• No results found

1 Chloro 4 oct­yl­oxy 10 thia­anthracen 9 one

N/A
N/A
Protected

Academic year: 2020

Share "1 Chloro 4 oct­yl­oxy 10 thia­anthracen 9 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1891–o1892 doi:10.1107/S160053680601316X Jiet al. C

21H23ClO2S

o1891

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

1-Chloro-4-octyloxy-10-thiaanthracen-9-one

Xiao-Juan Ji,aXuan-Gan Liuaand Guo-Wu Raob*

a

School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, People’s Republic of China, andbCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China

Correspondence e-mail: rgw@zjut.edu.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.044

wRfactor = 0.119

Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 4 April 2006 Accepted 11 April 2006

#2006 International Union of Crystallography

All rights reserved

In the title compound, C21H23ClO2S, the three fused rings are roughly coplanar. The two benzene rings are twisted by a dihedral angle of 7.15 (15).

Comment

Thioxanthone derivatives are good photoinitiators with excellent capabilities in UV-curing materials. They have been widely used in UV-curing applications because they absorb at a longer UV wavelength and have a faster photocuring speed than other photoinitiators (Allen et al., 1994, 1999). In a continuation of our research on new synthetic pathways of the title compound, (I) (Liuet al., 2003), we have obtained pale-yellow crystals from ethanol suitable for X-ray structural analysis.

[image:1.610.207.459.362.483.2] [image:1.610.207.461.582.705.2]

The molecular structure of (I) is illustrated in Fig. 1. The three fused rings are roughly coplanar, the largest deviation being 0.171 (2) A˚ for C9. However, the two benzene rings are slightly twisted, making a dihedral angle of 7.15 (15). The aliphatic carbon chain is also roughly planar and is nearly

Figure 1

(2)

coplanar with the thioxanthone system, making a dihedral angle of only 7.73 (14).

Weak C—H O hydrogen bonds result in the formation of a dimer arranged around an inversion centre (Fig. 2).

Experimental

The title compound was prepared from 1-chloro-4-hydroxy-thioxanthone and 1-bromooctane, according to the procedure of Liu

et al.(2003). A solution of the compound in ethanol was concentrated gradually at room temperature to afford pale-yellow prisms.

Crystal data

C21H23ClO2S Mr= 374.91 Triclinic,P1

a= 10.0899 (11) A˚

b= 10.2174 (11) A˚

c= 10.5201 (11) A˚

= 114.223 (1)

= 94.019 (1)

= 101.309 (1)

V= 956.01 (18) A˚3

Z= 2

Dx= 1.302 Mg m

3

MoKradiation

= 0.32 mm1 T= 298 (2) K Prism, pale yellow 0.400.200.15 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.883,Tmax= 0.954

5761 measured reflections

3798 independent reflections 2989 reflections withI> 2(I)

Rint= 0.012

max= 26.3

3 standard reflections frequency: 60 min intensity decay: 2.1%

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.044

wR(F2) = 0.119 S= 1.02 3798 reflections 227 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0555P)2

+ 0.2576P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.41 e A˚ 3

min=0.35 e A˚ 3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C8—H8 O2i

0.93 2.46 3.360 (3) 163

Symmetry code: (i)xþ1;yþ2;z.

H atoms were positioned geometrically and treated as riding on their parent C atoms, with C—H distances of 0.93 (Caromatic), 0.96

(CH3) and 0.97 A˚ (CH2), and withUiso(H) = 1.2Ueq(C), or 1.5Ueq(C)

for methyl groups.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement:CAD-4 EXPRESS; data reduction:XCAD4(Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97

(Sheldrick, 1997); program(s) used to refine structure:SHELXL97

(Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows

(Farrugia, 1997); software used to prepare material for publication:

WinGX(Farrugia, 1999).

References

Allen, N. S., Mallon, D., Timms, A. W., Green, W. A., Catalina, F., Corrales, T., Navaratnam, S. & Parsons, B. J. (1994).J. Chem. Soc. Faraday Trans.90, 83– 92.

Allen, N. S., Salleh, N. G., Edge, M., Shah, M., Ley, C., Morlet-Savary, F., Fouassier, J. P., Catalina, F., Green, A., Navaratnam, S. & Parsons, B. J. (1999).Polymer,40, 4181–4193.

Enraf–Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Liu, X.-G., Lv, Y.-P. & Hu, W.-X. (2003).Fine Chem.20, 343–344.

[image:2.610.315.566.71.172.2]

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Go¨ttingen, Germany.

Figure 2

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o1891–o1892

supporting information

Acta Cryst. (2006). E62, o1891–o1892 [https://doi.org/10.1107/S160053680601316X]

1-Chloro-4-octyloxy-10-thiaanthracen-9-one

Xiao-Juan Ji, Xuan-Gan Liu and Guo-Wu Rao

1-chloro-4-octyloxy-10-thiaanthracen-9-one

Crystal data

C21H23ClO2S

Mr = 374.91 Triclinic, P1 Hall symbol: -P 1

a = 10.0899 (11) Å

b = 10.2174 (11) Å

c = 10.5201 (11) Å

α = 114.223 (1)°

β = 94.019 (1)°

γ = 101.309 (1)°

V = 956.01 (18) Å3

Z = 2

F(000) = 396

Dx = 1.302 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 204 reflections

θ = 2.2–26.6°

µ = 0.32 mm−1

T = 298 K

Prismatic, pale yellow 0.40 × 0.20 × 0.15 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.883, Tmax = 0.954 5761 measured reflections

3798 independent reflections 2989 reflections with I > 2σ(I)

Rint = 0.012

θmax = 26.3°, θmin = 2.1°

h = −9→12

k = −12→11

l = −13→12

3 standard reflections every 60 min intensity decay: 2.1%

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.119

S = 1.03 3798 reflections 227 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0555P)2 + 0.2576P] where P = (Fo2 + 2Fc2)/3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o1891–o1892

C18 0.7172 (2) 0.5393 (2) 1.0423 (2) 0.0568 (5) H18A 0.6573 0.5930 1.0997 0.068* H18B 0.6646 0.4380 0.9858 0.068* C19 0.8351 (2) 0.5386 (3) 1.1392 (2) 0.0626 (5) H19A 0.8958 0.4859 1.0822 0.075* H19B 0.8869 0.6399 1.1972 0.075* C20 0.7888 (2) 0.4673 (3) 1.2345 (3) 0.0728 (6) H20A 0.7197 0.5122 1.2832 0.087* H20B 0.7468 0.3629 1.1770 0.087* C21 0.9051 (3) 0.4832 (4) 1.3426 (3) 0.1067 (11) H21A 0.9768 0.4454 1.2954 0.160* H21B 0.8722 0.4283 1.3943 0.160* H21C 0.9402 0.5858 1.4069 0.160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0530 (3) 0.1123 (5) 0.0867 (4) 0.0330 (3) 0.0035 (3) 0.0392 (4) S1 0.0457 (3) 0.0673 (3) 0.0510 (3) 0.0142 (2) 0.0081 (2) 0.0347 (2) O1 0.0634 (9) 0.0836 (10) 0.0627 (8) 0.0159 (7) 0.0187 (7) 0.0495 (8) O2 0.0620 (11) 0.217 (3) 0.1403 (17) 0.0127 (13) −0.0061 (11) 0.1423 (19) C1 0.0480 (11) 0.0542 (12) 0.0600 (12) 0.0154 (9) 0.0079 (9) 0.0183 (10) C2 0.0449 (11) 0.0696 (14) 0.0770 (14) 0.0111 (10) 0.0194 (10) 0.0249 (12) C3 0.0633 (13) 0.0669 (14) 0.0670 (13) 0.0125 (10) 0.0256 (11) 0.0316 (11) C4 0.0575 (12) 0.0509 (11) 0.0517 (11) 0.0125 (9) 0.0159 (9) 0.0236 (9) C5 0.0499 (11) 0.0778 (15) 0.0655 (13) 0.0094 (10) 0.0104 (9) 0.0391 (12) C6 0.0555 (13) 0.0970 (19) 0.0924 (17) 0.0070 (12) 0.0209 (12) 0.0554 (15) C7 0.0803 (16) 0.0840 (16) 0.0833 (16) 0.0160 (13) 0.0287 (13) 0.0561 (14) C8 0.0729 (14) 0.0651 (13) 0.0593 (12) 0.0221 (11) 0.0139 (10) 0.0369 (11) C9 0.0543 (12) 0.0714 (13) 0.0641 (12) 0.0163 (10) 0.0049 (9) 0.0407 (11) C10 0.0457 (10) 0.0437 (10) 0.0500 (10) 0.0132 (8) 0.0077 (8) 0.0170 (8) C11 0.0472 (10) 0.0425 (10) 0.0442 (9) 0.0107 (8) 0.0111 (7) 0.0169 (8) C12 0.0503 (10) 0.0493 (10) 0.0430 (9) 0.0107 (8) 0.0098 (8) 0.0213 (8) C13 0.0551 (11) 0.0463 (10) 0.0462 (10) 0.0142 (8) 0.0109 (8) 0.0220 (8) C14 0.0747 (14) 0.0690 (14) 0.0585 (12) 0.0129 (11) 0.0233 (10) 0.0386 (11) C15 0.0705 (14) 0.0705 (14) 0.0587 (12) 0.0107 (11) 0.0188 (10) 0.0376 (11) C16 0.0677 (13) 0.0589 (12) 0.0509 (11) 0.0075 (10) 0.0151 (9) 0.0284 (10) C17 0.0637 (13) 0.0651 (13) 0.0574 (12) 0.0085 (10) 0.0149 (10) 0.0311 (11) C18 0.0607 (12) 0.0582 (12) 0.0541 (11) 0.0098 (9) 0.0115 (9) 0.0287 (10) C19 0.0600 (13) 0.0692 (14) 0.0641 (12) 0.0149 (10) 0.0137 (10) 0.0342 (11) C20 0.0673 (14) 0.0792 (16) 0.0835 (16) 0.0088 (12) 0.0029 (12) 0.0520 (14) C21 0.0834 (19) 0.144 (3) 0.117 (2) 0.0035 (18) −0.0082 (16) 0.095 (2)

Geometric parameters (Å, º)

(6)

O1—C4 1.360 (2) C14—H14B 0.9700 O1—C14 1.439 (2) C15—C16 1.526 (3) O2—C9 1.214 (2) C15—H15A 0.9700 C1—C2 1.368 (3) C15—H15B 0.9700 C1—C10 1.415 (3) C16—C17 1.506 (3) C2—C3 1.381 (3) C16—H16A 0.9700 C2—H2 0.9300 C16—H16B 0.9700 C3—C4 1.370 (3) C17—C18 1.520 (3) C3—H3 0.9300 C17—H17A 0.9700 C4—C11 1.413 (2) C17—H17B 0.9700 C5—C6 1.369 (3) C18—C19 1.514 (3) C5—C12 1.395 (3) C18—H18A 0.9700 C5—H5 0.9300 C18—H18B 0.9700 C6—C7 1.379 (3) C19—C20 1.513 (3) C6—H6 0.9300 C19—H19A 0.9700 C7—C8 1.363 (3) C19—H19B 0.9700 C7—H7 0.9300 C20—C21 1.512 (3) C8—C13 1.409 (3) C20—H20A 0.9700 C8—H8 0.9300 C20—H20B 0.9700 C9—C13 1.472 (3) C21—H21A 0.9600 C9—C10 1.485 (3) C21—H21B 0.9600 C10—C11 1.403 (2) C21—H21C 0.9600

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o1891–o1892

C13—C8—H8 119.6 H18A—C18—H18B 107.6 O2—C9—C13 118.82 (19) C20—C19—C18 113.09 (18) O2—C9—C10 120.95 (19) C20—C19—H19A 109.0 C13—C9—C10 120.18 (16) C18—C19—H19A 109.0 C11—C10—C1 116.76 (17) C20—C19—H19B 109.0 C11—C10—C9 121.52 (16) C18—C19—H19B 109.0 C1—C10—C9 121.71 (17) H19A—C19—H19B 107.8 C10—C11—C4 121.28 (17) C21—C20—C19 112.8 (2) C10—C11—S1 125.80 (14) C21—C20—H20A 109.0 C4—C11—S1 112.91 (14) C19—C20—H20A 109.0 C13—C12—C5 120.24 (17) C21—C20—H20B 109.0 C13—C12—S1 124.41 (14) C19—C20—H20B 109.0 C5—C12—S1 115.34 (14) H20A—C20—H20B 107.8 C12—C13—C8 118.36 (18) C20—C21—H21A 109.5 C12—C13—C9 124.06 (16) C20—C21—H21B 109.5 C8—C13—C9 117.58 (17) H21A—C21—H21B 109.5 O1—C14—C15 107.92 (17) C20—C21—H21C 109.5 O1—C14—H14A 110.1 H21A—C21—H21C 109.5 C15—C14—H14A 110.1 H21B—C21—H21C 109.5 O1—C14—H14B 110.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C8—H8···O2i 0.93 2.46 3.360 (3) 163

Figure

Figure 1The molecular structure of compound (I), with the atom-labellingscheme. Displacement ellipsoids are drawn at the 30% probability leveland H atoms are represented as spheres of arbitrary radii.
Figure 2

References

Related documents

In this paper, I analytically derive and provide exam- ples for the use of a closed-form expression for the joint conditional characteristic function of a stock’s log-price

And the synergy goes both ways because, if we assume that sexual orientation is a trait present in human animals and non human animals, then we, per force , would seek

We studied the impact of the location (ICA, proximal M1 segment of the MCA, distal M1 segment, and M2 segment and more distally) of the clot on the CT perfusion parametric maps,

It can be concluded that administration of curcumin, garlic, fenugreek, parsley, peppermint, pomegranate, propolis, olive leaves, rosemary, and sesame showed a remarkable

Watanabe, “A Phase II Trial of Neoadjuvant Preoperative Chemoradiotherapy with S-1 plus Irinotecan and Radiation in Patients with Locally Advanced Rectal Cancer: Clinical

B , A coronal CECT image reveals a lobular intensely enhancing mass ( asterisk ) arising from the right inferior turbinate and an isoattenuating cap ( arrows ) containing linear

Three-dimensional (3-D) NIRS mapping and grand average waveforms (ROI analysis) in the prefrontal lobe of sub- ject B during a verbal fluency task. Upper) 3-D NIRS mapping image

banking sector, the short-run behaviour of bank capital is also driven by shocks to the riskiness of lending and collateral values, as indicated by changes in the corporate