• No results found

Tri­cyclo­hexyl(4 nitro­phen­oxy­acetato)tin(IV)

N/A
N/A
Protected

Academic year: 2020

Share "Tri­cyclo­hexyl(4 nitro­phen­oxy­acetato)tin(IV)"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m7–m9 doi:10.1107/S1600536805039541 Tianet al. [Sn(C

6H11)3(C8H6NO5)]

m7

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Tricyclohexyl(4-nitrophenoxyacetato)tin(IV)

Lai-Jin Tian,* Hai-Xia Yu, Yu-Xi Sun and Feng-Yang Yu

Department of Chemistry, Qufu Normal University, Qufu 273165, Shandong, People’s Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study T= 295 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.032 wRfactor = 0.076

Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

The coordination geometry about the Sn atom in the title compound, [Sn(C6H11)3(C8H6NO5)], is best described as

highly distorted tetrahedral. There is an intermolecular interaction, 2.769 (2) A˚ , between the Sn atom and the carbonyl O atom of the carboxylate group of an adjacent molecule.

Comment

Tricyclohexyltin carboxylates, (C6H11)3Sn(O2CR), generally

have a tetrahedral structure and do not auto-associate into chain structuresviacarboxylate bridging, due to the effects of the three bulky organic groups at Sn (Chandrasekhar et al., 2002; Tiekink, 1991, 1994). 4-Nitrophenoxyacetic acid, whose crystal structure has been reported previously (Kumar & Rao, 1980), is a pesticide intermediate used in the synthesis of fungicides and plant-growth regulators (Xue & Zou, 1999). We present here the crystal structure analysis of its tricyclo-hexyltin ester, (I).

In (I), the Sn atom is best described as having a highly distorted tetrahedral geometry, the range of angles subtended at Sn being 89.83 (9)–124.93 (11) (Fig. 1, Table 1). An

Sn1 O2i intermolecular contact of 2.769 (2) A˚ [symmetry code: (i) x + 2, y + 1

2, z + 1

2] is not considered to be a

significant bonding interaction (Willem et al., 1998). If the Sn1 O2iinteraction were considered as a significant bonding interaction, then (I) would be described as a five-coordinate complex with the Sn atom having a trans-R3SnO2 trigonal–

bipyramidal geometry. In that case, atoms C9, C15 and C21 would define the trigonal plane and a one-dimensional polymer would be formed through the apical positions occu-pied by O1 and O2 (Fig. 2). However, in this description, the Sn atom would lie 0.238 (2) A˚ out of the trigonal plane.

Atom O2iexerts a steric influence on atom Sn1 from the opposite side of atom O1, and thus contributes to the

(2)

tion of the tetrahedral geometry around the Sn atom, by opening up the C—Sn1—C angles and contracting the O1— Sn1—C angles. The Sn1 O2 separation of 3.523 (3) A˚ , and the Sn1—O1 distance of 2.1317 (19) A˚ , are longer than those found in previously reported tricyclohexyltin carboxylates, such as tricyclohexyltin indole-3-acetate (Molloyet al., 1986), trifluoroacetate (Calogero et al., 1980), N-phthaloylglycinate (Ng & Kumar Das, 1997a), (N,N -diethylthiocarbamoyl-thio)acetate (Ng & Kumar Das, 1997b), 2-[2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (Willemet al., 1998), 2-(4-chlorophenyl)-3-methylbutyrate (Song et al., 2003) and 4-biphenylacetate (Tianet al., 2005). However, the three Sn—C distances in (I) are similar to those of the carboxylate struc-tures mentioned above (Table 1).

Experimental

Tricyclohexyltin hydroxide (0.577 g, 1.5 mmol) and

4-nitrophenoxy-with azeotropic removal of water via a Dean–Stark trap. The resulting clear solution was evaporated to dryness under a vacuum. The pale-yellow solid obtained, (I), was recrystallized from ethanol and crystals of (I) were obtained from hexane–chloroform (1:1) by slow evaporation at 298 K (yield 70.3%; m.p. 358–359 K). Analysis, found: C 55.22, H 6.69, N 2.37%; calculated for C26H39NO5Sn: C 55.34, H 6.97, N 2.48%.

