• No results found

Aqua{2 [(E) (3,5 di­bromo 2 oxido­phenyl)­methyl­ene­amino]­ethane­sulfonato κ3O,N,O′}(1,10 phenanthroline κ2N,N′)­nickel(II) ethanol solvate

N/A
N/A
Protected

Academic year: 2020

Share "Aqua{2 [(E) (3,5 di­bromo 2 oxido­phenyl)­methyl­ene­amino]­ethane­sulfonato κ3O,N,O′}(1,10 phenanthroline κ2N,N′)­nickel(II) ethanol solvate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m446

Zhanget al. [Ni(C

9H9Br2NO4S)(C8H8N2)(H2O)]C2H6O doi:10.1107/S1600536805003119 Acta Cryst.(2005). E61, m446–m448 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Aqua{2-[(

E

)-(3,5-dibromo-2-oxidophenyl)-methyleneamino]ethanesulfonato-

j

3

O

,

N

,

O

000

}-(1,10-phenanthroline-

j

2

N

,

N

000

)nickel(II)

ethanol solvate

Shu-Hua Zhang,a* Yi-Min Jiang,b Zheng Liuaand Kai-Bei Yuc

a

Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry for Education, Guilin University of Technology, Guilin, Guangxi 541004, People’s Republic of China,bCollege of Chemistry and Chemical

Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People’s Republic of China, andcAnalysis and Test Centre, Chinese

Academy of Sciences, Chengdu, Sichuan 610041, People’s Republic of China

Correspondence e-mail: zsh720108@21cn.com

Key indicators

Single-crystal X-ray study

T= 296 K

Mean(C–C) = 0.009 A˚

Rfactor = 0.044

wRfactor = 0.093

Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, [Ni(C9H9Br2NO4S)(C8H8N2)(H2O)] -C2H5OH, was synthesized in a water–ethanol solution. In the structure, the Ni atom is six-coordinated by three ligands to form the neutral complex, in which the Ni atom has a distorted octahedral coordination geometry. Molecules form dimers through O—H O hydrogen bonds.

Comment

Sulfur- and amino-acid-containing Schiff base complexes have been studied for many years (Casella & Gullotti, 1981, 1986; Wanget al., 1994; Jianget al., 2003; Zhanget al., 2003) and have aroused increasing interest because of their antiviral, anti-cancer and antibacterial activities. Taurine, an amino acid containing sulfur, is indispensable to humans and has impor-tant physiological functions. Recently, Schiff base complexes derived from taurine have been reported (Zhanget al., 2003, 2004; Jiang et al., 2004; Xu et al., 2004). We report here the synthesis and crystal structure of a new nickel(II) complex, (I), prepared by the reaction of Ni(OAc)24H2O, and the sodium salt of the Schiff base ligand 2-[(E

)-(3,5-dibromo-2-hydroxy-phenyl)methyleneamino]ethanesulfonic acid, which was

derived in turn by the reaction of taurine with 3,5-dibromo-salicylaldehyde and 1,10-phenanthroline (phen).

The title complex is isostructural with [Zn(C9H9Br2NO4 S)-(C8H8N2)(H2O)]C2H5OH, for which we have already deter-mined the structure (Zhanget al., 2005). As shown in Fig. 1, the molecule of (I) is mononuclear. The Ni atom is coordi-nated by one N and two O atoms of the tridentate ligand (L), two N atoms of the bidentate ligand (phen) and one O atom of the coordinated water, forming a slightly distorted octahedral geometry, with atoms O1 and O2 ofLin axial positions. The sum of the equatorial coordination angles (see Table 1) is close

(2)

to 360 (359.58), and the bond angles involving the Ni atom are similar to values observed in nickel complexes of a salicylaldehyde Schiff base and are in good agreement with those in other taurine-containing complexes. The Ni1—O1 bond length is shorter than Ni1—N1, indicating that the hydroxyl O atom has a stronger coordination ability than the imine N atom, while sulfonate atom O2 has stronger coordi-nation ability than water atom O5, indicating that the coord-ination ability of the sulfonate has been reinforced by chemical modification (Caiet al., 2001).

Molecules related by twofold axes form dimers through O— H O hydrogen bonding (see Table 2 and Fig. 2). These dimers are, in turn, linked by weaker C—H O interactions (which are not discussed in detail here) into a three-dimen-sional network.

