• No results found

Di­ethyl naphthalene 1,4 di­carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "Di­ethyl naphthalene 1,4 di­carboxyl­ate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2300

Jinget al. C

16H16O4 doi:10.1107/S1600536806017119 Acta Cryst.(2006). E62, o2300–o2301

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diethyl naphthalene-1,4-dicarboxylate

Lin-Hai Jing,a* Da-Bin Qin,a Huan-Xia Zhang,aShao-Jin Gua and Zhi-Hua Maob

aDepartment of Chemistry, China West Normal

University, Nanchong 637002, People’s Republic of China, andbThe Centre for Testing

and Analysis, Sichuan University, Chengdu 610064, People’s Republic of China

Correspondence e-mail: jlhhxg@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.064

wRfactor = 0.172

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 6 May 2006 Accepted 9 May 2006

#2006 International Union of Crystallography

All rights reserved

In the title compound, C16H16O4, the two ester groups are not coplanar with the naphthyl ring system. The crystal packing is stabilized by C—H O hydrogen bonds.

Comment

Naphthalene-1,4-dicarboxylic acid derivatives are a class of intermediates important for applications as monomers in the preparation of polymers (Fukuzumiet al., 1994; Tsukadaet al., 1994). Previously, we have reported the crystal structures of dimethyl naphthalene-1,4-dicarboxylate (Jinget al., 2005) and diphenyl naphthalene-1,4-dicarboxylate (Jinget al., 2006). We now report the crystal structure of the title compound, (I).

The bond lengths and angles in (I) are normal (Table 1). The naphthalene ring system is slightly distorted from planarity, with dihedral angle of 5.9 (1)between the two rings.

[image:1.610.247.405.491.721.2]

As a result of steric effects, the groups at atoms C1 and C4 are

Figure 1

(2)

twisted away from the plane of the naphthalene ring system (Fig. 1). The O1/O2/C1/C11 and O3/O4/C4/C14 planes form dihedral angles of 33.8 (1) and 35.3 (1), respectively, with the

plane formed by atoms C1–C4/C9/C10. The crystal packing is stabilized by C—H O hydrogen bonds (Table 2).

Experimental

Naphthalene-1,4-dicarboxylic acid (2 mmol) and a excess of thionyl chloride in dioxane (20 ml) were boiled under reflux for 6 h. The solution was distilled at reduced pressure. An excess of ethanol was added to the resulting yellow solid and reacted under reflux for one day. After the solution had cooled to ambient temperature, some water was added, affording a colourless solid. The solution was filtered to remove the ethanol and water. The filter cake was dissolved in ethanol and left to stand for one month at ambient temperature, after which colourless single crystals suitable for X-ray diffraction were obtained.

Crystal data

C16H16O4

Mr= 272.29

Monoclinic,C2=c a= 24.731 (7) A˚

b= 7.2792 (16) A˚

c= 16.151 (4) A˚ = 95.277 (19)

V= 2895.2 (13) A˚3

Z= 8

Dx= 1.249 Mg m 3

MoKradiation = 0.09 mm 1

T= 298 (2) K Block, colourless 0.580.480.36 mm

Data collection

Siemens P4 diffractometer !scans

Absorption correction: none 2632 measured reflections 2569 independent reflections 1400 reflections withI> 2(I)

Rint= 0.058 max= 25.0

3 standard reflections every 97 reflections intensity decay: 3.3%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.064

wR(F2) = 0.173

S= 1.01 2569 reflections 184 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.091P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.49 e A˚ 3 min= 0.40 e A˚ 3

Extinction correction:SHELXL97

[image:2.610.313.565.93.146.2]

Extinction coefficient: 0.0144 (15)

Table 1

Selected geometric parameters (A˚ ,).

O1—C11 1.328 (3)

O1—C12 1.438 (3)

O2—C11 1.194 (3)

O3—C14 1.336 (3)

O3—C15 1.441 (4)

O4—C14 1.194 (3)

C11—O1—C12 115.9 (2) C14—O3—C15 116.3 (2)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C5—H5 O4 0.93 2.40 2.983 (3) 121

C8—H8 O2 0.93 2.37 2.982 (4) 123

H atoms were placed in calculated positions, with C—H = 0.93– 0.97 A˚ , and refined using a riding model, withUiso(H) = 1.2Ueq(C).

The methyl groups were allowed to rotate but not to tip.

