• No results found

N,N′ Bis­[2 (4 pyridyl)­ethyl]­peryl­ene 3,4:9,10 bis­­(dicarbox­imide) phenol disolvate

N/A
N/A
Protected

Academic year: 2020

Share "N,N′ Bis­[2 (4 pyridyl)­ethyl]­peryl­ene 3,4:9,10 bis­­(dicarbox­imide) phenol disolvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o669–o671 doi:10.1107/S1600536805004459 Mizuguchi and Hino C

38H24N4O42C6H6O

o669

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N

000

-Bis[2-(4-pyridyl)ethyl]perylene-3,4:9,10-bis(dicarboximide) phenol disolvate

Jin Mizuguchi* and Kazuyuki Hino

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 93 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.039 wRfactor = 0.098

Data-to-parameter ratio = 10.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C38H24N4O42C6H6O, is a 1:2 complex of a pyridylethylperylene derivative (EPY) with phenol. The pyridylethylene imide skeleton in a transfashion. The EPY molecule is centrosymmetric. The EPY molecules are stacked along theaaxis, with a slip angle of about 32.

Comment

Perylene compounds are industrially important pigments which cover a variety of shades from redviamaroon to black (Herbst & Hunger, 1993). The pyridylethylperylene derivative (abbreviated to EPY) in the title compound, (I), has a struc-ture similar to that of the phenylethyl derivative (abbreviated to EPH, also known as pigment black 31). The only difference between EPY and EPH is the pyridyl or phenyl ring. Never-theless, their colours are strikingly different. EPY (Mizuguchi & Tojo, 2002) is a vivid red, while two crystal modifications of EPH (Ha¨dicke & Graser, 1986; Mizuguchi, 1998) are black. In these two modifications of EPH, the phenylethyl groups are attached to the perylene imide skeleton in a trans fashion, while the pyridylethyl groups in EPY are cis(Mizuguchi & Tojo, 2002). Because of this, our attention has been focused on the preparation of thetransform of EPY, which is expected to be black in colour. This paper reports the structure of thetrans

[image:1.610.208.460.464.585.2]

isomer of EPY, which is black, as its phenol disolvate, (I).

Fig. 1 shows EPY, which crystallizes with two phenol mol-ecules. The EPY molecule has a centre of symmetry and the two pyridylethyl groups are arranged in a transfashion (Ci

symmetry), in contrast with the previouscisform of EPY (C2 symmetry; Mizuguchi & Tojo, 2002). The pyridyl rings are twisted by 31.2 (1) relative to the perylene–imide skeleton.

There is an O—H N hydrogen bond (Table 2) between the phenol and pyridyl ring of EPY. The phenol ring is twisted by 50.3 (1)with respect to the pyridyl ring of EPY. The colour of (I) is black, as expected (Mizuguchi & Hino, 2005).

Fig. 2 shows the projection of the structure along theaaxis. The EPY molecules form columns along theaaxis, and there are two neighbouring columns composed of phenol molecules.

(2)

The polar phenol molecules of each column are arranged so as to cancel their dipole moments, reducing the electrostatic

energy. Withinn a column, EPY molecules are stacked with a slip angle of about 32; this is defined, on the side view of two

stacked molecules, as the slipped angle of the upper molecule relative to the lower one along the long molecular axis.

Experimental

EPY was prepared by the reaction of perylenetetracarboxylic dianhydride (10 g) with 4-(aminoethyl)pyridine (8.8 g) at 403 K in water (30 ml) for 5 h. The product was filtered off and the red cake was refluxed for 10 min in N,N0-dimethylformamide. Black single

crystals of (I) (transform) were grown from a 1:1 solution of phenol and ethanol; red crystals (cisform) were obtained from solution in nitrobenzene. The use of a protic solvent, such as phenol, was the key to the growth of black crystals of thetransform. Since the crystal of (I) was found to include solvent molecules, X-ray intensity data were collected at 93 K. Crystal growth from the vapour phase was also tried but without success, leading to the decomposition of EPY to give a perylene imide derivative known as pigment violet 29.

Crystal data

C38H24N4O42C6H6O

Mr= 788.83 Triclinic,P1

a= 6.513 (2) A˚

b= 12.182 (2) A˚

c= 12.200 (2) A˚ = 89.36 (1)

= 81.11 (1)

= 76.81 (2)

V= 930.8 (4) A˚3

Z= 1

Dx= 1.407 Mg m

3 Cu Kradiation Cell parameters from 5227

reflections = 3.7–68.2

= 0.76 mm1

T= 93.2 K Block, black

0.400.100.10 mm

Data collection

Rigaku R-AXIS RAPID imaging-plate diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.797,Tmax= 0.931 7498 measured reflections

2902 independent reflections 1186 reflections withF2> 2(F2)

Rint= 0.057 max= 68.3

h=5!6

k=14!14

l=14!13

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.039

wR(F2) = 0.098

S= 0.78 2902 reflections 274 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + {0.0[Max(Fo2,0) + 2Fc2]/3}2]

(/)max= 0.001 max= 0.39 e A˚

3 min=0.40 e A˚

3

Table 1

Selected bond lengths (A˚ ).

