• No results found

1 (4 Bromo­phenyl) 3 (3 hy­droxy­phenyl)prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "1 (4 Bromo­phenyl) 3 (3 hy­droxy­phenyl)prop 2 en 1 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o483±o485 doi:10.1107/S1600536805002370 Moorthiet al. C15H11BrO2

o483

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-(4-Bromophenyl)-3-(3-hydroxyphenyl)-prop-2-en-1-one

S. Sathiya Moorthi,aK.

Chinnakali,b* S. Nanjundan,c

C. Sreekuttan Unnithan,d

Hoong-Kun Fune* and Xiao-Lan

Yuf

aDepartment of Physics, Sri Muthukumaran

Institute of Technology, Chikkarayapuram, Chennai 600 069, India,bDepartment of Physics, Anna University, Chennai 600 025, India,cDepartment of Chemistry, Anna University, Chennai 600 025, India,dDr M.G.R. Deemed University, Maduravoyal, Chennai 600 095, India,eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, andfSchool of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.035

wRfactor = 0.091

Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title molecule, C15H11BrO2, is approximately planar and

the dihedral angle between the two aromatic rings is 10.2 (2).

The H atoms of the central enone moiety are trans. The molecules form centrosymmetric hydrogen-bonded dimersvia

intermolecular OÐH O hydrogen bonds (H O = 2.02 AÊ and OÐH O = 172).

Comment

Chalcones (1,3-diarylpropen-1-ones) and their heterocyclic analogues possess a number of biological attributes and some of these have been reviewed. The antibacterial, fungistatic and fungicidal properties of these compounds have been reviewed by Opletalova (2000) and Opletalova & Sedivy (1999). The cytotoxic, anticancer, chemopreventative, mutagenic, anti-microbial, antiviral, antiprotozoal and insecticidal activities and enzyme-inhibitory properties of a variety of chalcones have been reviewed by Dimmocket al.(1999). Chalcones and their analogues are used as potential therapeutic agents in diseases of the cardiovascular system (Opletalovaet al., 2003). In recent years, the synthesis of polymers having a photo-sensitive functional group has been an active ®eld of research in polymer science. Monomers having structures similar to that of the title compound, (I), have been polymerized in solution using free radical initiators (Balaji & Nanjundan, 2001; Subramanian et al., 2001). These polymers undergo cross-linking upon irradiation with UV light or an electron beam and are used as photoresistors (Hyder Ali & Srinivasan, 1997; Rehab & Salahuddin, 1999). These photosensitive polymers ®nd application in the ®elds of integrated circuit technology and photocurable coatings (Nagamatzu & Inui, 1977). More recently, it has been noted that bromo-substituted derivatives of chalcones frequently crystallize in non-centro-symmetric space groups, which is a criterion for second-order non-linear optic (NLO) properties (Zhaoet al., 2000). Against this background, and in order to obtain detailed information on its crystal structure, an X-ray study of (I) has been carried out.

Compound (I), a bromo-substituted chalcone, is found to crystallize in a centrosymmetric space group and therefore has no second-order NLO properties. The molecule of (I) (Fig. 1) is approximately planar. The enone moiety of the molecule containing atoms C7, C8, C9 and O1 is planar to within

(2)

0.023 (2) AÊ. The least-squares plane through the enone moiety makes dihedral angles of 7.8 (2) and 3.9 (2),

respec-tively, with the C1±C6 and C10±C15 benzene rings. The dihedral angle between the benzene rings is 10.2 (2). The H

atoms attached to atoms C7 and C8 aretransto each other. The lengths of the C6ÐC7 [1.458 (3) AÊ], C7 C8 [1.316 (3) AÊ], C8ÐC9 [1.467 (4) AÊ], C9ÐC10 [1.492 (3) AÊ] and C9 O1 [1.223 (3) AÊ] bonds indicate conjugation. As observed in similar structures (Ravishankar, Chinnakali, Nanjundan, Jone Selvamalar et al., 2003; Ravishankar, Chin-nakali, Nanjundan, Radhakrishnan et al., 2003), the strain induced by the short H5 H8 [2.28 AÊ] contact causes the bond angles C5ÐC6ÐC7 [123.1 (2)] and C6ÐC7ÐC8

