)

H12A 0.5912 0.0618 1.0270 0.047*

H12B 0.6238 0.1520 1.0585 0.047*

C13 0.5904 (3) 0.3134 (3) 0.8872 (3) 0.0522 (8) C14 0.5586 (4) 0.3945 (3) 0.7777 (4) 0.0859 (14)

H14A 0.5451 0.3560 0.7367 0.129*

H14B 0.6202 0.4373 0.7471 0.129*

H14C 0.4903 0.4419 0.7796 0.129*

C15 0.5711 (3) 0.1653 (2) 0.8319 (2) 0.0445 (7) C16 0.6613 (4) 0.1231 (3) 0.7855 (3) 0.0613 (9)

H16 0.7367 0.1283 0.7967 0.074*

C17 0.6378 (5) 0.0731 (4) 0.7225 (3) 0.0867 (15)

H17 0.6974 0.0439 0.6913 0.104*

C18 0.5243 (6) 0.0669 (4) 0.7062 (4) 0.0998 (19)

H18 0.5083 0.0327 0.6645 0.120*

C19 0.4366 (5) 0.1102 (5) 0.7506 (3) 0.0944 (17)

H19 0.3610 0.1067 0.7381 0.113*

C20 0.4593 (3) 0.1591 (4) 0.8140 (3) 0.0671 (11)

H20 0.3992 0.1881 0.8448 0.080*

C21 1.0608 (3) 0.2724 (2) 0.7045 (2) 0.0419 (7) C22 1.0710 (3) 0.3521 (3) 0.5908 (3) 0.0667 (11)

H22A 1.0411 0.3225 0.5472 0.080*

H22B 1.0231 0.4203 0.5804 0.080*

C23 1.2563 (5) 0.3055 (4) 0.5254 (3) 0.0783 (13) C24 1.3761 (4) 0.3287 (4) 0.4932 (4) 0.0925 (15)

H24A 1.3883 0.3941 0.4997 0.139*

H24B 1.3882 0.3385 0.4221 0.139*

H24C 1.4291 0.2685 0.5372 0.139*

C25 1.2247 (3) 0.4685 (3) 0.5619 (3) 0.0522 (8) C26 1.2510 (4) 0.4655 (4) 0.6567 (3) 0.0710 (11)

H26 1.2455 0.4027 0.7174 0.085*

C27 1.2857 (4) 0.5567 (5) 0.6614 (5) 0.0903 (14)

H27 1.3034 0.5552 0.7252 0.108*

C28 1.2939 (5) 0.6488 (5) 0.5718 (6) 0.108 (2)

H28 1.3204 0.7086 0.5748 0.130*

C29 1.2638 (5) 0.6539 (4) 0.4788 (6) 0.115 (2)

H29 1.2666 0.7181 0.4189 0.138*

C30 1.2283 (4) 0.5627 (3) 0.4725 (3) 0.0799 (13)

H30 1.2075 0.5657 0.4088 0.096*

C31 0.8868 (3) 0.4238 (3) 0.8250 (3) 0.0551 (9)

H31 0.8360 0.3851 0.8111 0.066*

C32 0.8568 (4) 0.5357 (3) 0.7924 (3) 0.0675 (11)

H32 0.7885 0.5708 0.7572 0.081*

C33 0.9306 (4) 0.5927 (3) 0.8134 (3) 0.0663 (11)

H33 0.9130 0.6678 0.7921 0.080*

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1346–m1348

C35 1.0572 (3) 0.4250 (2) 0.8951 (2) 0.0404 (7) C36 1.1610 (3) 0.3661 (2) 0.9500 (2) 0.0417 (7) C37 1.2360 (3) 0.4229 (3) 0.9760 (3) 0.0537 (9) C38 1.3328 (3) 0.3615 (4) 1.0346 (3) 0.0699 (11)

H38 1.3843 0.3959 1.0536 0.084*

C39 1.3520 (3) 0.2518 (4) 1.0638 (3) 0.0673 (11)

H39 1.4157 0.2104 1.1037 0.081*

C40 1.2750 (3) 0.2020 (3) 1.0334 (3) 0.0517 (8)