O1—C11 1.215 (4) O2—C1 1.223 (4) N1—C1 1.401 (4) N1—C11 1.408 (4) N1—C13 1.479 (4) C1—C2 1.479 (5) C2—C3 1.373 (4) C2—C12 1.407 (4) C3—C4 1.399 (5) C4—C5 1.389 (5)

C5—C6 1.425 (4) C5—C7i

1.476 (5) C6—C7 1.425 (4) C6—C12 1.437 (5) C7—C8 1.379 (4) C8—C9 1.400 (5) C9—C10 1.365 (5) C10—C11 1.491 (5) C10—C12 1.408 (4)

Symmetry code: (i) 1x;1y;1z.

organic papers

o670

Mizuguchi and Hino C

[image:2.610.49.293.69.374.2]

38H24N4O42C6H6O Acta Cryst.(2005). E61, o669–o671

Figure 2

The crystal structure of (I), projected along theaaxis. H atoms have been omitted.

Figure 1

[image:2.610.70.276.431.687.2]
(3)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H18 N2 1.08 (4) 1.65 (4) 2.717 (4) 170 (3)

The hydroxy H atom (H18) of phenol was found in a difference Fourier map and its coordinates were refined, with Uiso(H) = 1.3Ueq(O). All other H atoms were positioned geometrically and

included in the riding-model approximation, with C—H distances of 0.95 A˚ , and withUiso(H) = 1.2Ueq(C).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure:

SHELXS97(Sheldrick, 1997); program(s) used to refine structure:

TEXSAN; molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication:TEXSAN.

References

Burnett, M. N. & Johnson, C. K.(1996).ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Ha¨dicke, E. & Graser, F. (1986).Acta Cryst.C42, 189–195.

Herbst, W. & Hunger, K. (1993).Industrial Organic Pigments, pp. 467–475. Weinheim: VCH.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan. Mizuguchi, J. (1998).Acta Cryst.C54, 1479–1481.

Mizuguchi, J. & Hino, K. (2005).Dyes Pigments.Submitted.

Mizuguchi, J. & Tojo, K. (2002).Z. Kristallogr. New Cryst. Struct.217, 247– 248.

Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Rigaku (1998).PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997).SHELXS97. University of Go¨ttingen, Germany.

organic papers

Acta Cryst.(2005). E61, o669–o671 Mizuguchi and Hino C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o669–o671

supporting information

Acta Cryst. (2005). E61, o669–o671 [https://doi.org/10.1107/S1600536805004459]

N,N

-Bis[2-(4-pyridyl)ethyl]perylene-3,4:9,10-bis(dicarboximide) phenol

disolvate

Jin Mizuguchi and Kazuyuki Hino

(I)

Crystal data

C38H24N4O4·2C6H6O Mr = 788.83

Triclinic, P1 Hall symbol: -P 1

a = 6.513 (2) Å

b = 12.182 (2) Å

c = 12.200 (2) Å

α = 89.36 (1)°

β = 81.11 (1)°

γ = 76.81 (2)°

V = 930.8 (4) Å3

Z = 1

F(000) = 412.0

Dx = 1.407 Mg m−3

Cu radiation, λ = 1.5418 Å Cell parameters from 5227 reflections

θ = 3.7–68.2°

µ = 0.76 mm−1 T = 93 K Platelet, black

0.40 × 0.10 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer

Detector resolution: 10.00 pixels mm-1

48 frames, delta ω = 15 deg scans Absorption correction: multi-scan

(ABSCOR; Higashi, 1995)

Tmin = 0.797, Tmax = 0.931 7498 measured reflections

2902 independent reflections 1186 reflections with F2 > 2σ(F2) Rint = 0.057

θmax = 68.3°

h = −5→6

k = −14→14

l = −14→13

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.098 S = 0.78 2902 reflections 274 parameters

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + {0.0[Max(Fo2,0) + 2Fc2]/3}2]

(Δ/σ)max = 0.001

Δρmax = 0.39 e Å−3

Δρmin = −0.40 e Å−3

Special details

Refinement. Refinement using reflections with F2 > -10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are

based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o669–o671

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 1.3083 (4) 0.5814 (2) 0.2140 (2) 0.0320 (8)