Experimental

The sodium salt of the Schiff base ligand 2-[(E )-(3,5-dibromo-2-hydroxyphenyl)methyleneamino]ethanesulfonic acid was synthesized as reported previously (Xuet al., 2004). The ligand (2.0 mmol) was dissolved in aqueous ethanol (25 ml). To this solution, Ni(OAc)24H2O (2.0 mmol) was added and the mixture was stirred under reflux at 333 K for 6 h. Phen (2.0 mmol) was added and the reaction continued for a further 2 h. After cooling to room temperature and filtration, the filtrate was left to stand at room temperature. Blue crystals suitable for X-ray diffraction were obtained in a yield of 61.5%. Analysis found (%): C 40.18, H 3.34, N 6.07, S 4.63, Ni 8.29; C23H23Br2NiN3O6S requires (%): C 40.15, H 3.37, N 6.10, S 4.66, Ni 8.27; IR (KBr, vcm1): 1033.1, 1038.4, 1149.5, 1185.4 (—SO3), 1624.5 (vC N), 1604.5, 1521.6 (vC N + C C), 3419.2 (vO—H).

Crystal data

[Ni(C9H9Br2NO4S)(C8H8N2

)-(H2O)]C2H6O

Mr= 688.03 Monoclinic,C2=c a= 18.725 (4) A˚ b= 19.623 (4) A˚ c= 15.647 (3) A˚

= 113.82 (1)

V= 5259.6 (19) A˚3

Z= 8

Dx= 1.738 Mg m3 MoKradiation Cell parameters from 33

reflections

= 2.8–14.1

= 3.90 mm1 T= 296 (2) K Block, blue

0.540.380.36 mm

Data collection

SiemensP4 diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.165,Tmax= 0.246

5341 measured reflections 4776 independent reflections 2204 reflections withI> 2(I)

Rint= 0.032

max= 25.3

h= 0!22 k= 0!23 l=18!17 3 standard reflections

every 97 reflections intensity decay: 1.1%

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.093 S= 0.80 4776 reflections 340 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0406P)2] whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.49 e A˚3 min=0.62 e A˚3

Extinction correction:SHELXL97 Extinction coefficient: 0.00032 (4)

Table 1

Selected geometric parameters (A˚ ,).

Ni—O1 2.007 (3) Ni—N1 2.058 (4) Ni—O5 2.070 (4) Ni—O2 2.096 (3) Ni—N3 2.104 (4) Ni—N2 2.109 (4) S—O4 1.438 (4) S—O3 1.447 (4)

S—O2 1.473 (3) N1—C7 1.271 (6) N1—C8 1.465 (6) N2—C10 1.319 (6) N2—C21 1.366 (6) N3—C19 1.327 (6) N3—C20 1.356 (6)

O1—Ni—N1 90.79 (16) O1—Ni—O5 90.08 (16) N1—Ni—O5 94.54 (17) O1—Ni—O2 175.06 (14) N1—Ni—O2 92.40 (15) O5—Ni—O2 85.90 (16) O1—Ni—N3 93.85 (15) N1—Ni—N3 172.77 (18)

O5—Ni—N3 90.99 (18) O2—Ni—N3 83.35 (14) O1—Ni—N2 95.51 (15) N1—Ni—N2 94.85 (17) O5—Ni—N2 168.99 (17) O2—Ni—N2 87.98 (14) N3—Ni—N2 79.20 (18)

metal-organic papers

Acta Cryst.(2005). E61, m446–m448 Zhanget al. [Ni(C

[image:2.610.314.565.68.272.2] [image:2.610.313.564.321.501.2]

9H9Br2NO4S)(C8H8N2)(H2O)]C2H6O

m447

Figure 1

View of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Figure 2

(3)
[image:3.610.45.295.110.161.2]

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O5—H5A O6 0.82 (7) 1.99 (6) 2.759 (7) 156 (6) O5—H5B O1i

0.81 (4) 1.98 (4) 2.767 (5) 162 (5) O6—H6O O3 0.82 (7) 2.05 (6) 2.828 (7) 157 (6)

Symmetry code: (i) 1x;y;3 2z.

The H atoms on O5 and O6 were located in a difference Fourier map and their positions and isotropic displacement parameters were refined, with the O—H distances constrained in the range 0.816– 0.820 A˚ . All other H atoms were positioned geometrically and were treated as riding atoms and refined isotropically, with C—H distances of 0.93–0.97 A˚ andUiso(H) = 1.2Ueq(C).