Crystal data

[Sn(C6H11)3(C8H6NO5)]

Mr= 564.27

Monoclinic,P21=c a= 10.8892 (15) A˚

b= 11.7837 (16) A˚

c= 20.768 (3) A˚ = 101.456 (2) V= 2611.8 (6) A˚3

Z= 4

Dx= 1.435 Mg m

3

MoKradiation Cell parameters from 5699

reflections = 2.5–27.6

= 1.01 mm1

T= 295 (2) K Prism, pale yellow 0.220.090.09 mm

Data collection

Bruker SMART APEX area-detector diffractometer ’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.808,Tmax= 0.914

20503 measured reflections

5390 independent reflections 4395 reflections withI> 2(I)

Rint= 0.040

max= 26.5

h=13!13

k=14!14

l=26!25

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.032

wR(F2) = 0.076

S= 1.02 5390 reflections 298 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.037P)2

+ 0.0495P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.50 e A˚

3

min=0.41 e A˚

[image:2.610.46.297.71.252.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Sn1—O1 2.1317 (19)

Sn1—C21 2.144 (2)

Sn1—C9 2.152 (3)

Sn1—C15 2.155 (3)

Sn1—O2i

2.769 (2)

O1—C1 1.274 (3)

O2—C1 1.217 (3)

O1—Sn1—C21 89.83 (9) O1—Sn1—C9 99.86 (9) C21—Sn1—C9 116.16 (10) O1—Sn1—C15 98.68 (9) C21—Sn1—C15 115.26 (11)

C9—Sn1—C15 124.93 (11) O1—Sn1—O2i 170.61 (11) C21—Sn1—O2i

81.49 (9) C9—Sn1—O2i

87.27 (9) C15—Sn1—O2i 81.95 (9) Symmetry code: (i)xþ2;yþ1

2;zþ 1 2.

H atoms were placed in calculated positions and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier C). Constrained C—H distances were 0.93 for aromatic CH, 0.97 for methylene CH2and 0.98 A˚ for methine CH.

Data collection:SMART(Bruker, 2002); cell refinement:SAINT (Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2

[image:2.610.46.295.313.472.2]
(3)

References

Bruker (2002).SADABS,SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Calogero, S., Ganis, P., Peruzzo, V. & Tagliavini, G. (1980). J. Organomet. Chem.191, 381–390.

Chandrasekhar, V., Nagendran, S. & Baskar, V. (2002).Coord. Chem. Rev.235, 1–52.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Kumar, S. V. & Rao, L. M. (1980).Acta Cryst.B36, 1218–1220.

Molloy, K. C., Purcell, T. G., Hahn, E., Schumann H. & Zuckermann, J. J. (1986).Organometallics,5, 85–89.

Ng, S. W. & Kumar Das, V. G. (1997a).Acta Cryst.C53, 546–548. Ng, S. W. & Kumar Das, V. G. (1997b).Acta Cryst.C53, 548–549.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Song, X., Cahill, C. & Eng, G. (2003).Appl. Organomet. Chem. 17, 743– 744.

Tian, L.-J., Sun, Y.-X, Gao, Y.-Z. & Yang, G.-M. (2005).Acta Cryst.E61, m1199–m1200.

Tiekink, E. R. T. (1991).Appl. Organomet. Chem.5, 1–23. Tiekink, E. R. T. (1994).Trends Organomet. Chem.1, 71–116.

Willem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998).Organometallics,17, 5758–5766. Xue, S. & Zou, J. (1999).Chin. J. Pestic. Sci.1, 85–87.

metal-organic papers

Acta Cryst.(2006). E62, m7–m9 Tianet al. [Sn(C

(4)

supporting information

Acta Cryst. (2006). E62, m7–m9 [doi:10.1107/S1600536805039541]

Tricyclohexyl(4-nitrophenoxyacetato)tin(IV)

Lai-Jin Tian, Hai-Xia Yu, Yu-Xi Sun and Feng-Yang Yu

S1. Comment

Tricyclohexyltin carboxylates, (C6H11)3Sn(O2CR), generally have a tetrahedral structure and do not auto-associate into

chain structures via carboxylate bridging, due to the effects of the three bulky organic groups at Sn (Chandrasekhar et al.,

2002; Tiekink, 1991, 1994). 4-Nitrophenoxyacetic acid, whose crystal structure has been reported previously (Kumar &

Rao, 1980), is a pesticide intermediate used in the synthesis of fungicides and plant-growth regulators (Xue & Zou,

1999). We present here the crystal structure analysis of its tricyclohexyltin ester, (I).