Data collection: XSCANS (Siemens, 1996); cell refinement:

XSCANS; data reduction: XSCANS; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows(Farrugia,1997); software used to prepare material for publication:SHELXL97.

The authors thank the Centre for Testing and Analysis, Sichuan University, for financial support.

References

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Fukuzumi, T., Tajiri, T., Tsukada, H. & Yoshida, J. (1994). Jpn Patent JP 06 298 919.

Jing, L.-H., Qin, D.-B., Gu, S.-J., Zhang, H.-X. & Mao, Z.-H. (2006).Acta Cryst.

E62, o1717–o1718.

Jing, L.-H., Qin, D.-B., Mao, Z.-H., Gu, S.-J. & Zhang, H.-X. (2005).Acta Cryst.

E61, o4365–o4366.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Siemens (1996).XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o2300–o2301

supporting information

Acta Cryst. (2006). E62, o2300–o2301 [https://doi.org/10.1107/S1600536806017119]

Diethyl naphthalene-1,4-dicarboxylate

Lin-Hai Jing, Da-Bin Qin, Huan-Xia Zhang, Shao-Jin Gu and Zhi-Hua Mao

Diethyl naphthalene-1,4-dicarboxylate

Crystal data

C16H16O4

Mr = 272.29

Monoclinic, C2/c a = 24.731 (7) Å b = 7.2792 (16) Å c = 16.151 (4) Å β = 95.277 (19)° V = 2895.2 (13) Å3

Z = 8

F(000) = 1152 Dx = 1.249 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 33 reflections θ = 3.2–19.8°

µ = 0.09 mm−1

T = 298 K Block, colourless 0.58 × 0.48 × 0.36 mm

Data collection

Siemens P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

2632 measured reflections 2569 independent reflections 1400 reflections with I > 2σ(I)

Rint = 0.058

θmax = 25.0°, θmin = 1.7°

h = 0→29 k = 0→8 l = −19→19

3 standard reflections every 97 reflections intensity decay: 3.3%

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.064

wR(F2) = 0.173

S = 1.01 2569 reflections 184 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.091P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.49 e Å−3

Δρmin = −0.40 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0144 (15)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.38480 (7) 0.5421 (3) 0.43238 (12) 0.0780 (7)

O2 0.40796 (9) 0.4634 (4) 0.56335 (13) 0.0950 (8)

O3 0.11616 (8) 0.5334 (3) 0.44940 (12) 0.0782 (6)

O4 0.11771 (9) 0.4472 (4) 0.58165 (13) 0.0931 (8)

C1 0.31396 (10) 0.5112 (3) 0.51650 (15) 0.0507 (6)

C2 0.27985 (11) 0.4613 (3) 0.44841 (14) 0.0522 (7)

H2 0.2943 0.4279 0.3994 0.063*

C3 0.22389 (11) 0.4600 (3) 0.45176 (15) 0.0530 (7)

H3 0.2015 0.4245 0.4051 0.064*

C4 0.20122 (10) 0.5095 (3) 0.52211 (15) 0.0500 (6)

C5 0.21361 (11) 0.6430 (4) 0.66549 (15) 0.0590 (7)

H5 0.1762 0.6445 0.6684 0.071*

C6 0.24699 (13) 0.7109 (4) 0.72981 (15) 0.0669 (8)

H6 0.2321 0.7608 0.7757 0.080*

C7 0.30319 (13) 0.7067 (4) 0.72788 (16) 0.0699 (8)

H7 0.3256 0.7516 0.7727 0.084*

C8 0.32509 (11) 0.6376 (4) 0.66107 (15) 0.0619 (7)

H8 0.3627 0.6351 0.6607 0.074*

C9 0.29228 (10) 0.5686 (3) 0.59151 (14) 0.0504 (7)

C10 0.23506 (11) 0.5701 (3) 0.59411 (14) 0.0499 (6)

C11 0.37372 (12) 0.5038 (4) 0.50941 (18) 0.0644 (8)

C12 0.44059 (13) 0.5208 (6) 0.4157 (2) 0.1036 (12)

H12A 0.4523 0.3952 0.4264 0.124*

H12B 0.4636 0.6018 0.4513 0.124*

C13 0.44423 (17) 0.5673 (10) 0.3283 (2) 0.191 (3)

H13A 0.4275 0.4721 0.2937 0.229*

H13B 0.4817 0.5787 0.3180 0.229*

H13C 0.4259 0.6816 0.3158 0.229*

C14 0.14138 (12) 0.4937 (4) 0.52399 (18) 0.0639 (7)