[128.6 (3)] to deviate signi®cantly from 120. Also, the short

H8 H11 [2.08 AÊ] contact results in a slight widening of the C9ÐC10ÐC11 angle to 123.4 (2). The weak intramolecular

C7ÐH7 O1 interaction generates anS(5) ring motif. In the crystal structure of (I), inversion-related molecules at (x,y,z) and (1ÿx, 1ÿy, 1ÿz) are linked by O2ÐH2 O1 hydrogen bonds into cyclic centrosymmetric R2

2(18) dimers

(Table 1). The dimers are interlinked by weak CÐH

interactions involving both aromatic rings leading to the formation of a three-dimensional network (Fig. 2). A short

Br Br(ÿx,ÿy,ÿz) contact of 3.5763 (5) AÊ is also observed in the structure.

Experimental

Compound (I) was obtained by the Claisen±Schmidt condensation of 4-bromoacetophenone (3.96 g, 0.02 mol) and 3-hydroxybenzaldehyde (2.46 g, 0.02 mol) in ethanol in the presence of aqueous NaOH. The product was isolated by neutralizing the reaction mixture with dilute hydrochloric acid. The crude product was recrystallized from ethanol.

Crystal data C15H11BrO2

Mr= 303.15

Monoclinic,P21=c

a= 11.7495 (13) AÊ

b= 5.4876 (6) AÊ

c= 20.165 (2) AÊ

= 95.918 (2)

V= 1293.2 (2) AÊ3

Z= 4

Dx= 1.557 Mg mÿ3

MoKradiation Cell parameters from 2004

re¯ections

= 2.5±27.6 = 3.17 mmÿ1

T= 293 (2) K Block, colourless 0.230.160.12 mm Data collection

Siemens SMART CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.514,Tmax= 0.686 6678 measured re¯ections

2538 independent re¯ections 1905 re¯ections withI> 2(I)

Rint= 0.022 max= 26.0

h=ÿ14!14

k=ÿ4!6

l=ÿ24!23 Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.091

S= 1.02 2538 re¯ections 164 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0356P)2 + 0.6438P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.45 e AÊÿ3

min=ÿ0.46 e AÊÿ3

Table 1

Hydrogen-bond geometry (AÊ,).

Cg1 is the centroid of the C1±C6 ring andCg2 is the centroid of the C10±C15 ring.

DÐH A DÐH H A D A DÐH A

O2ÐH2 O1i 0.82 2.02 2.837 (3) 172 C7ÐH7 O1 0.93 2.43 2.782 (3) 102 C12ÐH12 Cg2ii 0.93 2.78 3.482 (4) 132 C14ÐH14 Cg1iii 0.93 3.02 3.590 (3) 121

Symmetry codes: (i) ÿx‡1;ÿy‡1;ÿz‡1; (ii) ÿx;yÿ1

2;ÿz‡12; (iii)

x;ÿy‡1 2;zÿ12.

H atoms were placed in calculated positions, with OÐH and CÐH distances of 0.82 and 0.93 AÊ, respectively. TheUiso(H) values were

constrained to be 1.5Ueq of the carrier atom for hydroxyl H and

1.2Ueqfor the remaining H atoms.

Data collection:SMART(Siemens, 1996); cell re®nement and data reduction:SAINT (Siemens, 1996); program(s) used to solve and re®ne structure: SHELXTL (Sheldrick, 1997); molecular graphics:

SHELXTL; software used to prepare material for publication:

SHELXTLandPLATON(Spek, 2003).

References

Balaji, R. & Nanjundan, S. (2001).React. Funct. Polym.49, 77±86.

Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999).Curr. Med. Chem.6, 1125±1149.

organic papers

o484

Moorthiet al. C15H11BrO2 Acta Cryst.(2005). E61, o483±o485

Figure 1

The structure of (I), showing the atomic numbering scheme. Displace-ment ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Figure 2

(3)

Hyder Ali, A. & Srinivasan, K. V. (1997).Polym. Int.43, 310±316.

Nagamatzu, G. & Inui, H. (1977). Photosensitive Polymers. Tokyo: Kodansha.

Opletalova, V. (2000).Ceska. Slov. Farm.49, 278±284.