In (I), the Sn atom is best described as having a highly distorted tetrahedral geometry, with the range of angles

subtended at Sn being 89.83 (9)–124.93 (11)° (Fig. 1, Table 1). An Sn1···O2i intermolecular contact of 2.769 (2) Å

[symmetry code: (i) −x + 2, y + 1/2, −z + 1/2] is not considered to be a significant bonding interaction (Willem et al.,

1998). If the Sn1···O2i interaction were considered as a significant bonding interaction, then (I) would be described as a

five-coordinate complex with the Sn atom having a trans-R3SnO2 trigonal–bipyramidal geometry. In that case, atoms C9,

C15 and C21 would define the trigonal plane and a one-dimensional polymer would be formed through the apical

positions occupied by O1 and O2 (Fig. 2). However, in this description, the Sn atom would lie 0.238 (2) Å out of the

trigonal plane.

Atom O2i exerts a steric influence on atom Sn1 from the opposite of atom O1, and thus contributes to the distortion of

the tetrahedral geometry around the Sn atom, by opening up the C—Sn1—C angles and contracting the O1—Sn1—C

angles. The Sn1···O2 separation of 3.523 (3) Å, and the Sn1—O1 distance of 2.1317 (19) Å, are longer than those found

in previously reported tricyclohexyltin carboxylates, such as tricyclohexyltin indole-3-acetate (Molloy et al., 1986),

tri-fluoroacetate (Calogero et al., 1980), N-phthaloylglycinate (Ng & Kumar Das, 1997a), (N,N

-diethylthiocarbamoylthio)-acetate (Ng & Kumar Das, 1997b), 2-[2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (Willem et al., 1998),

2-(4-chlorophenyl)-3-methylbutyrate (Song et al., 2003) and 4-biphenylacetate (Tian et al., 2005). However, the three Sn—C

distances in (I) are similar to those of the carboxylate structures mentioned above (Table 1).

S2. Experimental

Tricyclohexyltin hydroxide (0.577 g, 1.5 mmol) and 4-nitrophenoxyacetic acid (0.30 g, 1.5 mmol) in toluene (60 ml)

were refluxed for 4 h with azeotropic removal of water via a Dean–Stark trap. The resulting clear solution was rotary

evaporated under vacuum. The pale-yellow solid obtained, (I), was recrystallized from ethanol and crystals of (I) were

obtained from hexane–chloroform (1:1) by slow evaporation at 298 K (yield 70.3%; m.p. 358–359 K). Analysis, found: C

55.22, H 6.69, N 2.37%; calculated for C26H39NO5Sn: C 55.34, H 6.97, N 2.48%.

S3. Refinement

H atoms were placed in calculated positions and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(carrier

(5)

supporting information

[image:5.610.133.484.72.334.2]

sup-2

Acta Cryst. (2006). E62, m7–m9

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability

level. H atoms have been omitted for clarity.

Figure 2

[image:5.610.131.485.386.607.2]
(6)

Tricyclohexyl(4-nitrophenoxyacetato)tin(IV)

Crystal data

[Sn(C6H11)3(C8H6NO5)]

Mr = 564.27 Monoclinic, P21/c Hall symbol: -P 2ybc

a = 10.8892 (15) Å

b = 11.7837 (16) Å

c = 20.768 (3) Å

β = 101.456 (2)°

V = 2611.8 (6) Å3

Z = 4

F(000) = 1168

Dx = 1.435 Mg m−3

Melting point = 358–359 K Mo radiation, λ = 0.71073 Å Cell parameters from 5699 reflections

θ = 2.5–27.6°

µ = 1.01 mm−1

T = 295 K

Prism, pale-yellow 0.22 × 0.09 × 0.09 mm

Data collection

Bruker SMART APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2002)

Tmin = 0.808, Tmax = 0.914

20503 measured reflections 5390 independent reflections 4395 reflections with I > 2σ(I)

Rint = 0.040

θmax = 26.5°, θmin = 1.9°

h = −13→13

k = −14→14

l = −26→25

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.076

S = 1.02 5390 reflections 298 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.037P)2 + 0.0495P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.50 e Å−3 Δρmin = −0.41 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Sn1 0.951222 (15) 0.883451 (15) 0.225197 (8) 0.03471 (8)

N1 0.2815 (3) 0.5962 (2) 0.05501 (19) 0.0701 (9)

O1 0.89188 (18) 0.74291 (15) 0.16204 (10) 0.0483 (5)