Data collection: XSCANS (Siemens, 1994); cell refinement:

XSCANS; data reduction:SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:SHELXTL; software used to prepare material for publi-cation:SHELXTL.

This work was supported by the Natural Science Found-ation of the Guangxi Chuang Autonomous Region of the

People’s Republic of China (grant No. 0339034), the Science Research Foundation of Guangxi Universities and the Minister of Education Foundation of the Guangxi Chuang Autonomous Region of the People’s Republic of China (grant No. [2004]20).

References

Cai, J. W., Chen, C. H., Yao, J. H., Hu, X.-P. & Chen, X. M. (2001).J. Chem. Soc. Dalton Trans.pp. 1137–1142.

Casella, L. & Gullotti, M. (1981).J. Am. Chem. Soc.103, 6338–6347. Casella, L. & Gullotti, M. (1986).Inorg. Chem.25, 1293–1303.

Jiang, Y. M., Zeng, J. L. & Yu, K. B. (2004).Acta Cryst.C60, m543–m545. Jiang, Y. M., Zhang, S. H., Xu, Q. & Xiao, Y. (2003).Acta Chim. Sin.61, 573–

577.

Siemens (1994).XSCANS(Version 2.10b) andSHELXTL (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Sheldrick, G. M. (1990).Acta Cryst.A46, 467–473.

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994).Synth. React. Inorg. Met. Org. Chem.24, 1453–1460.

Xu, H. F., Zhang, S. H., Jiang, Y. M., Zhong, X. X. & Gao, F. (2004).Chin. J. Struct. Chem.23, 708–711.

Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003).Chin. J. Inorg. Chem. 19, 517–520.

Zhang, S.-H., Jiang, Y.-M. & Yu, K.-B. (2005).Acta Cryst.E61, m209–m211. Zhang, S. H., Jiang, Y. M. & Zhou, Z. Y. (2004).Chin. J. Chem.22, 1303–1307.

metal-organic papers

m448

Zhanget al. [Ni(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m446–m448

supporting information

Acta Cryst. (2005). E61, m446–m448 [https://doi.org/10.1107/S1600536805003119]

Aqua{2-[(

E

)-(3,5-dibromo-2-oxidophenyl)methyleneamino]ethanesulfonato-κ

3

O

,

N

,

O

}(1,10-phenanthroline-

κ

2

N

,

N

)nickel(II) ethanol solvate

Shu-Hua Zhang, Yi-Min Jiang, Zheng Liu and Kai-Bei Yu

Aqua{2-[(E)-(3,5-dibromo-2-oxidophenyl)methyleneamino]ethanesulfonato- κ3O,N,O

}(1,10-phenanthroline-κ2N,N)nickel(II) ethanol solvate

Crystal data

[Ni(C9H9Br2NO4S)(C8H8N2)(H2O)]·C2H6O

Mr = 688.03 Monoclinic, C2/c

Hall symbol: -C 2yc

a = 18.725 (4) Å

b = 19.623 (4) Å

c = 15.647 (3) Å

β = 113.82 (1)°

V = 5259.6 (19) Å3

Z = 8

F(000) = 2752

Dx = 1.738 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 33 reflections

θ = 2.8–14.1°

µ = 3.90 mm−1

T = 296 K Plate, blue

0.54 × 0.38 × 0.36 mm

Data collection

Siemens P4 diffractometer

Radiation source: normal-focus sealed tube Graphite monochromator

ω scans

Absorption correction: empirical (using intensity measurements)

(SADABS; Sheldrick, 1996)

Tmin = 0.165, Tmax = 0.246 5341 measured reflections

4776 independent reflections 2204 reflections with I > 2σ(I)

Rint = 0.032

θmax = 25.3°, θmin = 1.6°

h = 0→22

k = 0→23

l = −18→17

3 standard reflections every 97 reflections intensity decay: 1.1%

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.093

S = 0.80 4776 reflections 340 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0406P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.49 e Å−3 Δρmin = −0.62 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m446–m448

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Ni 0.51779 (4) 0.78170 (3) 0.59556 (5) 0.0298 (2)

Br1 0.27201 (4) 0.71274 (4) 0.61609 (5) 0.0740 (3)

Br2 0.35565 (6) 0.43891 (4) 0.61097 (7) 0.1218 (4)

S 0.67045 (8) 0.81258 (7) 0.54816 (11) 0.0363 (4)

O1 0.4361 (2) 0.73777 (18) 0.6297 (2) 0.0411 (10)

O2 0.60327 (19) 0.83451 (17) 0.5676 (2) 0.0378 (10)

O3 0.7432 (2) 0.82907 (19) 0.6256 (3) 0.0518 (11)

O4 0.6652 (2) 0.8363 (2) 0.4589 (3) 0.0545 (12)

O5 0.5732 (2) 0.8187 (2) 0.7304 (3) 0.0365 (10)

N1 0.5807 (2) 0.6924 (2) 0.6227 (3) 0.0350 (11)

N2 0.4596 (2) 0.7638 (2) 0.4508 (3) 0.0342 (12)

N3 0.4549 (2) 0.8732 (2) 0.5517 (3) 0.0338 (11)

C1 0.4212 (3) 0.6728 (3) 0.6256 (4) 0.0421 (16)

C2 0.3495 (3) 0.6478 (3) 0.6217 (4) 0.0490 (18)

C3 0.3316 (4) 0.5805 (4) 0.6183 (4) 0.070 (2)

H3 0.2830 0.5673 0.6155 0.084*

C4 0.3844 (5) 0.5314 (4) 0.6188 (5) 0.074 (2)

C5 0.4559 (4) 0.5514 (3) 0.6251 (4) 0.0589 (19)

H5 0.4925 0.5187 0.6270 0.071*

C6 0.4753 (3) 0.6209 (3) 0.6288 (4) 0.0418 (16)

C7 0.5525 (3) 0.6356 (3) 0.6328 (4) 0.0400 (15)

H7 0.5859 0.5984 0.6443 0.048*

C8 0.6607 (3) 0.6916 (3) 0.6281 (4) 0.0502 (17)

H8A 0.6792 0.6449 0.6348 0.060*

H8B 0.6943 0.7166 0.6832 0.060*

C9 0.6667 (3) 0.7227 (3) 0.5429 (4) 0.0428 (15)

H9A 0.6220 0.7087 0.4875 0.051*

H9B 0.7134 0.7057 0.5374 0.051*

C10 0.4571 (3) 0.7091 (3) 0.4008 (4) 0.0462 (16)

H10 0.4770 0.6685 0.4320 0.055*

C11 0.4262 (3) 0.7091 (4) 0.3040 (4) 0.0583 (19)

H11 0.4260 0.6690 0.2723 0.070*

C12 0.3967 (4) 0.7661 (4) 0.2557 (5) 0.060 (2)

H12 0.3766 0.7664 0.1908 0.072*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m446–m448

C14 0.3659 (4) 0.8891 (4) 0.2620 (5) 0.067 (2)

H14 0.3461 0.8923 0.1972 0.080*

C15 0.3648 (4) 0.9451 (4) 0.3127 (5) 0.068 (2)

H15 0.3457 0.9863 0.2828 0.081*

C16 0.3931 (3) 0.9404 (3) 0.4123 (4) 0.0442 (16)

C17 0.3912 (3) 0.9958 (3) 0.4690 (5) 0.058 (2)

H17 0.3709 1.0376 0.4422 0.070*

C18 0.4192 (3) 0.9873 (3) 0.5624 (5) 0.0551 (18)

H18 0.4169 1.0232 0.5999 0.066*

C19 0.4513 (3) 0.9257 (3) 0.6032 (4) 0.0488 (17)

H19 0.4708 0.9212 0.6678 0.059*

C20 0.4259 (3) 0.8802 (3) 0.4575 (4) 0.0323 (14)

C21 0.4269 (3) 0.8219 (3) 0.4027 (4) 0.0344 (14)

O6 0.7096 (3) 0.8902 (3) 0.7688 (3) 0.0650 (13)

C22 0.7713 (4) 0.8984 (4) 0.8566 (5) 0.080 (2)

H22A 0.8012 0.8565 0.8736 0.096*

H22B 0.7501 0.9069 0.9028 0.096*

C23 0.8234 (4) 0.9543 (4) 0.8587 (6) 0.121 (3)

H23A 0.8329 0.9534 0.8028 0.145*

H23B 0.8719 0.9495 0.9121 0.145*

H23C 0.7996 0.9969 0.8624 0.145*

H5A 0.607 (3) 0.848 (3) 0.748 (5) 0.12 (3)*

H5B 0.574 (3) 0.7883 (17) 0.766 (3) 0.032 (18)*

H6O 0.729 (4) 0.867 (3) 0.740 (4) 0.09 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni 0.0233 (4) 0.0278 (4) 0.0377 (4) −0.0029 (3) 0.0119 (3) −0.0007 (4)