Opletalova, V., Jahodar, L., Jun, D. & Opletal, L. (2003).Ceska. Slov. Farm.52, 12±19.

Opletalova, V. & Sedivy, D. (1999).Ceska. Slov. Farm.48, 252±255. Ravishankar, T., Chinnakali, K., Nanjundan, S., Jone Selvamalar, C. S., Usman,

A. & Fun, H.-K. (2003).Acta Cryst.E59, o1143±o1145.

Ravishankar, T., Chinnakali, K., Nanjundan, S., Radhakrishnan, S., Usman, A. & Fun, H.-K. (2003).Acta Cryst.E59, o138±o140.

Rehab, A. & Salahuddin, N. (1999).Polymer,40, 2197±2207. Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997).SHELXTL. Version 5.10. Bruker AXS Inc., Madison,

Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7±13.

Subramanian, K., Nanjundan, S. & Rami Reddy, A. V. (2001).Eur. Polym. J.

37, 691±698.

Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000).J. Mater. Chem.10, 1513± 1517.

organic papers

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, o483–o485

supporting information

Acta Cryst. (2005). E61, o483–o485 [https://doi.org/10.1107/S1600536805002370]

1-(4-Bromophenyl)-3-(3-hydroxyphenyl)prop-2-en-1-one

S. Sathiya Moorthi, K. Chinnakali, S. Nanjundan, C. Sreekuttan Unnithan, Hoong-Kun Fun and

Xiao-Lan Yu

1-(4-Bromophenyl)-3-(3-hydroxyphenyl)prop-2-ene-1-one

Crystal data

C15H11BrO2

Mr = 303.15

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 11.7495 (13) Å

b = 5.4876 (6) Å

c = 20.165 (2) Å

β = 95.918 (2)°

V = 1293.2 (2) Å3

Z = 4

F(000) = 608

Dx = 1.557 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 2004 reflections

θ = 2.5–27.6°

µ = 3.17 mm−1

T = 293 K

Block, colourless 0.23 × 0.16 × 0.12 mm

Data collection

Siemens SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.514, Tmax = 0.686

6678 measured reflections 2538 independent reflections 1905 reflections with I > 2σ(I)

Rint = 0.022

θmax = 26.0°, θmin = 1.7°

h = −14→14

k = −4→6

l = −24→23

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.035

wR(F2) = 0.091

S = 1.02

2538 reflections 164 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0356P)2 + 0.6438P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.45 e Å−3 Δρmin = −0.46 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, o483–o485

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Br1 0.00624 (3) 0.06073 (8) 0.087423 (15) 0.08419 (18)

O1 0.32757 (18) 0.5202 (4) 0.35878 (10) 0.0633 (6)

O2 0.54835 (17) 0.0805 (4) 0.68682 (9) 0.0609 (5)

H2 0.5796 0.2053 0.6755 0.091*

C1 0.4431 (2) 0.1437 (5) 0.57977 (11) 0.0435 (6)

H1 0.4818 0.2892 0.5746 0.052*

C2 0.4674 (2) 0.0093 (5) 0.63716 (12) 0.0454 (6)

C3 0.4110 (2) −0.2072 (5) 0.64535 (13) 0.0500 (6)

H3 0.4282 −0.3002 0.6836 0.060*

C4 0.3283 (2) −0.2845 (5) 0.59570 (13) 0.0522 (7)

H4 0.2889 −0.4287 0.6015 0.063*

C5 0.3034 (2) −0.1516 (5) 0.53795 (13) 0.0494 (6)

H5 0.2483 −0.2067 0.5050 0.059*

C6 0.3615 (2) 0.0656 (5) 0.52940 (11) 0.0409 (6)

C7 0.3434 (2) 0.2125 (5) 0.46901 (12) 0.0453 (6)

H7 0.3821 0.3606 0.4702 0.054*

C8 0.2798 (2) 0.1635 (5) 0.41302 (12) 0.0469 (6)

H8 0.2353 0.0229 0.4102 0.056*

C9 0.2771 (2) 0.3249 (5) 0.35488 (12) 0.0448 (6)

C10 0.21330 (19) 0.2493 (5) 0.29038 (12) 0.0410 (6)

C11 0.1497 (2) 0.0378 (5) 0.28260 (14) 0.0533 (7)