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m7–m9

O3 0.7902 (2) 0.63325 (18) 0.05222 (10) 0.0571 (6)

O4 0.2495 (3) 0.5532 (3) 0.10184 (17) 0.0992 (10)

O5 0.2095 (3) 0.6298 (2) 0.00551 (17) 0.0986 (10)

C1 0.9230 (3) 0.6386 (2) 0.16429 (14) 0.0395 (6)

C2 0.8826 (3) 0.5762 (3) 0.09964 (14) 0.0519 (8)

H2A 0.9559 0.5633 0.0807 0.062*

H2B 0.8498 0.5025 0.1086 0.062*

C3 0.6687 (3) 0.6261 (2) 0.05845 (14) 0.0470 (7)

C4 0.5810 (3) 0.6657 (3) 0.00457 (15) 0.0585 (9)

H4 0.6082 0.6978 −0.0310 0.070*

C5 0.4557 (3) 0.6573 (3) 0.00405 (17) 0.0599 (9)

H5A 0.3976 0.6840 −0.0317 0.072*

C6 0.4160 (3) 0.6097 (2) 0.05625 (17) 0.0538 (8)

C7 0.5007 (3) 0.5729 (3) 0.11058 (16) 0.0556 (8)

H7 0.4724 0.5421 0.1462 0.067*

C8 0.6273 (3) 0.5818 (3) 0.11194 (14) 0.0494 (7)

H8 0.6848 0.5581 0.1488 0.059*

C9 0.8754 (2) 0.8342 (2) 0.30918 (13) 0.0399 (6)

H9 0.8450 0.9035 0.3269 0.048*

C10 0.7627 (3) 0.7557 (3) 0.28923 (17) 0.0599 (9)

H10A 0.7016 0.7917 0.2549 0.072*

H10B 0.7895 0.6857 0.2716 0.072*

C11 0.7021 (3) 0.7286 (3) 0.34714 (19) 0.0730 (11)

H11A 0.6341 0.6752 0.3335 0.088*

H11B 0.6671 0.7974 0.3618 0.088*

C12 0.7966 (3) 0.6782 (3) 0.40366 (17) 0.0656 (10)

H12A 0.7569 0.6674 0.4411 0.079*

H12B 0.8230 0.6045 0.3908 0.079*

C13 0.9098 (3) 0.7532 (3) 0.42346 (15) 0.0608 (9)

H13A 0.9706 0.7155 0.4572 0.073*

H13B 0.8853 0.8234 0.4418 0.073*

C14 0.9697 (3) 0.7799 (3) 0.36470 (14) 0.0457 (7)

H14A 1.0399 0.8310 0.3783 0.055*

H14B 1.0015 0.7104 0.3490 0.055*

C15 1.1474 (3) 0.8819 (2) 0.22108 (15) 0.0435 (7)

H15 1.1735 0.9617 0.2230 0.052*

C16 1.1720 (3) 0.8362 (3) 0.15582 (16) 0.0597 (9)

H16A 1.1471 0.7571 0.1511 0.072*

H16B 1.1219 0.8783 0.1198 0.072*

C17 1.3102 (3) 0.8470 (3) 0.15274 (19) 0.0684 (10)

H17A 1.3240 0.8136 0.1121 0.082*

H17B 1.3323 0.9267 0.1525 0.082*

C18 1.3922 (3) 0.7906 (4) 0.20863 (19) 0.0757 (11)

H18A 1.4791 0.8036 0.2061 0.091*

H18B 1.3771 0.7094 0.2061 0.091*

C19 1.3688 (3) 0.8347 (4) 0.27340 (19) 0.0840 (12)

H19A 1.3943 0.9136 0.2784 0.101*

(8)

C20 1.2314 (3) 0.8249 (3) 0.27766 (16) 0.0608 (9)

H20A 1.2089 0.7453 0.2783 0.073*

H20B 1.2189 0.8589 0.3184 0.073*

C21 0.8370 (2) 0.9942 (2) 0.15620 (12) 0.0369 (6)

H21 0.8544 1.0720 0.1722 0.044*

C22 0.6970 (3) 0.9733 (3) 0.15166 (15) 0.0532 (8)

H22A 0.6778 0.8949 0.1394 0.064*

H22B 0.6761 0.9859 0.1944 0.064*

C23 0.6175 (3) 1.0515 (3) 0.10124 (16) 0.0617 (9)

H23A 0.5297 1.0325 0.0975 0.074*

H23B 0.6292 1.1295 0.1162 0.074*

C24 0.6527 (3) 1.0407 (3) 0.03479 (15) 0.0599 (9)

H24A 0.6337 0.9645 0.0181 0.072*

H24B 0.6031 1.0934 0.0044 0.072*

C25 0.7895 (3) 1.0647 (3) 0.03856 (15) 0.0576 (8)

H25A 0.8069 1.1433 0.0511 0.069*

H25B 0.8100 1.0535 −0.0044 0.069*

C26 0.8703 (3) 0.9875 (2) 0.08817 (13) 0.0471 (7)

H26A 0.9576 1.0082 0.0916 0.056*

H26B 0.8602 0.9098 0.0725 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Sn1 0.02916 (11) 0.03885 (12) 0.03603 (12) 0.00299 (8) 0.00626 (8) 0.00653 (8)

N1 0.063 (2) 0.0443 (17) 0.095 (3) −0.0010 (14) −0.0023 (19) −0.0102 (16)

O1 0.0547 (13) 0.0347 (11) 0.0534 (13) −0.0010 (9) 0.0057 (10) −0.0028 (9)

O2 0.0559 (13) 0.0508 (12) 0.0487 (13) 0.0055 (10) 0.0049 (10) 0.0068 (10)

O3 0.0655 (15) 0.0666 (15) 0.0387 (12) 0.0008 (11) 0.0092 (11) 0.0010 (10)

O4 0.0727 (19) 0.096 (2) 0.129 (3) −0.0126 (17) 0.0192 (19) 0.021 (2)

O5 0.0691 (18) 0.091 (2) 0.118 (3) 0.0074 (15) −0.0260 (18) −0.0011 (17)

C1 0.0360 (15) 0.0408 (17) 0.0440 (16) −0.0038 (12) 0.0132 (13) 0.0000 (13)

C2 0.060 (2) 0.0463 (17) 0.0498 (19) 0.0051 (15) 0.0118 (15) −0.0067 (15)

C3 0.062 (2) 0.0372 (16) 0.0406 (16) −0.0015 (14) 0.0071 (15) −0.0070 (13)

C4 0.079 (3) 0.0522 (19) 0.0411 (18) 0.0051 (18) 0.0046 (17) 0.0088 (15)

C5 0.068 (2) 0.0491 (18) 0.054 (2) 0.0077 (17) −0.0088 (17) −0.0004 (16)

C6 0.057 (2) 0.0380 (17) 0.061 (2) 0.0030 (14) −0.0009 (16) −0.0098 (15)

C7 0.066 (2) 0.0508 (18) 0.0496 (19) −0.0001 (16) 0.0095 (16) 0.0028 (15)

C8 0.054 (2) 0.0527 (18) 0.0388 (17) 0.0038 (15) 0.0026 (14) 0.0028 (14)

C9 0.0374 (15) 0.0416 (15) 0.0438 (16) 0.0071 (12) 0.0158 (13) 0.0069 (13)

C10 0.0384 (17) 0.077 (2) 0.064 (2) −0.0040 (16) 0.0102 (15) 0.0218 (18)

C11 0.0446 (19) 0.091 (3) 0.090 (3) 0.0035 (19) 0.0309 (19) 0.033 (2)

C12 0.063 (2) 0.070 (2) 0.075 (2) 0.0108 (18) 0.0376 (19) 0.0292 (19)

C13 0.070 (2) 0.069 (2) 0.0462 (19) 0.0116 (18) 0.0191 (17) 0.0152 (16)

C14 0.0410 (16) 0.0525 (17) 0.0438 (17) −0.0021 (13) 0.0090 (13) 0.0037 (13) C15 0.0324 (15) 0.0426 (16) 0.0574 (18) −0.0012 (12) 0.0137 (13) −0.0031 (13)

C16 0.0490 (19) 0.079 (2) 0.055 (2) 0.0127 (17) 0.0189 (16) 0.0057 (18)

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, m7–m9

C18 0.0378 (19) 0.099 (3) 0.090 (3) 0.0100 (19) 0.0136 (18) −0.018 (2)

C19 0.0388 (19) 0.136 (4) 0.074 (3) 0.010 (2) 0.0028 (18) −0.019 (3)

C20 0.0388 (17) 0.087 (2) 0.055 (2) 0.0065 (17) 0.0059 (15) 0.0005 (18)

C21 0.0365 (14) 0.0319 (13) 0.0380 (15) 0.0003 (11) −0.0032 (12) 0.0004 (11)

C22 0.0390 (17) 0.062 (2) 0.057 (2) 0.0047 (14) 0.0054 (14) 0.0055 (16)

C23 0.0381 (17) 0.072 (2) 0.069 (2) 0.0141 (16) −0.0046 (16) 0.0063 (18)

C24 0.054 (2) 0.060 (2) 0.055 (2) 0.0025 (16) −0.0144 (16) 0.0074 (16)

C25 0.063 (2) 0.059 (2) 0.0434 (18) −0.0018 (17) −0.0071 (15) 0.0124 (15)

C26 0.0432 (17) 0.0530 (18) 0.0429 (17) −0.0008 (14) 0.0036 (13) 0.0109 (14)

Geometric parameters (Å, º)

Sn1—O1 2.1317 (19) C13—H13A 0.9700

Sn1—C21 2.144 (2) C13—H13B 0.9700

Sn1—C9 2.152 (3) C14—H14A 0.9700

Sn1—C15 2.155 (3) C14—H14B 0.9700

Sn1—O2i 2.769 (2) C15—C20 1.497 (4)

N1—O4 1.208 (4) C15—C16 1.531 (4)

N1—O5 1.228 (4) C15—H15 0.9800

N1—C6 1.469 (5) C16—C17 1.524 (4)

O1—C1 1.274 (3) C16—H16A 0.9700

O2—C1 1.217 (3) C16—H16B 0.9700

O3—C3 1.358 (4) C17—C18 1.475 (5)

O3—C2 1.428 (3) C17—H17A 0.9700

C1—C2 1.518 (4) C17—H17B 0.9700

C2—H2A 0.9700 C18—C19 1.510 (5)

C2—H2B 0.9700 C18—H18A 0.9700

C3—C8 1.381 (4) C18—H18B 0.9700

C3—C4 1.399 (4) C19—C20 1.521 (4)

C4—C5 1.367 (5) C19—H19A 0.9700

C4—H4 0.9300 C19—H19B 0.9700

C5—C6 1.365 (5) C20—H20A 0.9700

C5—H5A 0.9300 C20—H20B 0.9700

C6—C7 1.378 (4) C21—C22 1.528 (4)

C7—C8 1.378 (4) C21—C26 1.529 (4)

C7—H7 0.9300 C21—H21 0.9800

C8—H8 0.9300 C22—C23 1.528 (4)

C9—C14 1.524 (4) C22—H22A 0.9700

C9—C10 1.527 (4) C22—H22B 0.9700

C9—H9 0.9800 C23—C24 1.509 (4)

C10—C11 1.517 (4) C23—H23A 0.9700

C10—H10A 0.9700 C23—H23B 0.9700

C10—H10B 0.9700 C24—C25 1.503 (4)

C11—C12 1.520 (4) C24—H24A 0.9700

C11—H11A 0.9700 C24—H24B 0.9700

C11—H11B 0.9700 C25—C26 1.518 (4)

C12—C13 1.506 (5) C25—H25A 0.9700

(10)

C12—H12B 0.9700 C26—H26A 0.9700

C13—C14 1.527 (4) C26—H26B 0.9700

O1—Sn1—C21 89.83 (9) C9—C14—H14B 109.4

O1—Sn1—C9 99.86 (9) C13—C14—H14B 109.4

C21—Sn1—C9 116.16 (10) H14A—C14—H14B 108.0

O1—Sn1—C15 98.68 (9) C20—C15—C16 110.5 (2)

C21—Sn1—C15 115.26 (11) C20—C15—Sn1 115.4 (2)

C9—Sn1—C15 124.93 (11) C16—C15—Sn1 112.8 (2)

O1—Sn1—O2i 170.61 (11) C20—C15—H15 105.8

C21—Sn1—O2i 81.49 (9) C16—C15—H15 105.8

C9—Sn1—O2i 87.27 (9) Sn1—C15—H15 105.8

C15—Sn1—O2i 81.95 (9) C17—C16—C15 110.8 (3)

O4—N1—O5 124.9 (4) C17—C16—H16A 109.5

O4—N1—C6 118.5 (3) C15—C16—H16A 109.5

O5—N1—C6 116.6 (4) C17—C16—H16B 109.5

C1—O1—Sn1 132.96 (19) C15—C16—H16B 109.5

C3—O3—C2 118.1 (2) H16A—C16—H16B 108.1

O2—C1—O1 127.1 (3) C18—C17—C16 112.2 (3)

O2—C1—C2 118.8 (3) C18—C17—H17A 109.2

O1—C1—C2 114.0 (3) C16—C17—H17A 109.2

O3—C2—C1 115.0 (2) C18—C17—H17B 109.2

O3—C2—H2A 108.5 C16—C17—H17B 109.2

C1—C2—H2A 108.5 H17A—C17—H17B 107.9

O3—C2—H2B 108.5 C17—C18—C19 111.3 (3)

C1—C2—H2B 108.5 C17—C18—H18A 109.4

H2A—C2—H2B 107.5 C19—C18—H18A 109.4

O3—C3—C8 125.4 (3) C17—C18—H18B 109.4

O3—C3—C4 115.2 (3) C19—C18—H18B 109.4

C8—C3—C4 119.3 (3) H18A—C18—H18B 108.0

C5—C4—C3 120.3 (3) C18—C19—C20 111.5 (3)

C5—C4—H4 119.9 C18—C19—H19A 109.3

C3—C4—H4 119.9 C20—C19—H19A 109.3

C6—C5—C4 119.8 (3) C18—C19—H19B 109.3

C6—C5—H5A 120.1 C20—C19—H19B 109.3

C4—C5—H5A 120.1 H19A—C19—H19B 108.0

C5—C6—C7 120.9 (3) C15—C20—C19 112.0 (3)

C5—C6—N1 120.2 (3) C15—C20—H20A 109.2

C7—C6—N1 118.9 (3) C19—C20—H20A 109.2

C8—C7—C6 119.8 (3) C15—C20—H20B 109.2

C8—C7—H7 120.1 C19—C20—H20B 109.2

C6—C7—H7 120.1 H20A—C20—H20B 107.9

C7—C8—C3 119.8 (3) C22—C21—C26 110.6 (2)

C7—C8—H8 120.1 C22—C21—Sn1 112.46 (18)

C3—C8—H8 120.1 C26—C21—Sn1 111.92 (17)

C14—C9—C10 109.6 (2) C22—C21—H21 107.2

C14—C9—Sn1 114.66 (18) C26—C21—H21 107.2

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, m7–m9

C14—C9—H9 107.0 C23—C22—C21 111.5 (2)

C10—C9—H9 107.0 C23—C22—H22A 109.3

Sn1—C9—H9 107.0 C21—C22—H22A 109.3

C11—C10—C9 111.4 (3) C23—C22—H22B 109.3

C11—C10—H10A 109.3 C21—C22—H22B 109.3

C9—C10—H10A 109.3 H22A—C22—H22B 108.0

C11—C10—H10B 109.3 C24—C23—C22 111.3 (3)

C9—C10—H10B 109.3 C24—C23—H23A 109.4

H10A—C10—H10B 108.0 C22—C23—H23A 109.4

C10—C11—C12 111.1 (3) C24—C23—H23B 109.4

C10—C11—H11A 109.4 C22—C23—H23B 109.4

C12—C11—H11A 109.4 H23A—C23—H23B 108.0

C10—C11—H11B 109.4 C25—C24—C23 111.4 (3)

C12—C11—H11B 109.4 C25—C24—H24A 109.3

H11A—C11—H11B 108.0 C23—C24—H24A 109.3

C13—C12—C11 112.0 (3) C25—C24—H24B 109.3

C13—C12—H12A 109.2 C23—C24—H24B 109.3

C11—C12—H12A 109.2 H24A—C24—H24B 108.0

C13—C12—H12B 109.2 C24—C25—C26 110.9 (3)

C11—C12—H12B 109.2 C24—C25—H25A 109.5

H12A—C12—H12B 107.9 C26—C25—H25A 109.5

C12—C13—C14 111.1 (3) C24—C25—H25B 109.5

C12—C13—H13A 109.4 C26—C25—H25B 109.5

C14—C13—H13A 109.4 H25A—C25—H25B 108.0

C12—C13—H13B 109.4 C25—C26—C21 112.6 (2)

C14—C13—H13B 109.4 C25—C26—H26A 109.1

H13A—C13—H13B 108.0 C21—C26—H26A 109.1

C9—C14—C13 111.1 (2) C25—C26—H26B 109.1

C9—C14—H14A 109.4 C21—C26—H26B 109.1

C13—C14—H14A 109.4 H26A—C26—H26B 107.8

C21—Sn1—O1—C1 175.0 (3) C10—C11—C12—C13 54.4 (4)

C9—Sn1—O1—C1 −68.5 (3) C11—C12—C13—C14 −54.6 (4)

C15—Sn1—O1—C1 59.5 (3) C10—C9—C14—C13 −57.1 (3)

Sn1—O1—C1—O2 13.8 (4) Sn1—C9—C14—C13 177.1 (2)

Sn1—O1—C1—C2 −164.07 (19) C12—C13—C14—C9 56.4 (3)

C3—O3—C2—C1 −80.2 (3) O1—Sn1—C15—C20 −98.5 (2)

O2—C1—C2—O3 166.4 (3) C21—Sn1—C15—C20 167.5 (2)

O1—C1—C2—O3 −15.6 (4) C9—Sn1—C15—C20 10.0 (3)

C2—O3—C3—C8 9.8 (4) O1—Sn1—C15—C16 29.7 (2)

C2—O3—C3—C4 −168.9 (3) C21—Sn1—C15—C16 −64.2 (2)

O3—C3—C4—C5 176.7 (3) C9—Sn1—C15—C16 138.2 (2)

C8—C3—C4—C5 −2.1 (5) C20—C15—C16—C17 −54.5 (4)

C3—C4—C5—C6 −0.3 (5) Sn1—C15—C16—C17 174.8 (2)

C4—C5—C6—C7 2.0 (5) C15—C16—C17—C18 55.7 (4)

C4—C5—C6—N1 −177.5 (3) C16—C17—C18—C19 −55.5 (4)

O4—N1—C6—C5 179.6 (3) C17—C18—C19—C20 54.6 (5)

(12)

O4—N1—C6—C7 0.0 (5) Sn1—C15—C20—C19 −176.0 (2)

O5—N1—C6—C7 −179.8 (3) C18—C19—C20—C15 −54.8 (5)

C5—C6—C7—C8 −1.4 (5) O1—Sn1—C21—C22 68.5 (2)

N1—C6—C7—C8 178.2 (3) C9—Sn1—C21—C22 −32.4 (2)

C6—C7—C8—C3 −0.9 (5) C15—Sn1—C21—C22 168.00 (19)

O3—C3—C8—C7 −176.0 (3) O1—Sn1—C21—C26 −56.69 (18)

C4—C3—C8—C7 2.7 (4) C9—Sn1—C21—C26 −157.60 (18)

O1—Sn1—C9—C14 99.3 (2) C15—Sn1—C21—C26 42.8 (2)

C21—Sn1—C9—C14 −166.04 (19) C26—C21—C22—C23 −53.0 (3)

C15—Sn1—C9—C14 −8.7 (3) Sn1—C21—C22—C23 −178.9 (2)

O1—Sn1—C9—C10 −25.7 (2) C21—C22—C23—C24 55.2 (4)

C21—Sn1—C9—C10 69.0 (2) C22—C23—C24—C25 −56.8 (4)

C15—Sn1—C9—C10 −133.62 (19) C23—C24—C25—C26 56.3 (4)

C14—C9—C10—C11 57.1 (3) C24—C25—C26—C21 −55.1 (3)

Sn1—C9—C10—C11 −175.2 (2) C22—C21—C26—C25 53.3 (3)

C9—C10—C11—C12 −55.7 (4) Sn1—C21—C26—C25 179.5 (2)

Figure

Figure 1
Figure 1

References

Related documents

remove health expenditures from the model (table 3, column 5), which are insignificant anyway, military expenditures become significant at the 10% significance level, the

CDUS should be used as a first modality in evaluation of patients of PAD especially where low grade stenosis is anticipated, patients prone for significant vascular calcification

Long-term sustainability of human and non-human life can be achieved only by creating an entirely new economy that eschews the current economy’s pursuit of continuous growth and

long-term debt and short-term debt and four structured capital flow types: equity, debt, long term and short term.. Extending earlier papers and systematically testing the

Cross-correlations analysis is one of the methods used to determine the re- lationship between the referent country cycle (usually cycle in GDP series of the European Union) and

The aim of this study was to evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters

One key advantage of this staged design is that through grounding partially the utterance to some entities and predicates in the KB, we make the search far more efficient by focusing

In both simultaneous-move and private leadership models, if α = 0, then the equilibrium price is equal to the public firm’s marginal cost z.. However, in the simultaneous-move