O2 1.0842 (4) 0.8280 (2) 0.5089 (2) 0.0331 (9)

O3 2.1652 (4) 1.1360 (2) 0.1951 (2) 0.0335 (9)

N1 1.2008 (5) 0.7021 (2) 0.3641 (2) 0.0234 (9)

N2 1.8245 (5) 1.0401 (3) 0.2084 (3) 0.033 (1)

C1 1.0558 (6) 0.7482 (3) 0.4582 (3) 0.025 (1)

C2 0.8734 (6) 0.6954 (3) 0.4919 (3) 0.024 (1)

C3 0.7278 (6) 0.7376 (3) 0.5839 (3) 0.026 (1)

C4 0.5549 (6) 0.6882 (3) 0.6175 (3) 0.028 (1)

C5 0.5266 (6) 0.5954 (3) 0.5615 (3) 0.021 (1)

C6 0.6747 (6) 0.5509 (3) 0.4652 (3) 0.022 (1)

C7 0.6537 (6) 0.4578 (3) 0.4017 (3) 0.021 (1)

C8 0.8007 (6) 0.4216 (3) 0.3079 (3) 0.026 (1)

C9 0.9714 (6) 0.4725 (3) 0.2740 (3) 0.027 (1)

C10 0.9953 (6) 0.5612 (3) 0.3343 (3) 0.021 (1)

C11 1.1799 (6) 0.6132 (3) 0.2971 (3) 0.024 (1)

C12 0.8502 (6) 0.6030 (3) 0.4305 (3) 0.021 (1)

C13 1.3844 (6) 0.7541 (3) 0.3303 (3) 0.027 (1)

C14 1.3195 (6) 0.8609 (3) 0.2654 (3) 0.029 (1)

C15 1.4990 (6) 0.9209 (3) 0.2449 (3) 0.025 (1)

C16 1.6004 (6) 0.9341 (3) 0.1395 (3) 0.030 (1)

C17 1.7578 (7) 0.9944 (3) 0.1251 (3) 0.035 (1)

C18 1.7294 (7) 1.0246 (3) 0.3118 (3) 0.036 (1)

C19 1.5690 (6) 0.9667 (3) 0.3328 (3) 0.031 (1)

C20 2.1852 (6) 1.2143 (3) 0.1159 (3) 0.028 (1)

C21 2.0277 (6) 1.2572 (3) 0.0532 (3) 0.029 (1)

C22 2.0580 (7) 1.3372 (3) −0.0259 (3) 0.035 (1)

C23 2.2489 (7) 1.3743 (3) −0.0434 (3) 0.032 (1)

C24 2.4051 (6) 1.3308 (3) 0.0201 (3) 0.032 (1)

C25 2.3753 (6) 1.2510 (3) 0.0999 (3) 0.029 (1)

H1 0.7443 0.8002 0.6246 0.0310*

H2 0.4539 0.7190 0.6806 0.0333*

H3 0.7857 0.3601 0.2650 0.0311*

H4 1.0705 0.4454 0.2092 0.0330*

H5 1.4360 0.7726 0.3947 0.0327*

H6 1.4942 0.7017 0.2848 0.0327*

H7 1.2858 0.8413 0.1963 0.0353*

H8 1.1979 0.9094 0.3069 0.0353*

H9 1.5623 0.9019 0.0772 0.0362*

H10 1.8228 1.0041 0.0515 0.0424*

H11 1.7748 1.0549 0.3728 0.0438*

H12 1.5062 0.9580 0.4070 0.0374*

H13 1.8984 1.2321 0.0641 0.0347*

H14 1.9487 1.3670 −0.0686 0.0419*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o669–o671

H16 2.5346 1.3557 0.0092 0.0389*

H17 2.4838 1.2217 0.1432 0.0350*

H18 2.019 (6) 1.107 (3) 0.203 (3) 0.0446*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.031 (2) 0.036 (2) 0.027 (2) −0.009 (1) 0.004 (1) −0.002 (1)

O2 0.042 (2) 0.033 (2) 0.027 (2) −0.016 (1) −0.003 (1) −0.004 (1)

O3 0.034 (2) 0.034 (2) 0.034 (2) −0.014 (1) −0.005 (1) 0.009 (1)

N1 0.022 (2) 0.027 (2) 0.023 (2) −0.011 (2) −0.002 (1) 0.002 (1)

N2 0.029 (2) 0.028 (2) 0.043 (2) −0.011 (2) −0.007 (2) 0.005 (2)