H11 0.1478 −0.0681 0.3185 0.064*

C12 0.0886 (3) −0.0191 (5) 0.22213 (15) 0.0586 (7)

H12 0.0452 −0.1610 0.2174 0.070*

C13 0.0929 (2) 0.1361 (6) 0.16952 (12) 0.0515 (7)

C14 0.1568 (3) 0.3429 (6) 0.17499 (13) 0.0621 (8)

H14 0.1603 0.4451 0.1385 0.075*

C15 0.2166 (2) 0.3987 (5) 0.23567 (13) 0.0541 (7)

H15 0.2602 0.5405 0.2397 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br1 0.0802 (3) 0.1233 (4) 0.0446 (2) −0.0086 (2) −0.01476 (15) −0.01742 (17)

O1 0.0770 (13) 0.0521 (12) 0.0557 (12) −0.0210 (10) −0.0179 (10) 0.0048 (9)

O2 0.0706 (13) 0.0701 (14) 0.0385 (10) −0.0045 (10) −0.0114 (9) 0.0026 (9)

C1 0.0482 (14) 0.0434 (15) 0.0381 (13) 0.0012 (11) 0.0013 (10) −0.0021 (11)

C2 0.0463 (13) 0.0525 (17) 0.0373 (13) 0.0068 (12) 0.0043 (11) −0.0038 (11)

C3 0.0574 (15) 0.0538 (17) 0.0399 (13) 0.0117 (14) 0.0102 (11) 0.0058 (12)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, o483–o485

C5 0.0504 (14) 0.0512 (16) 0.0457 (14) −0.0012 (13) 0.0007 (11) −0.0048 (12)

C6 0.0447 (13) 0.0421 (14) 0.0352 (12) 0.0065 (11) 0.0010 (10) −0.0026 (10)

C7 0.0484 (13) 0.0426 (15) 0.0434 (13) −0.0012 (12) −0.0027 (11) −0.0010 (11)

C8 0.0488 (13) 0.0478 (15) 0.0420 (13) −0.0079 (12) −0.0045 (11) −0.0007 (12)

C9 0.0412 (13) 0.0461 (15) 0.0452 (14) 0.0008 (12) −0.0042 (10) 0.0004 (12)

C10 0.0374 (12) 0.0445 (15) 0.0400 (12) 0.0012 (11) −0.0011 (10) −0.0002 (11)

C11 0.0589 (16) 0.0500 (16) 0.0474 (15) −0.0081 (13) −0.0122 (12) 0.0087 (12)

C12 0.0617 (17) 0.0545 (18) 0.0558 (17) −0.0117 (14) −0.0119 (13) −0.0035 (13)

C13 0.0461 (14) 0.071 (2) 0.0356 (13) −0.0019 (14) −0.0018 (10) −0.0101 (12)

C14 0.0727 (18) 0.079 (2) 0.0340 (13) −0.0132 (17) 0.0033 (12) 0.0062 (14)

C15 0.0607 (16) 0.0588 (18) 0.0419 (14) −0.0149 (14) 0.0010 (12) 0.0023 (12)

Geometric parameters (Å, º)

Br1—C13 1.898 (2) C7—C8 1.316 (3)

O1—C9 1.223 (3) C7—H7 0.93

O2—C2 1.365 (3) C8—C9 1.467 (4)

O2—H2 0.82 C8—H8 0.93

C1—C2 1.377 (3) C9—C10 1.492 (3)

C1—C6 1.390 (3) C10—C15 1.378 (3)

C1—H1 0.93 C10—C11 1.381 (4)

C2—C3 1.378 (4) C11—C12 1.385 (4)

C3—C4 1.388 (4) C11—H11 0.93

C3—H3 0.93 C12—C13 1.366 (4)

C4—C5 1.380 (4) C12—H12 0.93

C4—H4 0.93 C13—C14 1.359 (4)

C5—C6 1.393 (4) C14—C15 1.381 (4)

C5—H5 0.93 C14—H14 0.93

C6—C7 1.458 (3) C15—H15 0.93

C2—O2—H2 109.5 C7—C8—H8 119.2

C2—C1—C6 121.1 (2) C9—C8—H8 119.2

C2—C1—H1 119.5 O1—C9—C8 120.5 (2)

