• No results found

Penta­aqua­hydroxoscandium(III) dibromide, [Sc(H2O)5(OH)]Br2

N/A
N/A
Protected

Academic year: 2020

Share "Penta­aqua­hydroxoscandium(III) dibromide, [Sc(H2O)5(OH)]Br2"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

i122

Uwe Kolitsch [Sc(H

2O)5(OH)]Br2 doi:10.1107/S1600536806013328 Acta Cryst.(2006). E62, i122–i123 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Pentaaquahydroxoscandium(III) dibromide,

[Sc(H

2

O)

5

(OH)]Br

2

Uwe Kolitsch

Universita¨t Wien, Institut fu¨r Mineralogie und Kristallographie, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria

Correspondence e-mail: uwe.kolitsch@univie.ac.at

Key indicators

Single-crystal X-ray study T= 293 K

Mean(c–O) = 0.002 A˚ Rfactor = 0.030 wRfactor = 0.073

Data-to-parameter ratio = 32.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 28 March 2006 Accepted 12 April 2006

#2006 International Union of Crystallography

All rights reserved

[Sc(H2O)5(OH)]Br2is a scandium(III) halide compound that

contains centrosymmetric [Sc(H2O)5(OH)]2 4+

dimeric cationic units built from two edge-sharing (hydroxo-bridged) symme-trically equivalent Sc(H2O)5(OH)2polyhedra. The mean Sc—

O bond length is 2.156 A˚ . The hydrogen bonds (O Br) are of low strength. All atoms are in general positions.

Comment

As part of work on the crystallochemical behaviour of ScIIIin inorganic compounds, pentaaquahydroxoscandium(III) di-bromide, [Sc(H2O)5(OH)]Br2, (I), was obtained. Although a

compound with this formula has been reported in the litera-ture (Petru & Kutek, 1960; Arkhangel’skiiet al., 1972), neither the crystal symmetry nor the crystal structure were given.

The crystal structure of (I) contains centrosymmetric dimeric cationic [Sc(H2O)5(OH)]2

4+

units, counterbalanced by Branions. The cationic unit is built from two edge-sharing symmetrically equivalent Sc(H2O)5(OH)2polyhedra (Fig. 1).

The polyhedron may be described as a monocapped (by O1) trigonal antiprism. The two OH groups (O1—H1) act as hydroxo-bridges between the two Sc-centred polyhedra (Fig. 2).

Practically identical dimeric cationic units also occur in orthorhombic [Sc(H2O)5(OH)]2X4(H2O)2, whereX= Br or Cl

(Ilyukhin & Petrosyants, 1994; Ripert et al., 1999; see also Petrosyants & Ilyukhin, 2004). In contrast, the crystal struc-tures of monoclinic [Sc(H2O)7]X3, whereX= Br or Cl (Limet

al., 2000), contain isolated Sc(H2O)7polyhedra.

[image:1.610.238.433.547.690.2]

The mean Sc—O bond length in (I) is 2.156 A˚ (Table 1), in accordance with the grand mean Sc—O bond length of 2.17 (7) A˚ given for heptacoordinated Sc in a review of Sc

Figure 1

A view of the crystal structure of (I) along [100]. Dimeric [Sc(H2O)5(OH)]24+ cationic units are bonded to Branionsvia weak

(2)

compounds by Serezhkinet al.(2003). The Sc—OH bonds are distinctly shorter than the Sc—H2O bonds, equivalent to the

situation in [Sc(H2O)5(OH)]2X4(H2O)2, where X= Br or Cl

(Ilyukhin & Petrosyants, 1994; Ripertet al., 1999), and also in agreement with the observations of Serezhkinet al.(2003).

The hydrogen bonds are of low strength, as shown by O Br distances between about 3.24 and 3.41 A˚ (Table 2).

Experimental

Compound (I) was prepared by mixing Sc2O3, 48%wtHBr,

concen-trated HNO3and distilled water at room temperature (the volume

ratios are unknown, but the two acids were added in excess quanti-ties). On slow evaporation of the acidic aqueous solution, compound (I) formed as colourless rounded tabular crystals, stable under ambient conditions. The crystals were accompanied by minor amounts of thin crusts of [Sc(H2O)5(OH)]2Br4(H2O)2(Ilyukhin &

Petrosyants, 1994; Ripertet al., 1999).