C1 0.023 (3) 0.028 (2) 0.024 (2) −0.008 (2) −0.002 (2) 0.006 (2)

C2 0.028 (3) 0.023 (2) 0.019 (2) −0.005 (2) −0.004 (2) 0.001 (2)

C3 0.026 (3) 0.028 (2) 0.026 (2) −0.011 (2) −0.005 (2) −0.002 (2)

C4 0.031 (3) 0.030 (2) 0.021 (2) −0.005 (2) −0.004 (2) −0.002 (2)

C5 0.020 (2) 0.024 (2) 0.021 (2) −0.006 (2) −0.003 (2) 0.004 (2)

C6 0.023 (3) 0.021 (2) 0.021 (2) −0.004 (2) −0.003 (2) 0.003 (2)

C7 0.024 (3) 0.020 (2) 0.020 (2) −0.004 (2) −0.005 (2) 0.002 (2)

C8 0.028 (3) 0.025 (2) 0.024 (2) −0.006 (2) −0.003 (2) −0.003 (2)

C9 0.029 (3) 0.031 (2) 0.019 (2) −0.006 (2) 0.003 (2) 0.003 (2)

C10 0.021 (2) 0.020 (2) 0.021 (2) −0.004 (2) −0.005 (2) −0.001 (2)

C11 0.022 (3) 0.023 (2) 0.031 (2) −0.012 (2) −0.008 (2) 0.005 (2)

C12 0.022 (3) 0.021 (2) 0.020 (2) −0.005 (2) −0.006 (2) 0.003 (2)

C13 0.020 (3) 0.032 (2) 0.032 (2) −0.013 (2) −0.003 (2) 0.001 (2)

C14 0.026 (3) 0.032 (2) 0.034 (2) −0.012 (2) −0.008 (2) 0.008 (2)

C15 0.025 (3) 0.021 (2) 0.027 (2) −0.001 (2) −0.004 (2) 0.002 (2)

C16 0.033 (3) 0.030 (2) 0.031 (2) −0.017 (2) −0.001 (2) −0.005 (2)

C17 0.040 (3) 0.034 (3) 0.028 (2) −0.007 (2) 0.003 (2) 0.001 (2)

C18 0.047 (3) 0.028 (2) 0.037 (3) −0.008 (2) −0.015 (2) −0.000 (2)

C19 0.036 (3) 0.033 (2) 0.028 (2) −0.016 (2) −0.003 (2) 0.007 (2)

C20 0.034 (3) 0.026 (2) 0.021 (2) −0.004 (2) 0.000 (2) −0.004 (2)

C21 0.030 (3) 0.028 (2) 0.027 (2) −0.004 (2) −0.004 (2) −0.003 (2)

C22 0.038 (3) 0.034 (3) 0.028 (2) −0.000 (2) −0.005 (2) −0.001 (2)

C23 0.033 (3) 0.031 (3) 0.030 (2) −0.008 (2) 0.001 (2) 0.004 (2)

C24 0.032 (3) 0.035 (2) 0.030 (2) −0.009 (2) 0.001 (2) −0.003 (2)

C25 0.030 (3) 0.029 (2) 0.026 (2) −0.004 (2) −0.002 (2) 0.000 (2)

Geometric parameters (Å, º)

O1—C11 1.215 (4) C10—C12 1.408 (4)

O2—C1 1.223 (4) C13—C14 1.526 (5)

O3—C20 1.364 (4) C13—H5 0.950

O3—H18 1.08 (4) C13—H6 0.950

N1—C1 1.401 (4) C14—C15 1.503 (5)

N1—C11 1.408 (4) C14—H7 0.950

N1—C13 1.479 (4) C14—H8 0.950

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o669–o671

N2—C18 1.348 (5) C15—C19 1.395 (5)

C1—C2 1.479 (5) C16—C17 1.381 (5)

C2—C3 1.373 (4) C16—H9 0.950

C2—C12 1.407 (4) C17—H10 0.950

C3—C4 1.399 (5) C18—C19 1.380 (5)

C3—H1 0.950 C18—H11 0.950

C4—C5 1.389 (5) C19—H12 0.950

C4—H2 0.950 C20—C21 1.378 (5)

C5—C6 1.425 (4) C20—C25 1.395 (5)

C5—C7i 1.476 (5) C21—C22 1.388 (5)

C6—C7 1.425 (4) C21—H13 0.950

C6—C12 1.437 (5) C22—C23 1.403 (5)

C7—C8 1.379 (4) C22—H14 0.950

C8—C9 1.400 (5) C23—C24 1.380 (5)