Br1 0.0341 (4) 0.1113 (7) 0.0764 (5) −0.0145 (4) 0.0221 (4) 0.0032 (5)

Br2 0.1617 (10) 0.0646 (6) 0.1296 (8) −0.0721 (6) 0.0491 (7) −0.0051 (6)

S 0.0293 (8) 0.0399 (9) 0.0426 (10) −0.0052 (7) 0.0176 (8) −0.0051 (8)

O1 0.032 (2) 0.042 (3) 0.055 (3) −0.0122 (19) 0.024 (2) −0.007 (2)

O2 0.038 (2) 0.031 (2) 0.054 (3) −0.0071 (18) 0.028 (2) −0.0058 (19)

O3 0.029 (2) 0.050 (3) 0.065 (3) −0.009 (2) 0.006 (2) −0.009 (2)

O4 0.058 (3) 0.068 (3) 0.044 (3) 0.004 (2) 0.027 (2) 0.005 (2)

O5 0.035 (2) 0.037 (3) 0.036 (3) −0.009 (2) 0.013 (2) −0.002 (2)

N1 0.027 (3) 0.026 (3) 0.052 (3) −0.003 (2) 0.016 (2) −0.004 (2)

N2 0.026 (3) 0.033 (3) 0.045 (3) −0.009 (2) 0.015 (2) −0.011 (3)

N3 0.021 (3) 0.031 (3) 0.047 (3) −0.004 (2) 0.012 (2) −0.003 (3)

C1 0.033 (4) 0.057 (4) 0.033 (4) −0.022 (3) 0.010 (3) −0.007 (3)

C2 0.038 (4) 0.074 (5) 0.036 (4) −0.026 (4) 0.015 (3) −0.009 (4)

C3 0.065 (5) 0.088 (6) 0.055 (5) −0.063 (5) 0.022 (4) −0.021 (5)

C4 0.099 (7) 0.051 (5) 0.076 (6) −0.041 (5) 0.040 (5) −0.002 (4)

C5 0.069 (5) 0.045 (4) 0.057 (5) −0.015 (4) 0.020 (4) 0.007 (4)

C6 0.044 (4) 0.037 (4) 0.047 (4) −0.017 (3) 0.021 (3) −0.006 (3)

C7 0.047 (4) 0.027 (3) 0.044 (4) 0.004 (3) 0.015 (3) −0.006 (3)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m446–m448

C9 0.038 (3) 0.035 (3) 0.064 (4) −0.003 (3) 0.031 (3) −0.015 (4)

C10 0.043 (4) 0.040 (4) 0.054 (4) −0.006 (3) 0.019 (3) 0.000 (4)

C11 0.056 (4) 0.070 (5) 0.044 (4) −0.011 (4) 0.016 (4) −0.021 (4)

C12 0.047 (4) 0.078 (6) 0.052 (5) −0.011 (4) 0.015 (4) 0.000 (4)

C13 0.022 (3) 0.058 (5) 0.047 (5) 0.001 (3) 0.002 (3) 0.012 (4)

C14 0.050 (5) 0.093 (6) 0.042 (5) −0.005 (5) 0.003 (4) 0.013 (5)

C15 0.045 (4) 0.064 (5) 0.076 (6) 0.020 (4) 0.006 (4) 0.037 (5)

C16 0.039 (4) 0.050 (4) 0.042 (4) 0.006 (3) 0.014 (3) 0.006 (4)

C17 0.037 (4) 0.044 (4) 0.087 (6) 0.017 (3) 0.017 (4) 0.025 (4)

C18 0.057 (4) 0.034 (4) 0.074 (5) 0.010 (3) 0.026 (4) −0.009 (4)

C19 0.052 (4) 0.039 (4) 0.055 (4) 0.004 (3) 0.020 (4) −0.008 (4)

C20 0.013 (3) 0.042 (4) 0.037 (4) 0.000 (3) 0.004 (3) −0.004 (3)

C21 0.011 (3) 0.049 (4) 0.037 (4) −0.005 (3) 0.003 (3) 0.008 (3)

O6 0.054 (3) 0.080 (4) 0.056 (3) −0.021 (3) 0.017 (3) −0.015 (3)

C22 0.057 (5) 0.090 (6) 0.074 (6) −0.016 (5) 0.008 (5) −0.009 (5)

C23 0.079 (6) 0.132 (8) 0.106 (7) −0.030 (6) −0.009 (6) −0.021 (6)

Geometric parameters (Å, º)

Ni—O1 2.007 (3) C8—H8A 0.9700

Ni—N1 2.058 (4) C8—H8B 0.9700

Ni—O5 2.070 (4) C9—H9A 0.9700

Ni—O2 2.096 (3) C9—H9B 0.9700

Ni—N3 2.104 (4) C10—C11 1.385 (7)

Ni—N2 2.109 (4) C10—H10 0.9300

Br1—C2 1.907 (6) C11—C12 1.339 (8)

Br2—C4 1.884 (7) C11—H11 0.9300

S—O4 1.438 (4) C12—C13 1.401 (8)

S—O3 1.447 (4) C12—H12 0.9300

S—O2 1.473 (3) C13—C21 1.388 (7)

S—C9 1.765 (5) C13—C14 1.433 (8)

O1—C1 1.301 (6) C14—C15 1.361 (8)

O5—H5A 0.82 (7) C14—H14 0.9300

O5—H5B 0.81 (4) C15—C16 1.431 (8)

N1—C7 1.271 (6) C15—H15 0.9300

N1—C8 1.465 (6) C16—C20 1.386 (7)

N2—C10 1.319 (6) C16—C17 1.412 (8)

N2—C21 1.366 (6) C17—C18 1.349 (8)

N3—C19 1.327 (6) C17—H17 0.9300

N3—C20 1.356 (6) C18—C19 1.385 (8)

C1—C2 1.407 (7) C18—H18 0.9300

C1—C6 1.424 (8) C19—H19 0.9300

C2—C3 1.358 (8) C20—C21 1.435 (7)

C3—C4 1.377 (9) O6—C22 1.403 (7)

C3—H3 0.9300 O6—H6O 0.82 (7)

C4—C5 1.361 (9) C22—C23 1.459 (9)

C5—C6 1.405 (7) C22—H22A 0.9700

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m446–m448

C6—C7 1.452 (7) C23—H23A 0.9600

C7—H7 0.9300 C23—H23B 0.9600

C8—C9 1.512 (7) C23—H23C 0.9600

O1—Ni—N1 90.79 (16) N1—C8—H8B 109.1

O1—Ni—O5 90.08 (16) C9—C8—H8B 109.1

N1—Ni—O5 94.54 (17) H8A—C8—H8B 107.8

O1—Ni—O2 175.06 (14) C8—C9—S 112.2 (4)

N1—Ni—O2 92.40 (15) C8—C9—H9A 109.2

O5—Ni—O2 85.90 (16) S—C9—H9A 109.2

O1—Ni—N3 93.85 (15) C8—C9—H9B 109.2

N1—Ni—N3 172.77 (18) S—C9—H9B 109.2

O5—Ni—N3 90.99 (18) H9A—C9—H9B 107.9

O2—Ni—N3 83.35 (14) N2—C10—C11 123.2 (6)

O1—Ni—N2 95.51 (15) N2—C10—H10 118.4

N1—Ni—N2 94.85 (17) C11—C10—H10 118.4

O5—Ni—N2 168.99 (17) C12—C11—C10 120.8 (7)

O2—Ni—N2 87.98 (14) C12—C11—H11 119.6

N3—Ni—N2 79.20 (18) C10—C11—H11 119.6

O4—S—O3 114.4 (2) C11—C12—C13 118.0 (6)

O4—S—O2 112.2 (2) C11—C12—H12 121.0

O3—S—O2 110.8 (2) C13—C12—H12 121.0

O4—S—C9 107.0 (3) C21—C13—C12 118.7 (6)

O3—S—C9 105.6 (2) C21—C13—C14 118.2 (6)

O2—S—C9 106.3 (2) C12—C13—C14 123.1 (6)

C1—O1—Ni 125.4 (4) C15—C14—C13 121.6 (6)

S—O2—Ni 133.4 (2) C15—C14—H14 119.2

Ni—O5—H5A 126 (5) C13—C14—H14 119.2

Ni—O5—H5B 108 (3) C14—C15—C16 119.8 (6)

H5A—O5—H5B 119 (6) C14—C15—H15 120.1

C7—N1—C8 116.7 (5) C16—C15—H15 120.1

C7—N1—Ni 122.7 (4) C20—C16—C17 117.0 (6)

C8—N1—Ni 120.5 (3) C20—C16—C15 120.2 (6)

C10—N2—C21 116.8 (5) C17—C16—C15 122.8 (6)

C10—N2—Ni 130.7 (4) C18—C17—C16 119.2 (6)

C21—N2—Ni 112.1 (4) C18—C17—H17 120.4

C19—N3—C20 119.0 (5) C16—C17—H17 120.4

C19—N3—Ni 128.6 (4) C17—C18—C19 120.9 (6)

C20—N3—Ni 111.6 (4) C17—C18—H18 119.5

O1—C1—C2 121.8 (6) C19—C18—H18 119.5

O1—C1—C6 124.3 (5) N3—C19—C18 121.1 (6)

C2—C1—C6 113.8 (6) N3—C19—H19 119.4

C3—C2—C1 123.9 (7) C18—C19—H19 119.4

C3—C2—Br1 118.5 (5) N3—C20—C16 122.8 (5)

C1—C2—Br1 117.6 (5) N3—C20—C21 118.2 (5)

C2—C3—C4 120.9 (6) C16—C20—C21 119.0 (5)

C2—C3—H3 119.5 N2—C21—C13 122.4 (6)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m446–m448

C5—C4—C3 118.9 (6) C13—C21—C20 121.1 (6)

C5—C4—Br2 122.0 (7) C22—O6—H6O 104 (5)

C3—C4—Br2 119.2 (6) O6—C22—C23 112.8 (6)

C4—C5—C6 120.8 (7) O6—C22—H22A 109.0

C4—C5—H5 119.6 C23—C22—H22A 109.0

C6—C5—H5 119.6 O6—C22—H22B 109.0

C5—C6—C1 121.7 (6) C23—C22—H22B 109.0

C5—C6—C7 115.5 (6) H22A—C22—H22B 107.8

C1—C6—C7 122.8 (5) C22—C23—H23A 109.5

N1—C7—C6 128.7 (5) C22—C23—H23B 109.5

N1—C7—H7 115.6 H23A—C23—H23B 109.5

C6—C7—H7 115.6 C22—C23—H23C 109.5

N1—C8—C9 112.5 (5) H23A—C23—H23C 109.5

N1—C8—H8A 109.1 H23B—C23—H23C 109.5

C9—C8—H8A 109.1

N1—Ni—O1—C1 −25.1 (4) O1—C1—C6—C5 179.3 (6)

O5—Ni—O1—C1 −119.6 (4) C2—C1—C6—C5 1.9 (8)

N3—Ni—O1—C1 149.4 (4) O1—C1—C6—C7 −2.8 (9)

N2—Ni—O1—C1 69.9 (4) C2—C1—C6—C7 179.8 (5)

O4—S—O2—Ni 120.9 (3) C8—N1—C7—C6 −178.5 (5)

O3—S—O2—Ni −109.9 (3) Ni—N1—C7—C6 −0.6 (8)

C9—S—O2—Ni 4.3 (4) C5—C6—C7—N1 168.5 (6)

N1—Ni—O2—S 15.3 (3) C1—C6—C7—N1 −9.5 (10)

O5—Ni—O2—S 109.7 (3) C7—N1—C8—C9 125.1 (5)

N3—Ni—O2—S −158.9 (3) Ni—N1—C8—C9 −52.9 (6)

N2—Ni—O2—S −79.5 (3) N1—C8—C9—S 81.1 (5)

O1—Ni—N1—C7 13.7 (5) O4—S—C9—C8 −172.2 (4)

O5—Ni—N1—C7 103.9 (5) O3—S—C9—C8 65.5 (4)

O2—Ni—N1—C7 −170.0 (4) O2—S—C9—C8 −52.2 (4)

N2—Ni—N1—C7 −81.9 (5) C21—N2—C10—C11 2.7 (8)

O1—Ni—N1—C8 −168.4 (4) Ni—N2—C10—C11 −169.2 (4)

O5—Ni—N1—C8 −78.2 (4) N2—C10—C11—C12 −0.1 (9)

O2—Ni—N1—C8 7.8 (4) C10—C11—C12—C13 −0.9 (10)

N2—Ni—N1—C8 96.0 (4) C11—C12—C13—C21 −0.6 (9)

O1—Ni—N2—C10 −82.2 (5) C11—C12—C13—C14 −179.1 (6)

N1—Ni—N2—C10 9.1 (5) C21—C13—C14—C15 −0.6 (9)

O5—Ni—N2—C10 157.6 (7) C12—C13—C14—C15 177.9 (6)

O2—Ni—N2—C10 101.3 (5) C13—C14—C15—C16 −1.8 (10)

N3—Ni—N2—C10 −175.0 (5) C14—C15—C16—C20 4.0 (9)

O1—Ni—N2—C21 105.6 (3) C14—C15—C16—C17 −177.8 (6)

N1—Ni—N2—C21 −163.1 (3) C20—C16—C17—C18 −1.5 (9)

O5—Ni—N2—C21 −14.6 (10) C15—C16—C17—C18 −179.8 (6)

O2—Ni—N2—C21 −70.9 (3) C16—C17—C18—C19 1.6 (9)

N3—Ni—N2—C21 12.8 (3) C20—N3—C19—C18 −0.4 (8)

O1—Ni—N3—C19 82.6 (5) Ni—N3—C19—C18 167.6 (4)

O5—Ni—N3—C19 −7.5 (5) C17—C18—C19—N3 −0.6 (9)

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m446–m448

N2—Ni—N3—C19 177.5 (5) Ni—N3—C20—C16 −169.6 (4)

O1—Ni—N3—C20 −108.6 (3) C19—N3—C20—C21 −177.1 (5)

O5—Ni—N3—C20 161.3 (3) Ni—N3—C20—C21 13.0 (5)

O2—Ni—N3—C20 75.5 (3) C17—C16—C20—N3 0.5 (8)

N2—Ni—N3—C20 −13.7 (3) C15—C16—C20—N3 178.8 (5)

Ni—O1—C1—C2 −159.5 (4) C17—C16—C20—C21 178.0 (5)

Ni—O1—C1—C6 23.3 (8) C15—C16—C20—C21 −3.7 (8)

O1—C1—C2—C3 −179.3 (6) C10—N2—C21—C13 −4.3 (7)

C6—C1—C2—C3 −1.9 (9) Ni—N2—C21—C13 169.1 (4)

O1—C1—C2—Br1 3.1 (7) C10—N2—C21—C20 176.7 (4)

C6—C1—C2—Br1 −179.4 (4) Ni—N2—C21—C20 −10.0 (5)

C1—C2—C3—C4 0.2 (11) C12—C13—C21—N2 3.3 (8)

Br1—C2—C3—C4 177.7 (5) C14—C13—C21—N2 −178.1 (5)

C2—C3—C4—C5 1.6 (11) C12—C13—C21—C20 −177.7 (5)

C2—C3—C4—Br2 −178.5 (5) C14—C13—C21—C20 0.9 (8)

C3—C4—C5—C6 −1.5 (11) N3—C20—C21—N2 −2.1 (7)

Br2—C4—C5—C6 178.6 (5) C16—C20—C21—N2 −179.6 (5)

C4—C5—C6—C1 −0.3 (10) N3—C20—C21—C13 178.9 (5)

C4—C5—C6—C7 −178.3 (6) C16—C20—C21—C13 1.3 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O5—H5A···O6 0.82 (7) 1.99 (6) 2.759 (7) 156 (6)

O5—H5B···O1i 0.81 (4) 1.98 (4) 2.767 (5) 162 (5)

O6—H6O···O3 0.82 (7) 2.05 (6) 2.828 (7) 157 (6)

Figure

Figure 1
Table 2Hydrogen-bonding geometry (A˚ , �).

References

Related documents

~ur business trend over the next six months, excluding purely seasonal variations, will The consumer confidence indicator is the arithmetic average of the answers

(2014) Knowledge, Attitude, Utilization of Emergency Contraceptive and Associated Factors among Female Students of Debre Markos Higher Institutions, Northwest Ethiopia.

More precisely, the paper develops a positive model of government behavior in order to define the intertemporal fiscal policies that are optimal for a country,

These features define six aspectual classes: Only dynamic predicates can be bounded or not, and only bounded predicates can be extended or punctual, and introduce an explicit change

We demon- strate a speed-up of several orders of magni- tude when predicting word similarity by vector operations on our embeddings as opposed to directly computing the

L’inchiesta avviata dal governo genovese negli anni quaranta del Settecento fornisce interessanti elementi sul sistema assistenziale della Repubblica di Genova, che

In Proceedings of Conference on Empirical Methods in Natural Language Processing Conference on Computational Natural Language Learning Joint Meeting following ACL (EMNLP- CONLL ,

Berdasarkan grafik di atas terlihat nilai RPM cenderung naik, sehingga dapat dikatakan bahwa tanaman buah-buahan basis mempunyai hubungan dengan komoditas non basis yang