Crystal data

[Sc(H2O)5(OH)]Br2

Mr= 311.87 Triclinic,P1

a= 7.412 (1) A˚

b= 8.368 (2) A˚

c= 8.627 (2) A˚

= 95.12 (3)

= 114.56 (3)

= 101.33 (3)

V= 468.3 (2) A˚3

Z= 2

Dx= 2.212 Mg m3 MoKradiation

= 9.29 mm1

T= 293 (2) K Fragment, colourless 0.170.150.10 mm

Data collection

Nonius KappaCCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SCALEPACK; Otwinowskiet al., 2003)

Tmin= 0.301,Tmax= 0.457

(expected range = 0.260–0.395) 8112 measured reflections 4082 independent reflections 3219 reflections withI> 2(I)

Rint= 0.021

max= 34.9

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.030

wR(F2) = 0.073

S= 1.03 4082 reflections 127 parameters

All H-atom parameters refined

w= 1/[2(F

o2) + (0.034P)2

+ 0.15P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.98 e A˚3 min=0.87 e A˚3

Extinction correction:SHELXL97

(Sheldrick, 1997)

Extinction coefficient: 0.0166 (13)

Table 1

Selected bond lengths (A˚ ).

Sc—O1 2.0485 (15)

Sc—O1i

2.0824 (15)

Sc—O2 2.1591 (19)

Sc—O3 2.1724 (19)

Sc—O5 2.2024 (19)

Sc—O4 2.2032 (19)

Sc—O6 2.2228 (18)

[image:2.610.81.256.73.184.2]

Symmetry code: (i)xþ2;y;zþ1.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1 Br1i 0.85 (2) 2.52 (2) 3.3532 (17) 165 (3) O2—H2 Br1ii

0.87 (2) 2.39 (2) 3.236 (2) 165 (3)

O2—H3 Br2iii

0.88 (2) 2.54 (2) 3.392 (2) 162 (3)

O3—H4 Br1iv 0.89 (2) 2.38 (2) 3.265 (2) 173 (3)

O3—H5 Br2 0.89 (2) 2.54 (2) 3.407 (2) 165 (3)

O4—H6 Br2v

0.88 (2) 2.53 (2) 3.371 (2) 161 (3)

O4—H7 Br2vi

0.88 (2) 2.40 (2) 3.280 (2) 174 (4)

O5—H8 Br2i

0.88 (2) 2.44 (2) 3.312 (2) 170 (4)

O5—H9 Br1v

0.86 (2) 2.48 (2) 3.302 (2) 160 (4)

O6—H10 Br2iv

0.89 (2) 2.41 (2) 3.2940 (18) 175 (3) O6—H11 Br1v 0.87 (2) 2.42 (3) 3.2413 (18) 156 (4)

Symmetry codes: (i) xþ2;y;zþ1; (ii) xþ2;y;z; (iii) xþ1;y;z; (iv)

xþ1;y;z; (v)x;y1;z; (vi)xþ1;y;zþ1.

All O—H distances were restrained to a length of 0.90 (2) A˚ , and theUiso(H) values were freely refined.

Data collection: COLLECT (Nonius, 2004); cell refinement:

SCALEPACK(Otwinowski et al., 2003); data reduction: SCALE-PACKandDENZO(Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:

ATOMS(Dowty, 1999) andORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:SHELXL97.

Financial support from the International Centre for Diffraction Data (grant No. 90–03 ET) is gratefully acknowl-edged.

References

Arkhangel’skii, I. V., Komissarova, L. N., Shatskii, V. M. & Shepelev, N. P. (1972).Zh. Neorg. Khim.17, 310–314. (In Russian.)

Dowty, E. (1999).ATOMS. Version 5.0.4 for Windows and Macintosh. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Ilyukhin, A. B. & Petrosyants, S. P. (1994).Zh. Neorg. Khim.39, 1517–1520. (In Russian.)

Lim, K. C., Skelton, B. W. & White, A. H. (2000).Aust. J. Chem.53, 875– 878.

Nonius (2004).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003).Acta Cryst.A59, 228–234.

Petrosyants, S. P. & Ilyukhin, A. B. (2004).Russ. J. Coord. Chem.30, 194– 197.

Petru, F. & Kutek, F. (1960).Collect. Czech. Chem. Commun. 25, 1143– 1147. (In German.)

Ripert, V., Hubert-Pfalzgraf, L. G. & Vaissermann, J. (1999).Polyhedron,18, 1845–1851.

Serezhkin, V. N., Kryuchkova, G. V. & Kazakevich, V. S. (2003).Zh. Neorg. Khim.48, 1322–1330. (In Russian.)

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 2

A view of the dimeric [Sc(H2O)5(OH)]24+ cationic unit in (I), with

[image:2.610.314.565.219.334.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, i122–i123

supporting information

Acta Cryst. (2006). E62, i122–i123 [https://doi.org/10.1107/S1600536806013328]

Pentaaquahydroxoscandium(III) dibromide, [Sc(H

2

O)

5

(OH)]Br

2

Uwe Kolitsch

Pentaaquahydroxoscandium(III) dibromide

Crystal data

[Sc(H2O)5(OH)]Br2

Mr = 311.87 Triclinic, P1 Hall symbol: -P 1

a = 7.412 (1) Å

b = 8.368 (2) Å

c = 8.627 (2) Å

α = 95.12 (3)°

β = 114.56 (3)°

γ = 101.33 (3)°

V = 468.3 (2) Å3

Z = 2

F(000) = 300

Dx = 2.212 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 4082 reflections

θ = 2.0–35.0°

µ = 9.29 mm−1

T = 293 K

Fragment, colourless 0.17 × 0.15 × 0.10 mm

Data collection

Nonius KappaCCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan

(SCALEPACK; Otwinowski et al., 2003)

Tmin = 0.301, Tmax = 0.457

8112 measured reflections 4082 independent reflections 3219 reflections with I > 2σ(I)

Rint = 0.021

θmax = 34.9°, θmin = 2.5°

h = −11→11

k = −13→13

l = −13→13

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.030

wR(F2) = 0.073

S = 1.04

4082 reflections 127 parameters 11 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.034P)2 + 0.15P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.98 e Å−3 Δρmin = −0.87 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Sc 0.87962 (5) −0.15841 (4) 0.32614 (4) 0.02076 (7)

Br1 0.86413 (3) 0.31138 (2) 0.08405 (3) 0.03305 (7)

Br2 0.46366 (3) 0.24920 (3) 0.30388 (3) 0.03492 (7)

O1 1.0337 (2) −0.09827 (16) 0.59158 (16) 0.0285 (3)

O2 1.0504 (4) −0.0777 (2) 0.1840 (3) 0.0604 (6)

O3 0.5988 (3) −0.0878 (2) 0.1780 (3) 0.0517 (5)

O4 0.6694 (3) −0.3377 (2) 0.3869 (3) 0.0561 (6)

O5 1.0651 (3) −0.3407 (3) 0.3758 (2) 0.0576 (6)

O6 0.7160 (2) −0.34896 (19) 0.08302 (18) 0.0327 (3)

H1 1.057 (4) −0.168 (3) 0.659 (3) 0.052 (8)*

H2 1.094 (5) −0.140 (4) 0.129 (5) 0.082 (12)*

H3 1.136 (4) 0.020 (3) 0.211 (5) 0.067 (10)*

H4 0.471 (3) −0.152 (4) 0.114 (4) 0.084 (12)*

H5 0.589 (6) 0.010 (3) 0.219 (5) 0.073 (11)*

H6 0.603 (5) −0.442 (3) 0.339 (4) 0.071 (11)*

H7 0.636 (6) −0.321 (5) 0.473 (4) 0.082 (12)*

H8 1.186 (4) −0.329 (5) 0.464 (4) 0.089 (13)*

H9 1.046 (6) −0.429 (4) 0.306 (5) 0.097 (14)*

H10 0.663 (5) −0.328 (5) −0.024 (3) 0.074 (11)*

H11 0.727 (7) −0.447 (3) 0.051 (6) 0.113 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Sc 0.02461 (16) 0.01590 (14) 0.01799 (13) 0.00331 (11) 0.00755 (11) −0.00107 (10)

Br1 0.04039 (12) 0.02452 (10) 0.03456 (11) 0.00948 (8) 0.01708 (9) 0.00238 (7)

Br2 0.03351 (12) 0.03616 (12) 0.03264 (11) 0.00742 (8) 0.01359 (8) 0.00380 (8)

O1 0.0444 (8) 0.0154 (6) 0.0186 (5) 0.0057 (5) 0.0084 (5) 0.0017 (4)

O2 0.0841 (15) 0.0335 (10) 0.0798 (14) −0.0117 (9) 0.0683 (13) −0.0146 (9)

O3 0.0320 (8) 0.0289 (9) 0.0679 (12) 0.0117 (7) −0.0008 (8) −0.0099 (8)

O4 0.0762 (14) 0.0370 (10) 0.0501 (11) −0.0208 (9) 0.0423 (11) −0.0095 (8)

O5 0.0561 (11) 0.0486 (11) 0.0402 (9) 0.0329 (9) −0.0085 (8) −0.0169 (8)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, i122–i123 Geometric parameters (Å, º)

Sc—O1 2.0485 (15) Br2—O5i 3.312 (2)

Sc—O1i 2.0824 (15) Br2—O4iii 3.371 (2)

Sc—O2 2.1591 (19) Br2—O2vii 3.392 (2)

Sc—O3 2.1724 (19) Br2—O3 3.407 (2)

Sc—O5 2.2024 (19) Br2—O1i 3.9428 (18)

Sc—O4 2.2032 (19) Br2—O3iv 4.059 (3)