C6—C1—H1 119.5 O1—C9—C10 119.8 (2)

O2—C2—C1 122.1 (2) C8—C9—C10 119.7 (2)

O2—C2—C3 117.8 (2) C15—C10—C11 118.0 (2)

C1—C2—C3 120.1 (2) C15—C10—C9 118.6 (2)

C2—C3—C4 119.1 (2) C11—C10—C9 123.4 (2)

C2—C3—H3 120.4 C10—C11—C12 121.0 (3)

C4—C3—H3 120.4 C10—C11—H11 119.5

C5—C4—C3 121.3 (3) C12—C11—H11 119.5

C5—C4—H4 119.4 C13—C12—C11 119.1 (3)

C3—C4—H4 119.4 C13—C12—H12 120.5

C4—C5—C6 119.5 (2) C11—C12—H12 120.5

C4—C5—H5 120.2 C14—C13—C12 121.5 (2)

C6—C5—H5 120.2 C14—C13—Br1 119.7 (2)

C1—C6—C5 118.9 (2) C12—C13—Br1 118.8 (2)

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, o483–o485

C5—C6—C7 123.1 (2) C13—C14—H14 120.5

C8—C7—C6 128.6 (3) C15—C14—H14 120.5

C8—C7—H7 115.7 C10—C15—C14 121.6 (3)

C6—C7—H7 115.7 C10—C15—H15 119.2

C7—C8—C9 121.7 (2) C14—C15—H15 119.2

C6—C1—C2—O2 179.0 (2) O1—C9—C10—C15 2.5 (4)

C6—C1—C2—C3 0.3 (4) C8—C9—C10—C15 −176.9 (2)

O2—C2—C3—C4 −180.0 (2) O1—C9—C10—C11 −176.8 (3)

C1—C2—C3—C4 −1.2 (4) C8—C9—C10—C11 3.8 (4)

C2—C3—C4—C5 1.4 (4) C15—C10—C11—C12 −1.7 (4)

C3—C4—C5—C6 −0.6 (4) C9—C10—C11—C12 177.6 (3)

C2—C1—C6—C5 0.5 (4) C10—C11—C12—C13 0.8 (5)

C2—C1—C6—C7 −177.7 (2) C11—C12—C13—C14 0.8 (5)

C4—C5—C6—C1 −0.3 (4) C11—C12—C13—Br1 −178.6 (2)

C4—C5—C6—C7 177.7 (2) C12—C13—C14—C15 −1.4 (5)

C1—C6—C7—C8 172.9 (3) Br1—C13—C14—C15 178.0 (2)

C5—C6—C7—C8 −5.1 (4) C11—C10—C15—C14 1.2 (4)

C6—C7—C8—C9 −175.7 (2) C9—C10—C15—C14 −178.1 (3)

C7—C8—C9—O1 −5.8 (4) C13—C14—C15—C10 0.4 (5)

C7—C8—C9—C10 173.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2···O1i 0.82 2.02 2.837 (3) 172

C7—H7···O1 0.93 2.43 2.782 (3) 102

C12—H12···Cg2ii 0.93 2.78 3.482 (4) 132

C14—H14···Cg1iii 0.93 3.02 3.590 (3) 121

References

Related documents

As suggested by Piketty (2014), the term of middle class is debatable because it does not have any single definition. The most consistent effect is shown when we define the

In this study, our aim is to develop a mathematical model of horizontal loop tubular photo bioreactor to simulate the temperature distribution in the suspen- sion with the solar

share of our tea export (SQX) is regressed on some control variables at the domestic level and includes, the share of domestic demand (SDD), unit export price in

The BLEU score (ZH-EN as example) reached 35 after using approximately 140K training batches; further, the BLEU score reached 38 after using approximately additional 120K

Third, we take into account two groups of complex structural features that have not been previously used in transition-based parsing: non- local features (Charniak and Johnson,

In large-scale experiments for patent prior art search and cross-lingual re- trieval in Wikipedia, our approach yields considerable improvements over learning- to-rank with either

Experiments showed that DC-ADMM drastically reduced model complexity in terms of the degrees of freedom in trained models while maintaining the performance.. There may

We found that using a segmented translation model based on unsupervised morphology in- duction and a model that combined morpheme segments in the translation model with a