H40 1.2893 0.1268 1.0533 0.062*

C41 1.1107 (4) 0.5933 (3) 0.8943 (3) 0.0697 (11)

H41 1.0940 0.6680 0.8765 0.084*

C42 1.2082 (4) 0.5386 (3) 0.9454 (3) 0.0698 (12)

H42 1.2585 0.5762 0.9614 0.084*

H1 0.221 (3) 0.152 (3) 0.334 (3) 0.084* H2 0.259 (3) 0.202 (3) 0.400 (2) 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

C14 0.100 (3) 0.044 (2) 0.091 (3) −0.002 (2) −0.021 (3) −0.006 (2) C15 0.0533 (19) 0.0379 (16) 0.0378 (16) −0.0060 (14) −0.0043 (14) −0.0107 (13) C16 0.070 (2) 0.063 (2) 0.0498 (19) 0.0043 (19) −0.0079 (17) −0.0250 (18) C17 0.138 (5) 0.072 (3) 0.055 (2) −0.001 (3) 0.000 (3) −0.035 (2) C18 0.173 (6) 0.091 (4) 0.054 (3) −0.064 (4) −0.004 (3) −0.032 (2) C19 0.111 (4) 0.128 (4) 0.055 (2) −0.074 (4) 0.001 (3) −0.030 (3) C20 0.060 (2) 0.089 (3) 0.049 (2) −0.028 (2) −0.0022 (17) −0.0189 (19) C21 0.055 (2) 0.0337 (16) 0.0361 (15) −0.0111 (14) −0.0002 (14) −0.0120 (13) C22 0.068 (2) 0.078 (3) 0.0388 (18) −0.034 (2) −0.0043 (16) −0.0007 (17) C23 0.119 (4) 0.071 (3) 0.051 (2) −0.031 (3) 0.017 (2) −0.028 (2) C24 0.110 (4) 0.080 (3) 0.091 (3) −0.012 (3) 0.036 (3) −0.044 (3) C25 0.0473 (19) 0.053 (2) 0.0514 (19) −0.0116 (16) 0.0081 (15) −0.0160 (16) C26 0.082 (3) 0.071 (3) 0.069 (3) −0.019 (2) −0.001 (2) −0.034 (2) C27 0.083 (3) 0.096 (4) 0.118 (4) −0.011 (3) −0.002 (3) −0.069 (3) C28 0.090 (4) 0.078 (4) 0.179 (7) −0.022 (3) 0.022 (4) −0.074 (4) C29 0.128 (5) 0.051 (3) 0.143 (5) −0.026 (3) 0.036 (4) −0.018 (3) C30 0.086 (3) 0.064 (3) 0.068 (3) −0.014 (2) 0.011 (2) −0.007 (2) C31 0.052 (2) 0.0478 (19) 0.063 (2) 0.0087 (16) −0.0094 (17) −0.0239 (17) C32 0.072 (3) 0.049 (2) 0.070 (2) 0.0162 (19) −0.006 (2) −0.0203 (19) C33 0.090 (3) 0.0308 (17) 0.065 (2) 0.0020 (19) 0.015 (2) −0.0125 (16) C34 0.073 (2) 0.0331 (16) 0.0558 (19) −0.0143 (16) 0.0210 (18) −0.0220 (15) C35 0.0512 (18) 0.0303 (15) 0.0438 (16) −0.0106 (13) 0.0107 (14) −0.0190 (13) C36 0.0464 (18) 0.0437 (17) 0.0460 (17) −0.0184 (14) 0.0125 (14) −0.0270 (14) C37 0.053 (2) 0.065 (2) 0.065 (2) −0.0297 (17) 0.0187 (17) −0.0442 (19) C38 0.052 (2) 0.095 (3) 0.094 (3) −0.029 (2) 0.009 (2) −0.066 (3) C39 0.041 (2) 0.096 (3) 0.083 (3) −0.0063 (19) −0.0087 (18) −0.055 (2) C40 0.0412 (18) 0.058 (2) 0.062 (2) −0.0072 (15) −0.0010 (16) −0.0301 (17) C41 0.086 (3) 0.045 (2) 0.093 (3) −0.027 (2) 0.031 (2) −0.042 (2) C42 0.080 (3) 0.065 (2) 0.094 (3) −0.045 (2) 0.032 (2) −0.055 (2)

Geometric parameters (Å, º)

La1—O4 2.431 (2) C12—H12A 0.9700

La1—O1i 2.4672 (19) C12—H12B 0.9700

La1—O5i 2.474 (2) C13—C14 1.510 (5)

La1—O8 2.513 (2) C14—H14A 0.9600

La1—O7 2.573 (2) C14—H14B 0.9600

La1—O1 2.5762 (19) C14—H14C 0.9600

La1—N4 2.658 (2) C15—C20 1.378 (5)

La1—N5 2.674 (2) C15—C16 1.388 (5)

La1—O2 2.675 (2) C16—C17 1.386 (6)

La1—La1i 4.0167 (9) C16—H16 0.9300

N1—C3 1.356 (4) C17—C18 1.391 (7)

N1—C5 1.433 (4) C17—H17 0.9300

N1—C2 1.458 (4) C18—C19 1.360 (8)

N2—C13 1.359 (4) C18—H18 0.9300

N2—C15 1.434 (4) C19—C20 1.376 (6)

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, m1346–m1348

N3—C23 1.350 (5) C20—H20 0.9300

N3—C25 1.428 (5) C21—C22 1.525 (4)

N3—C22 1.460 (5) C22—H22A 0.9700

N4—C31 1.333 (4) C22—H22B 0.9700

N4—C35 1.357 (4) C23—C24 1.491 (7)

N5—C40 1.326 (4) C24—H24A 0.9600

N5—C36 1.362 (4) C24—H24B 0.9600

O1—C1 1.281 (3) C24—H24C 0.9600

O1—La1i 2.4672 (19) C25—C30 1.375 (5)

O2—C1 1.235 (3) C25—C26 1.377 (5)

O3—C3 1.225 (4) C26—C27 1.386 (6)

O4—C11 1.255 (3) C26—H26 0.9300

O5—C11 1.260 (3) C27—C28 1.369 (8)

O5—La1i 2.474 (2) C27—H27 0.9300

O6—C13 1.226 (4) C28—C29 1.353 (8)

O7—C21 1.250 (4) C28—H28 0.9300

O8—C21 1.257 (4) C29—C30 1.401 (7)

O9—C23 1.234 (5) C29—H29 0.9300

O10—H1 0.912 (10) C30—H30 0.9300

O10—H2 0.910 (10) C31—C32 1.388 (5)

C1—C2 1.513 (4) C31—H31 0.9300

C2—H2A 0.9700 C32—C33 1.366 (6)

C2—H2B 0.9700 C32—H32 0.9300

C3—C4 1.512 (4) C33—C34 1.392 (5)

C4—H4A 0.9600 C33—H33 0.9300

C4—H4B 0.9600 C34—C35 1.413 (4)

C4—H4C 0.9600 C34—C41 1.430 (5)

C5—C6 1.375 (4) C35—C36 1.435 (4)

C5—C10 1.386 (5) C36—C37 1.409 (4)

C6—C7 1.397 (6) C37—C38 1.397 (5)

C6—H6 0.9300 C37—C42 1.436 (5)

C7—C8 1.375 (7) C38—C39 1.357 (6)

C7—H7 0.9300 C38—H38 0.9300

C8—C9 1.371 (6) C39—C40 1.391 (5)

C8—H8 0.9300 C39—H39 0.9300

C9—C10 1.374 (5) C40—H40 0.9300

C9—H9 0.9300 C41—C42 1.343 (6)

C10—H10 0.9300 C41—H41 0.9300

C11—C12 1.522 (4) C42—H42 0.9300

O4—La1—O1i 71.81 (7) C9—C8—C7 119.9 (4)

O4—La1—O5i 137.42 (7) C9—C8—H8 120.1

O1i—La1—O5i 73.33 (7) C7—C8—H8 120.1

O4—La1—O8 131.95 (7) C8—C9—C10 120.2 (4) O1i—La1—O8 96.20 (7) C8—C9—H9 119.9

O5i—La1—O8 75.30 (7) C10—C9—H9 119.9

(10)

O5i—La1—O7 114.15 (7) C5—C10—H10 119.9

O8—La1—O7 51.39 (7) O4—C11—O5 126.2 (3) O4—La1—O1 75.37 (6) O4—C11—C12 116.9 (2) O1i—La1—O1 74.44 (7) O5—C11—C12 116.9 (3)

O5i—La1—O1 72.34 (6) N2—C12—C11 112.5 (2)

O8—La1—O1 147.64 (7) N2—C12—H12A 109.1 O7—La1—O1 147.09 (7) C11—C12—H12A 109.1 O4—La1—N4 85.07 (7) N2—C12—H12B 109.1 O1i—La1—N4 142.77 (7) C11—C12—H12B 109.1

O5i—La1—N4 137.09 (7) H12A—C12—H12B 107.8

O8—La1—N4 77.70 (8) O6—C13—N2 122.0 (3) O7—La1—N4 70.70 (7) O6—C13—C14 122.0 (3) O1—La1—N4 128.09 (7) N2—C13—C14 116.0 (3) O4—La1—N5 131.50 (7) C13—C14—H14A 109.5 O1i—La1—N5 153.46 (7) C13—C14—H14B 109.5

O5i—La1—N5 80.13 (7) H14A—C14—H14B 109.5

O8—La1—N5 77.00 (8) C13—C14—H14C 109.5 O7—La1—N5 115.34 (7) H14A—C14—H14C 109.5 O1—La1—N5 97.47 (7) H14B—C14—H14C 109.5 N4—La1—N5 61.59 (8) C20—C15—C16 120.3 (3) O4—La1—O2 72.04 (7) C20—C15—N2 119.8 (3) O1i—La1—O2 118.70 (6) C16—C15—N2 119.6 (3)

O5i—La1—O2 105.22 (7) C17—C16—C15 119.4 (4)

O8—La1—O2 144.07 (7) C17—C16—H16 120.3 O7—La1—O2 140.54 (7) C15—C16—H16 120.3 O1—La1—O2 49.42 (6) C16—C17—C18 119.4 (5) N4—La1—O2 78.95 (7) C16—C17—H17 120.3 N5—La1—O2 67.94 (7) C18—C17—H17 120.3 O4—La1—C21 106.15 (8) C19—C18—C17 120.8 (4) O1i—La1—C21 87.97 (7) C19—C18—H18 119.6

O5i—La1—C21 96.20 (8) C17—C18—H18 119.6

O8—La1—C21 25.80 (8) C18—C19—C20 120.1 (5) O7—La1—C21 25.72 (8) C18—C19—H19 119.9 O1—La1—C21 161.05 (7) C20—C19—H19 119.9 N4—La1—C21 70.55 (8) C19—C20—C15 120.0 (4) N5—La1—C21 95.26 (8) C19—C20—H20 120.0 O2—La1—C21 149.46 (7) C15—C20—H20 120.0 O4—La1—C1 69.91 (7) O7—C21—O8 123.3 (3) O1i—La1—C1 96.18 (7) O7—C21—C22 116.7 (3)

O5i—La1—C1 90.54 (7) O8—C21—C22 120.0 (3)

(11)

supporting information

sup-8

Acta Cryst. (2004). E60, m1346–m1348

O1i—La1—La1i 38.16 (4) H22A—C22—H22B 107.5

O5i—La1—La1i 68.24 (5) O9—C23—N3 120.1 (5)

O8—La1—La1i 127.46 (6) O9—C23—C24 122.0 (5)

O7—La1—La1i 113.53 (5) N3—C23—C24 117.9 (4)

O1—La1—La1i 36.28 (4) C23—C24—H24A 109.5

N4—La1—La1i 152.22 (6) C23—C24—H24B 109.5

N5—La1—La1i 129.26 (5) H24A—C24—H24B 109.5

O2—La1—La1i 82.98 (4) C23—C24—H24C 109.5

C21—La1—La1i 125.79 (6) H24A—C24—H24C 109.5

C1—La1—La1i 59.06 (5) H24B—C24—H24C 109.5

C3—N1—C5 124.9 (2) C30—C25—C26 120.3 (4) C3—N1—C2 117.2 (3) C30—C25—N3 119.2 (4) C5—N1—C2 117.7 (2) C26—C25—N3 120.4 (3) C13—N2—C15 125.5 (3) C25—C26—C27 119.7 (4) C13—N2—C12 119.8 (3) C25—C26—H26 120.2 C15—N2—C12 114.6 (2) C27—C26—H26 120.2 C23—N3—C25 123.3 (3) C28—C27—C26 119.9 (5) C23—N3—C22 118.4 (3) C28—C27—H27 120.1 C25—N3—C22 118.1 (3) C26—C27—H27 120.1 C31—N4—C35 117.7 (3) C29—C28—C27 120.8 (5) C31—N4—La1 121.1 (2) C29—C28—H28 119.6 C35—N4—La1 121.13 (19) C27—C28—H28 119.6 C40—N5—C36 117.9 (3) C28—C29—C30 120.1 (5) C40—N5—La1 121.8 (2) C28—C29—H29 120.0 C36—N5—La1 120.32 (19) C30—C29—H29 120.0 C1—O1—La1i 142.23 (18) C25—C30—C29 119.1 (5)

C1—O1—La1 95.85 (16) C25—C30—H30 120.5 La1i—O1—La1 105.56 (7) C29—C30—H30 120.5

C1—O2—La1 92.33 (16) N4—C31—C32 124.3 (4) C11—O4—La1 138.17 (18) N4—C31—H31 117.9 C11—O5—La1i 137.84 (18) C32—C31—H31 117.9

C21—O7—La1 91.02 (17) C33—C32—C31 118.0 (4) C21—O8—La1 93.69 (18) C33—C32—H32 121.0

H1—O10—H2 108 (2) C31—C32—H32 121.0

(12)

N1—C3—C4 117.9 (3) C36—C37—C42 119.5 (4) C3—C4—H4A 109.5 C39—C38—C37 120.1 (3)

C3—C4—H4B 109.5 C39—C38—H38 120.0

H4A—C4—H4B 109.5 C37—C38—H38 120.0

C3—C4—H4C 109.5 C38—C39—C40 119.1 (4)

H4A—C4—H4C 109.5 C38—C39—H39 120.4

H4B—C4—H4C 109.5 C40—C39—H39 120.4

C6—C5—C10 120.1 (3) N5—C40—C39 123.2 (3)

C6—C5—N1 120.3 (3) N5—C40—H40 118.4

C10—C5—N1 119.6 (3) C39—C40—H40 118.4 C5—C6—C7 119.0 (4) C42—C41—C34 121.1 (3)

C5—C6—H6 120.5 C42—C41—H41 119.4

C7—C6—H6 120.5 C34—C41—H41 119.4

C8—C7—C6 120.5 (4) C41—C42—C37 121.1 (3)

C8—C7—H7 119.7 C41—C42—H42 119.4

C6—C7—H7 119.7 C37—C42—H42 119.4

Symmetry code: (i) −x+2, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O10—H1···O3ii 0.91 (1) 1.96 (1) 2.858 (5) 168 (3)

O10—H2···O9iii 0.91 (1) 1.93 (1) 2.836 (5) 178 (4)

References

Related documents

The current analysis explores the relationship between TF measures, as reflected from the World Bank Logistics Performance Index (LPI), and export orientation (export

Para el SRI, el Grupo Económico del Banco del Pichincha incluye también a Diners Club, así como a AIG-Metropolitana de Seguros, Interdin y un total de 161 empresas.. El

A small caveat is necessary. Besides the low contribution, one has to be very careful about the type of competition addressed here. This type of selection has an implicit

Aim: To study the spectrum of tropical acute febrile illness; the proportion, spectrum and staging of acute kidney injury; Renal Replacement Therapy (RRT) initiation and

Keywords: cooperation, mutualism, trade, biological markets, mating markets, embedded markets, sexual selection, partner choice, currency, binding contract, negotiation,..

Resale Market: After the auction, if a blue player wins a unit in the auction, they will have the opportunity to resell any units won to the green player.. Auction and Resale

The main goal of this study is to investigate the dynamic short and long-run interaction between emissions, real GDP, combustible renewables and waste and rail

Building upon the implications of the theoretical framework of Section 2, this Section estimates the relationship between measures of the state sector, institutions and