C15 0.05814 (12) 0.5075 (6) 0.4401 (2) 0.0987 (12)

H15A 0.0408 0.5908 0.4764 0.118*

H15B 0.0492 0.3825 0.4546 0.118*

C16 0.03919 (17) 0.5448 (9) 0.3526 (2) 0.169 (2)

H16A 0.0497 0.6669 0.3382 0.203*

H16B 0.0004 0.5343 0.3450 0.203*

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o2300–o2301

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0544 (12) 0.1125 (17) 0.0681 (12) 0.0041 (11) 0.0116 (9) 0.0099 (12)

O2 0.0736 (15) 0.131 (2) 0.0766 (14) 0.0295 (14) −0.0111 (12) 0.0019 (14)

O3 0.0526 (12) 0.1032 (16) 0.0771 (13) −0.0095 (11) −0.0021 (10) 0.0150 (12)

O4 0.0838 (16) 0.1209 (19) 0.0777 (15) −0.0264 (14) 0.0244 (12) 0.0134 (13)

C1 0.0596 (16) 0.0428 (14) 0.0494 (14) 0.0042 (12) 0.0030 (12) 0.0059 (12)

C2 0.0630 (17) 0.0487 (15) 0.0451 (14) 0.0042 (12) 0.0064 (12) 0.0021 (12)

C3 0.0623 (17) 0.0492 (15) 0.0461 (14) −0.0028 (13) −0.0019 (12) 0.0018 (12)

C4 0.0577 (16) 0.0419 (14) 0.0506 (14) −0.0024 (12) 0.0065 (12) 0.0071 (12)

C5 0.0726 (18) 0.0537 (16) 0.0518 (15) 0.0042 (14) 0.0113 (13) 0.0079 (13)

C6 0.101 (2) 0.0582 (18) 0.0421 (16) 0.0020 (17) 0.0121 (16) 0.0007 (13)

C7 0.087 (2) 0.072 (2) 0.0490 (16) −0.0099 (17) −0.0032 (15) 0.0003 (14)

C8 0.0701 (18) 0.0631 (17) 0.0512 (15) −0.0057 (15) −0.0017 (13) 0.0042 (14)

C9 0.0645 (17) 0.0422 (14) 0.0434 (13) 0.0008 (12) −0.0006 (12) 0.0076 (11)

C10 0.0688 (17) 0.0380 (13) 0.0434 (14) 0.0015 (12) 0.0072 (12) 0.0089 (11)

C11 0.0616 (18) 0.0641 (18) 0.0661 (18) 0.0080 (15) −0.0015 (15) −0.0016 (15)

C12 0.0546 (19) 0.148 (3) 0.110 (3) 0.004 (2) 0.0165 (18) −0.011 (3)

C13 0.083 (3) 0.383 (10) 0.114 (3) −0.015 (4) 0.048 (3) 0.013 (5)

C14 0.0678 (18) 0.0582 (18) 0.0659 (17) −0.0097 (15) 0.0083 (15) 0.0031 (15)

C15 0.0546 (19) 0.116 (3) 0.125 (3) −0.0091 (19) 0.0020 (19) 0.002 (2)

C16 0.088 (3) 0.266 (7) 0.143 (4) −0.047 (4) −0.043 (3) 0.034 (4)

Geometric parameters (Å, º)

O1—C11 1.328 (3) C6—H6 0.9300

O1—C12 1.438 (3) C7—C8 1.348 (4)

O2—C11 1.194 (3) C7—H7 0.9300

O3—C14 1.336 (3) C8—C9 1.416 (3)

O3—C15 1.441 (4) C8—H8 0.9300

O4—C14 1.194 (3) C9—C10 1.420 (3)

C1—C2 1.372 (3) C12—C13 1.463 (3)

C1—C9 1.432 (3) C12—H12A 0.9700

C1—C11 1.494 (4) C12—H12B 0.9700

C2—C3 1.390 (3) C13—H13A 0.9600

C2—H2 0.9300 C13—H13B 0.9600

C3—C4 1.361 (3) C13—H13C 0.9600

C3—H3 0.9300 C15—C16 1.473 (3)

C4—C10 1.438 (3) C15—H15A 0.9700

C4—C14 1.487 (4) C15—H15B 0.9700

C5—C6 1.359 (4) C16—H16A 0.9600

C5—C10 1.416 (3) C16—H16B 0.9600

C5—H5 0.9300 C16—H16C 0.9600

C6—C7 1.393 (4)