Sc—O6 2.2228 (18) Br2—O1vi 4.1398 (18)

Br1—O2ii 3.236 (2) O1—H1 0.853 (17)

Br1—O6iii 3.2413 (18) O2—H2 0.866 (18)

Br1—O3iv 3.265 (2) O2—H3 0.879 (18)

Br1—O5iii 3.302 (2) O3—H4 0.894 (18)

Br1—O1i 3.3532 (17) O3—H5 0.890 (18)

Br1—O2 3.812 (3) O4—H6 0.877 (18)

Br1—O3 3.862 (2) O4—H7 0.883 (18)

Br1—O6ii 3.9096 (18) O5—H8 0.880 (18)

Br1—O6iv 4.0159 (18) O5—H9 0.859 (19)

Br1—Br1v 4.1076 (13) O6—H10 0.888 (18)

Br2—O4vi 3.280 (2) O6—H11 0.871 (19)

Br2—O6iv 3.2940 (18)

O1—Sc—O1i 69.77 (7) O2—Sc—O6 78.53 (8)

O1—Sc—O2 116.94 (8) O3—Sc—O6 75.36 (7)

O1i—Sc—O2 78.21 (7) O5—Sc—O6 76.73 (7)

O1—Sc—O3 122.77 (8) O4—Sc—O6 77.78 (7)

O1i—Sc—O3 77.34 (7) Sc—O1—Sci 110.23 (7)

O2—Sc—O3 99.66 (10) Sc—O1—H1 125 (2)

O1—Sc—O5 80.16 (7) Sci—O1—H1 124 (2)

O1i—Sc—O5 130.56 (7) Sc—O2—H2 126 (3)

O2—Sc—O5 81.97 (10) Sc—O2—H3 124 (2)

O3—Sc—O5 151.08 (7) Sc—O3—H4 129 (3)

O1—Sc—O4 81.42 (8) Sc—O3—H5 117 (2)

O1i—Sc—O4 125.90 (7) Sc—O4—H6 131 (2)

O2—Sc—O4 155.04 (7) Sc—O4—H7 127 (3)

O3—Sc—O4 81.82 (9) Sc—O5—H8 127 (3)

O5—Sc—O4 85.07 (10) Sc—O5—H9 128 (3)

O1—Sc—O6 149.98 (6) Sc—O6—H10 125 (2)

O1i—Sc—O6 140.25 (6) Sc—O6—H11 134 (3)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y, −z; (iii) x, y+1, z; (iv) −x+1, −y, −z; (v) −x+2, −y+1, −z; (vi) −x+1, −y, −z+1; (vii) x−1, y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1···Br1i 0.85 (2) 2.52 (2) 3.3532 (17) 165 (3)

O2—H2···Br1ii 0.87 (2) 2.39 (2) 3.236 (2) 165 (3)

O2—H3···Br2viii 0.88 (2) 2.54 (2) 3.392 (2) 162 (3)

(6)

O3—H5···Br2 0.89 (2) 2.54 (2) 3.407 (2) 165 (3)

O4—H6···Br2ix 0.88 (2) 2.53 (2) 3.371 (2) 161 (3)

O4—H7···Br2vi 0.88 (2) 2.40 (2) 3.280 (2) 174 (4)

O5—H8···Br2i 0.88 (2) 2.44 (2) 3.312 (2) 170 (4)

O5—H9···Br1ix 0.86 (2) 2.48 (2) 3.302 (2) 160 (4)

O6—H10···Br2iv 0.89 (2) 2.41 (2) 3.2940 (18) 175 (3)

O6—H11···Br1ix 0.87 (2) 2.42 (3) 3.2413 (18) 156 (4)

Figure

Figure 1
Figure 2

References

Related documents

Detailed nuclear magnetic resonance studies provided evidence of the influence of the type and concentration of the maltodextrin host on the chiral recognition of racemic

At present, spatial remote sensing, aerial remote sensing, global positioning, global information systems, database technology and computer network technology, along with

The psychological process of self-awareness is helpful for control of individual behaviors and emotions (Chen, 2003). To sum up, the four strategies mentioned above could

[Table/Fig-16]: Invasive high-grade urothelial carcinoma showing positive cytoplasmic and focal membranous GPC3 expression (original magnification X 100).. [Table/Fig-17]:

This review of potential developments and challenges focuses on the 19 Commonwealth states of sub-Saharan Africa – which include heavyweights such as South Africa, Nigeria,

Aim: The aim of the present study was to evaluate the change in the psychosocial impact of malocclusion using the Psychosocial Impact of Dental Aesthetics Questionnaire (PIDAQ)

2009, the number of firms exposed to asymmetric exposure from TWEER

Impact of solar production on Czech electricity grid system imbalance1. Janda, Karel and