C8—H3 0.950 C23—H15 0.950

C9—C10 1.365 (5) C24—C25 1.392 (5)

C9—H4 0.950 C24—H16 0.950

C10—C11 1.491 (5) C25—H17 0.950

O3···N2 2.717 (4) C18···H18 2.53 (4)

C17···H18 2.70 (4)

C20—O3—H18 114 (1) N1—C13—H6 109.1

C1—N1—C11 124.8 (3) C14—C13—H5 109.1

C1—N1—C13 117.4 (3) C14—C13—H6 109.1

C11—N1—C13 117.8 (3) H5—C13—H6 109.5

C17—N2—C18 116.5 (4) C13—C14—C15 110.3 (3)

O2—C1—N1 119.9 (4) C13—C14—H7 109.2

O2—C1—C2 123.0 (4) C13—C14—H8 109.3

N1—C1—C2 117.1 (3) C15—C14—H7 109.3

C1—C2—C3 119.1 (4) C15—C14—H8 109.3

C1—C2—C12 120.3 (4) H7—C14—H8 109.5

C3—C2—C12 120.7 (4) C14—C15—C16 121.9 (4)

C2—C3—C4 119.9 (4) C14—C15—C19 121.0 (3)

C2—C3—H1 120.1 C16—C15—C19 117.1 (4)

C4—C3—H1 120.1 C15—C16—C17 119.5 (4)

C3—C4—C5 122.0 (4) C15—C16—H9 120.3

C3—C4—H2 119.0 C17—C16—H9 120.2

C5—C4—H2 119.0 N2—C17—C16 124.1 (4)

C4—C5—C6 119.1 (4) N2—C17—H10 118.0

C4—C5—C7i 121.9 (4) C16—C17—H10 118.0

C6—C5—C7i 119.0 (3) N2—C18—C19 122.9 (4)

C5—C6—C7 122.5 (3) N2—C18—H11 118.5

C5—C6—C12 118.5 (3) C19—C18—H11 118.6

C7—C6—C12 119.0 (3) C15—C19—C18 120.0 (4)

C5i—C7—C6 118.5 (3) C15—C19—H12 120.0

C5i—C7—C8 122.6 (4) C18—C19—H12 120.0

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o669–o671

C7—C8—C9 122.0 (4) O3—C20—C25 117.0 (4)

C7—C8—H3 119.0 C21—C20—C25 120.1 (4)

C9—C8—H3 119.0 C20—C21—C22 120.0 (4)

C8—C9—C10 119.9 (4) C20—C21—H13 120.0

C8—C9—H4 120.1 C22—C21—H13 120.0

C10—C9—H4 120.0 C21—C22—C23 120.5 (4)

C9—C10—C11 118.8 (4) C21—C22—H14 119.7

C9—C10—C12 121.1 (4) C23—C22—H14 119.7

C11—C10—C12 120.1 (3) C22—C23—C24 118.9 (4)

O1—C11—N1 120.6 (4) C22—C23—H15 120.5

O1—C11—C10 122.9 (4) C24—C23—H15 120.6

N1—C11—C10 116.5 (3) C23—C24—C25 120.9 (4)

C2—C12—C6 119.9 (4) C23—C24—H16 119.6

C2—C12—C10 121.0 (4) C25—C24—H16 119.6

C6—C12—C10 119.1 (3) C20—C25—C24 119.6 (4)

N1—C13—C14 111.0 (3) C20—C25—H17 120.2

N1—C13—H5 109.1 C24—C25—H17 120.2

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Fig. 1 shows EPY, which crystallizes with two phenol mol-
Figure 1

References

Related documents

This model allowed the probe of a network, those are relationships between levels of diabetes knowledge, attitude, self-management, HbA1c and other variables such

Furthermore, mention pair scores can produce powerful features for training the agent because the scores indicate which mention pairs between the clusters in ques- tion are

2 For small farms, tethering is allowed in organic milk production, provided that summer pasture is.. used and the cows have access to open air at least twice a week in winter

Neamt county, most of the rural municipalities have a coverage rate over 70 % to waste collection services in 2012.. according to

The definitional similarity component computes the similarity of two concepts in terms of the simi- larity of their definitions, a method that has also been used in previous work

The pipeline of most Phrase-Based Statistical Machine Translation (PB-SMT) systems starts from automatically word aligned parallel corpus generated from word-based models (Brown

In our context and in relation with implementation theory, we show that there is a close connexion with strategy-proofness and the implementability of the sub- solution of the

Based on Masud and Yontcheva (2005) and Binder and Georgiadis (2010), we include a set of control variables that influence the country‘s level of development: a) rural