C11—O1—C12 115.9 (2) C9—C10—C4 118.8 (2)

(6)

C2—C1—C9 120.3 (2) O2—C11—C1 126.4 (3)

C2—C1—C11 117.9 (2) O1—C11—C1 110.8 (2)

C9—C1—C11 121.7 (2) O1—C12—C13 107.5 (3)

C1—C2—C3 120.8 (2) O1—C12—H12A 110.2

C1—C2—H2 119.6 C13—C12—H12A 110.2

C3—C2—H2 119.6 O1—C12—H12B 110.2

C4—C3—C2 121.2 (2) C13—C12—H12B 110.2

C4—C3—H3 119.4 H12A—C12—H12B 108.5

C2—C3—H3 119.4 C12—C13—H13A 109.5

C3—C4—C10 120.2 (2) C12—C13—H13B 109.5

C3—C4—C14 118.9 (2) H13A—C13—H13B 109.5

C10—C4—C14 120.9 (2) C12—C13—H13C 109.5

C6—C5—C10 120.8 (3) H13A—C13—H13C 109.5

C6—C5—H5 119.6 H13B—C13—H13C 109.5

C10—C5—H5 119.6 O4—C14—O3 122.9 (3)

C5—C6—C7 120.8 (3) O4—C14—C4 126.7 (3)

C5—C6—H6 119.6 O3—C14—C4 110.3 (2)

C7—C6—H6 119.6 O3—C15—C16 107.6 (3)

C8—C7—C6 120.1 (3) O3—C15—H15A 110.2

C8—C7—H7 120.0 C16—C15—H15A 110.2

C6—C7—H7 120.0 O3—C15—H15B 110.2

C7—C8—C9 121.6 (3) C16—C15—H15B 110.2

C7—C8—H8 119.2 H15A—C15—H15B 108.5

C9—C8—H8 119.2 C15—C16—H16A 109.5

C8—C9—C10 118.3 (2) C15—C16—H16B 109.5

C8—C9—C1 122.9 (2) H16A—C16—H16B 109.5

C10—C9—C1 118.6 (2) C15—C16—H16C 109.5

C5—C10—C9 118.4 (2) H16A—C16—H16C 109.5

C5—C10—C4 122.7 (2) H16B—C16—H16C 109.5

C9—C1—C2—C3 −2.0 (4) C1—C9—C10—C4 1.5 (3)

C11—C1—C2—C3 178.1 (2) C3—C4—C10—C5 172.6 (2)

C1—C2—C3—C4 0.6 (4) C14—C4—C10—C5 −9.5 (4)

C2—C3—C4—C10 1.9 (4) C3—C4—C10—C9 −2.9 (3)

C2—C3—C4—C14 −176.0 (2) C14—C4—C10—C9 174.9 (2)

C10—C5—C6—C7 −1.4 (4) C12—O1—C11—O2 3.8 (5)

C5—C6—C7—C8 1.1 (4) C12—O1—C11—C1 −173.9 (3)

C6—C7—C8—C9 0.2 (4) C2—C1—C11—O2 −145.2 (3)

C7—C8—C9—C10 −1.3 (4) C9—C1—C11—O2 34.9 (4)

C7—C8—C9—C1 173.7 (2) C2—C1—C11—O1 32.4 (3)

C2—C1—C9—C8 −174.1 (2) C9—C1—C11—O1 −147.5 (2)

C11—C1—C9—C8 5.9 (4) C11—O1—C12—C13 179.5 (4)

C2—C1—C9—C10 0.9 (3) C15—O3—C14—O4 −3.3 (4)

C11—C1—C9—C10 −179.2 (2) C15—O3—C14—C4 174.6 (3)

C6—C5—C10—C9 0.3 (4) C3—C4—C14—O4 142.4 (3)

C6—C5—C10—C4 −175.2 (2) C10—C4—C14—O4 −35.5 (4)

C8—C9—C10—C5 1.0 (3) C3—C4—C14—O3 −35.4 (3)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o2300–o2301

C8—C9—C10—C4 176.7 (2) C14—O3—C15—C16 −175.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C5—H5···O4 0.93 2.40 2.983 (3) 121

Figure

Figure 1The structure of (I), showing 30% probability displacement ellipsoids andthe atomic numbering.
Table 1

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical