• No results found

A 2:1 cocrystal of 2,3 bis­­(4 bromo­phen­yl)quinoxaline and 1,2 bis­­(4 bromo­phenyl)­ethane 1,2 diol

N/A
N/A
Protected

Academic year: 2020

Share "A 2:1 cocrystal of 2,3 bis­­(4 bromo­phen­yl)quinoxaline and 1,2 bis­­(4 bromo­phenyl)­ethane 1,2 diol"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1959–o1960 doi:10.1107/S1600536806013729 Ronget al. C

20H12Br2N20.5C14H12Br2O2

o1959

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

A 2:1 cocrystal of 2,3-bis(4-bromophenyl)quinoxaline

and 1,2-bis(4-bromophenyl)ethane-1,2-diol

Liang-Ce Rong,* Xiao-Yue Li, Chang-Sheng Yao, Hai-Ying Wang and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People’s Republic of China

Correspondence e-mail: lcrong2005@yahoo.com

Key indicators

Single-crystal X-ray study T= 193 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.038 wRfactor = 0.097

Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 10 April 2006 Accepted 16 April 2006

#2006 International Union of Crystallography All rights reserved

The title compound, C20H12Br2N20.5C14H12Br2O2, was

synthesized by the one-pot reaction of benzofurazan oxide and 1,2-bis(4-bromophenyl)ethane-1,2-dione induced by a low-valent titanium reagent. X-ray analysis reveals that the 1,2-bis(4-bromophenyl)ethane-1,2-diol molecule is located on an inversion centre. The molecules are linkedviaO—H N hydrogen bonds and C—H interactions.

Comment

Quinoxaline derivatives are an important class of nitrogen-containing heterocycles and they constitute useful inter-mediates in organic synthesis They have been reported for their applications in the fields of dyes (Brocket al., 1999) and pharmaceuticals (Gazitet al., 1996; Sehlstedtet al., 1998) and have also been used as building blocks for the synthesis of organic semiconductors (Daileyet al., 2001). Low-valent tita-nium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shiet al., 2003). We report here the crystal structure of the title compound, (I)

The asymmetric unit of (I) contains one 2,3-bis(4-bromo-phenyl)quinoxaline (bbq) molecule and one half-molecule of 1,2-bis(4-bromophenyl)ethane-1,2-diol (bbe) which is located on an inversion centre (Fig. 1). Bond lengths and angles in the molecules show normal values (Table 1). The C16–C21 and C22–C27 benzene rings form dihedral angles of 38.1 (1) and 51.8 (1), respectively, with the mean quinoxaline plane. The C2–C7 and C2A–C7Abenzene rings are parallel by symmetry. Two bbq molecules and one bbe molecule are connectedvia

(2)

Experimental

Compound (I) was prepared by the reaction of benzofurazan oxide (2 mmol) and 1,2-bis(4-bromophenyl)ethane-1,2-dione (2 mmol) with a low-valent titanium reagent (TiCl4/Zn; 1.1 ml/1.30 g) in THF

(15 ml). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

C20H12Br2N20.5C14H12Br2O2

Mr= 626.13

Triclinic,P1

a= 7.8746 (7) A˚

b= 11.9601 (9) A˚

c= 14.446 (2) A˚

= 66.121 (11) = 83.931 (17) = 71.126 (15)

V= 1176.7 (3) A˚3

Z= 2

Dx= 1.767 Mg m

3

MoKradiation

= 5.17 mm1

T= 193 (2) K Block, yellow 0.300.240.13 mm

Data collection

Rigaku Mercury diffractometer

!scans

Absorption correction: multi-scan (Jacobson, 1998)

Tmin= 0.306,Tmax= 0.553

(expected range = 0.283–0.511)

11766 measured reflections 4295 independent reflections 3425 reflections withI> 2(I)

Rint= 0.037

max= 25.3

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.038

wR(F2) = 0.097

S= 1.03 4295 reflections 300 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0531P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 1.04 e A˚ 3

min=0.65 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Br1—C5 1.904 (3) Br2—C19 1.900 (4) Br3—C25 1.899 (3) N1—C11 1.318 (4)

N1—C8 1.373 (4) N2—C10 1.319 (4) N2—C9 1.372 (4)

C11—N1—C8 118.6 (3) C10—N2—C9 118.6 (3) O1—C1—C2 112.4 (3) O1—C1—C1i

108.3 (4) C2—C1—C1i

111.1 (3)

N2—C10—C16 115.5 (3) C11—C10—C16 123.5 (3) N1—C11—C22 115.6 (3) C10—C11—C22 123.5 (3)

[image:2.610.314.567.69.234.2]

Symmetry code: (i)xþ2;y;z.

Table 2

Hydrogen-bond geometry (A˚ ,).

Cgis the centroid of the C2–C7 benzene ring.

D—H A D—H H A D A D—H A

O1—H1 N1ii

0.84 2.05 2.882 (4) 168 C12—H12 Cgiii 0.95 2.84 3.666 (4) 146

Symmetry codes: (ii)xþ1;yþ1;z; (iii)x1;yþ1;z.

H atoms were positioned geometrically and treated as riding, with an O—H distance of 0.84 A˚ and C—H distances in the range 0.95– 1.00 A˚ , and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for others. The highest peak is located 0.56 A˚ from atom H1A.

Data collection: CrystalClear (Rigaku, 2000); cell refinement:

CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

The authors thank the Natural Science Foundation of Xuzhou Normal university (grant No. 04XLB14) for financial support.

References

Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). (The Procter & Gamble Company, USA) World Patent WO 9951688.

Bruker (1999).SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Dailey, S., Feast, J. W., Peace, R. J., Sage, I. C., Till, S. & Wood, E. L. (2001).J.

Mater. Chem.11, 2238–2243.

Gazit, A., App, H., McMahon, G., Chen, J., Levitzki, A. & Bohmer, F. D. (1996).J. Med. Chem.39, 2170–2177.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.

McMurry, J. E. (1983).Acc. Chem. Res.16, 405–411.

Rigaku (2000).CrystalClear. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.

Rigaku/MSC (2003).CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Sehlstedt, U., Aich, P., Bergman, J., Vallberg, H., Norden, B. & Graslund, A. (1998).J. Mol. Biol.278, 31–56.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. & Hu, H. W. (2003).Tetrahedron Lett.44, 3199–3201.

Figure 1

[image:2.610.41.297.644.681.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o1959–o1960

supporting information

Acta Cryst. (2006). E62, o1959–o1960 [https://doi.org/10.1107/S1600536806013729]

A 2:1 cocrystal of 2,3-bis(4-bromophenyl)quinoxaline and

1,2-bis(4-bromo-phenyl)ethane-1,2-diol

Liang-Ce Rong, Xiao-Yue Li, Chang-Sheng Yao, Hai-Ying Wang and Da-Qing Shi

2,3-bis(4-bromophenyl)quinoxaline–1,2-bis(4-bromophenyl)ethane-1,2-diol (2/1)

Crystal data

C20H12Br2N2·0.5C14H12Br2O2

Mr = 626.13

Triclinic, P1 Hall symbol: -P 1 a = 7.8746 (7) Å b = 11.9601 (9) Å c = 14.446 (2) Å α = 66.121 (11)° β = 83.931 (17)° γ = 71.126 (15)° V = 1176.7 (3) Å3

Z = 2 F(000) = 614 Dx = 1.767 Mg m−3

Mo radiation, λ = 0.71070 Å Cell parameters from 4575 reflections θ = 3.1–25.3°

µ = 5.17 mm−1

T = 193 K Block, yellow

0.30 × 0.24 × 0.13 mm

Data collection

Rigaku Mercury diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 7.31 pixels mm-1

ω scans

Absorption correction: multi-scan (Jacobson, 1998)

Tmin = 0.306, Tmax = 0.553

11766 measured reflections 4295 independent reflections 3425 reflections with I > 2σ(I) Rint = 0.037

θmax = 25.3°, θmin = 3.1°

h = −8→9 k = −14→14 l = −17→16

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.038

wR(F2) = 0.097

S = 1.03 4295 reflections 300 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0531P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.04 e Å−3

(4)

Special details

Experimental. Spectroscopic analysis: IR (KBr, cm-1): 3090, 1664, 1586, 1568, 1482, 1398, 1312, 1209, 1173, 1112,

1070, 1008, 880, 833, 760, 748, 725, 681; 1H NMR (DMSO-d

6, δ, p.p.m.): 4.55 (2H, s, CH), 5.43 (2H, s, OH), 7.18 (4H,

d, J = 8.0 Hz, ArH), 7.45 (12H, t, J = 8.0 Hz, ArH), 7.62 (8H, d, J = 8.0 Hz, ArH), 7.91–7.93 (4H, dd, J = 3.6 Hz, J = 3.6 Hz, ArH), 8.17–8.19 (4H, dd, J = 3.6 Hz, J = 3.6 Hz, ArH).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o1959–o1960

C17 −0.0023 (5) 0.2748 (3) 0.5371 (3) 0.0286 (8) H17 −0.0701 0.3236 0.5742 0.034* C18 0.0816 (5) 0.1449 (4) 0.5874 (3) 0.0313 (8) H18 0.0721 0.1043 0.6586 0.038* C19 0.1792 (5) 0.0746 (3) 0.5335 (3) 0.0310 (8) C20 0.1925 (5) 0.1316 (4) 0.4302 (3) 0.0365 (9) H20 0.2587 0.0816 0.3937 0.044* C21 0.1090 (5) 0.2618 (4) 0.3798 (3) 0.0308 (8) H21 0.1188 0.3010 0.3085 0.037* C22 0.1752 (4) 0.5256 (3) 0.2629 (2) 0.0239 (7) C23 0.3219 (4) 0.4640 (3) 0.3316 (3) 0.0289 (8) H23 0.3017 0.4388 0.4022 0.035* C24 0.4950 (4) 0.4397 (3) 0.2982 (3) 0.0297 (8) H24 0.5942 0.3983 0.3450 0.036* C25 0.5221 (4) 0.4769 (3) 0.1946 (3) 0.0263 (8) C26 0.3806 (4) 0.5352 (3) 0.1257 (3) 0.0289 (8) H26 0.4016 0.5578 0.0554 0.035* C27 0.2074 (4) 0.5606 (3) 0.1600 (3) 0.0272 (8) H27 0.1090 0.6025 0.1127 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C20 0.039 (2) 0.031 (2) 0.038 (2) −0.0034 (17) 0.0049 (17) −0.0191 (18) C21 0.037 (2) 0.028 (2) 0.0262 (18) −0.0105 (16) 0.0046 (15) −0.0100 (16) C22 0.0237 (17) 0.0200 (18) 0.0256 (18) −0.0066 (14) 0.0059 (14) −0.0080 (15) C23 0.0256 (18) 0.031 (2) 0.0281 (19) −0.0099 (15) 0.0028 (14) −0.0093 (16) C24 0.0239 (18) 0.028 (2) 0.035 (2) −0.0084 (15) −0.0032 (15) −0.0082 (16) C25 0.0237 (18) 0.0234 (19) 0.033 (2) −0.0082 (14) 0.0086 (15) −0.0137 (16) C26 0.0264 (19) 0.026 (2) 0.0253 (18) −0.0040 (15) 0.0041 (15) −0.0056 (15) C27 0.0237 (18) 0.027 (2) 0.0240 (18) −0.0040 (14) 0.0019 (14) −0.0067 (15)

Geometric parameters (Å, º)

Br1—C5 1.904 (3) C12—C13 1.355 (5) Br2—C19 1.900 (4) C12—H12 0.95 Br3—C25 1.899 (3) C13—C14 1.421 (5) O1—C1 1.395 (4) C13—H13 0.95 O1—H1 0.84 C14—C15 1.358 (5) N1—C11 1.318 (4) C14—H14 0.95 N1—C8 1.373 (4) C15—H15 0.95 N2—C10 1.319 (4) C16—C21 1.386 (5) N2—C9 1.372 (4) C16—C17 1.405 (5) C1—C2 1.517 (5) C17—C18 1.379 (5) C1—C1i 1.536 (7) C17—H17 0.95

C1—H1A 1.00 C18—C19 1.374 (5) C2—C3 1.381 (5) C18—H18 0.95 C2—C7 1.395 (5) C19—C20 1.376 (5) C3—C4 1.383 (5) C20—C21 1.381 (5) C3—H3 0.95 C20—H20 0.95 C4—C5 1.383 (5) C21—H21 0.95 C4—H4 0.95 C22—C27 1.391 (5) C5—C6 1.369 (5) C22—C23 1.401 (5) C6—C7 1.386 (5) C23—C24 1.376 (5) C6—H6 0.95 C23—H23 0.95 C7—H7 0.95 C24—C25 1.392 (5) C8—C12 1.406 (5) C24—H24 0.95 C8—C9 1.410 (5) C25—C26 1.374 (5) C9—C15 1.409 (5) C26—C27 1.382 (5) C10—C11 1.444 (4) C26—H26 0.95 C10—C16 1.487 (5) C27—H27 0.95 C11—C22 1.480 (5)

C1—O1—H1 109.5 C14—C13—H13 119.7 C11—N1—C8 118.6 (3) C15—C14—C13 120.8 (3) C10—N2—C9 118.6 (3) C15—C14—H14 119.6 O1—C1—C2 112.4 (3) C13—C14—H14 119.6 O1—C1—C1i 108.3 (4) C14—C15—C9 119.5 (3)

C2—C1—C1i 111.1 (3) C14—C15—H15 120.3

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o1959–o1960

C1i—C1—H1A 108.4 C21—C16—C10 122.8 (3)

C3—C2—C7 118.5 (3) C17—C16—C10 119.0 (3) C3—C2—C1 122.1 (3) C18—C17—C16 120.9 (3) C7—C2—C1 119.4 (3) C18—C17—H17 119.6 C2—C3—C4 121.2 (3) C16—C17—H17 119.6 C2—C3—H3 119.4 C19—C18—C17 119.4 (3) C4—C3—H3 119.4 C19—C18—H18 120.3 C3—C4—C5 119.0 (3) C17—C18—H18 120.3 C3—C4—H4 120.5 C18—C19—C20 121.0 (3) C5—C4—H4 120.5 C18—C19—Br2 119.5 (3) C6—C5—C4 121.2 (3) C20—C19—Br2 119.4 (3) C6—C5—Br1 118.9 (3) C19—C20—C21 119.7 (4) C4—C5—Br1 120.0 (3) C19—C20—H20 120.2 C5—C6—C7 119.3 (3) C21—C20—H20 120.2 C5—C6—H6 120.3 C20—C21—C16 120.8 (3) C7—C6—H6 120.3 C20—C21—H21 119.6 C6—C7—C2 120.7 (3) C16—C21—H21 119.6 C6—C7—H7 119.6 C27—C22—C23 118.8 (3) C2—C7—H7 119.6 C27—C22—C11 120.3 (3) N1—C8—C12 120.0 (3) C23—C22—C11 120.7 (3) N1—C8—C9 120.4 (3) C24—C23—C22 120.8 (3) C12—C8—C9 119.5 (3) C24—C23—H23 119.6 N2—C9—C15 119.8 (3) C22—C23—H23 119.6 N2—C9—C8 120.4 (3) C23—C24—C25 118.8 (3) C15—C9—C8 119.8 (3) C23—C24—H24 120.6 N2—C10—C11 121.0 (3) C25—C24—H24 120.6 N2—C10—C16 115.5 (3) C26—C25—C24 121.6 (3) C11—C10—C16 123.5 (3) C26—C25—Br3 119.5 (3) N1—C11—C10 120.9 (3) C24—C25—Br3 118.9 (2) N1—C11—C22 115.6 (3) C25—C26—C27 119.1 (3) C10—C11—C22 123.5 (3) C25—C26—H26 120.4 C13—C12—C8 119.9 (3) C27—C26—H26 120.4 C13—C12—H12 120.0 C26—C27—C22 120.9 (3) C8—C12—H12 120.0 C26—C27—H27 119.6 C12—C13—C14 120.5 (3) C22—C27—H27 119.6 C12—C13—H13 119.7

O1—C1—C2—C3 −150.7 (3) C12—C13—C14—C15 1.5 (6) C1i—C1—C2—C3 87.9 (5) C13—C14—C15—C9 −0.4 (6)

O1—C1—C2—C7 30.7 (5) N2—C9—C15—C14 179.0 (3) C1i—C1—C2—C7 −90.8 (5) C8—C9—C15—C14 −0.9 (5)

(8)

C5—C6—C7—C2 −0.4 (6) C17—C18—C19—C20 −0.8 (5) C3—C2—C7—C6 −0.6 (5) C17—C18—C19—Br2 −179.8 (2) C1—C2—C7—C6 178.1 (3) C18—C19—C20—C21 1.0 (6) C11—N1—C8—C12 176.8 (3) Br2—C19—C20—C21 −179.9 (3) C11—N1—C8—C9 −0.2 (5) C19—C20—C21—C16 −0.3 (5) C10—N2—C9—C15 −179.0 (3) C17—C16—C21—C20 −0.7 (5) C10—N2—C9—C8 0.8 (5) C10—C16—C21—C20 −178.8 (3) N1—C8—C9—N2 −1.7 (5) N1—C11—C22—C27 −48.6 (5) C12—C8—C9—N2 −178.8 (3) C10—C11—C22—C27 134.3 (4) N1—C8—C9—C15 178.2 (3) N1—C11—C22—C23 126.1 (4) C12—C8—C9—C15 1.1 (5) C10—C11—C22—C23 −51.0 (5) C9—N2—C10—C11 1.7 (5) C27—C22—C23—C24 0.7 (6) C9—N2—C10—C16 −178.0 (3) C11—C22—C23—C24 −174.1 (3) C8—N1—C11—C10 2.8 (5) C22—C23—C24—C25 −0.3 (6) C8—N1—C11—C22 −174.4 (3) C23—C24—C25—C26 −1.0 (6) N2—C10—C11—N1 −3.7 (5) C23—C24—C25—Br3 178.2 (3) C16—C10—C11—N1 176.1 (3) C24—C25—C26—C27 1.7 (6) N2—C10—C11—C22 173.3 (3) Br3—C25—C26—C27 −177.4 (3) C16—C10—C11—C22 −6.9 (5) C25—C26—C27—C22 −1.3 (6) N1—C8—C12—C13 −177.1 (3) C23—C22—C27—C26 0.1 (5) C9—C8—C12—C13 0.0 (5) C11—C22—C27—C26 174.9 (3) C8—C12—C13—C14 −1.3 (6)

Symmetry code: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···N1ii 0.84 2.05 2.882 (4) 168

C12—H12···Cgiii 0.95 2.84 3.666 (4) 146

Figure

Figure 1

References

Related documents

The negative impact of the real effective exchange rate on the trade balance indicates. that a devaluation of the Cedi will improve

A multitask model trained on response prediction and SNLI achieves state-of-the-art per- formance for sentence encoding based models on the STS Benchmark, and surpasses prior work

Employing city data over 100 hundred years, this study finds that the railways had a short-term impact of the spatial distribution of population, but it seems that this

It is possible that subjects who observe a high assigned debt level or who draw low initial wage offers select out of the experiment and are replaced by subjects who receive

Similarity Relations Intuitively, concepts that are more similar (e.g., Machine translation and Machine translation evaluation ) are more likely to be connected by concept

Compared to post classification and problem text cleaning, it is much more time consuming to man- ually assign gold answers and equation systems to a problem (10-15 problems per

In our previous work (Mishra et al., 2016), we augment cognitive features, derived from eye-movement patterns of readers, with textual features to detect whether a human reader

Several economists have in recent years have examined the debate on the meaning of sustainable development in Islam and attempts to explain the Islamic position on