• No results found

N (2,4 Di­nitro­phen­yl) N′ (4 meth­oxy­benzyl­­idene)hydrazine11

N/A
N/A
Protected

Academic year: 2020

Share "N (2,4 Di­nitro­phen­yl) N′ (4 meth­oxy­benzyl­­idene)hydrazine11"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o862

Jinget al. C

14H12N4O5 doi:10.1107/S160053680600287X Acta Cryst.(2006). E62, o862–o863

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

N

-(2,4-Dinitrophenyl)-

N

000

-(4-methoxybenzyl-idene)hydrazine

Zuo-Liang Jing,* Yu Liu, Xin Chen and Yu Ming

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People’s Republic of China

Correspondence e-mail: jzl74@tust.edu.cn

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.034

wRfactor = 0.096

Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 20 January 2006 Accepted 24 January 2006

#2006 International Union of Crystallography All rights reserved

In the crystal structure of the title compound, C14H12N4O5,

molecules are connected viaweak intermolecular N—H O and C—H O hydrogen bonds, forming a three-dimensional network.

Comment

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwaet al., 1986; Santos et al., 2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands (Yuet al., 2005; Denget al., 2005; Jing, Fanet al., 2005a,b; Jing, Wanget al., 2005), we report the synthesis and structure of the title compound, (I).

The molecular structure of (I) is approximately planar (Fig. 1); the central chromophore (C1–C6/N1–N4) and the 4-methoxybenzaldehyde group (C7—C13/O5) are planar with r.m.s. deviations of 0.0288 (2) and 0.0051 (5) A˚ , respectively; the dihedral angle between these two planes is 1.29 (7). An

intramolecular N—H O hydrogen bond stabilizes the mol-ecular structure, while intermolmol-ecular N—H O and C— H O hydrogen bonds stabilize the crystal structure (Table 2 and Fig. 2).

Experimental

[image:1.610.204.460.609.721.2]

An anhydrous ethanol solution (50 ml) of 4-methoxybenzaldehyde (1.36 g, 10 mmol) was added to an anhydrous ethanol solution

Figure 1

(2)

(50 ml) of (2,4-dinitrophenyl)hydrazine (2.03 g, 10 mmol) and the mixture was stirred at 330 K for 6 h under N2, whereupon a red

solution appeared. The solvent was removed and the residue was recrystallized from N,N-dimethylformamide. The product was isolated and then driedin vacuoto give the title compound in 82% yield. Red single crystals suitable for X-ray analysis were obtained by slow evaporation of anN,N-dimethylformamide solution of (I).

Crystal data

C14H12N4O5

Mr= 316.28

Monoclinic,P21=n a= 6.189 (2) A˚

b= 8.581 (3) A˚

c= 26.669 (11) A˚

= 96.392 (5) V= 1407.5 (9) A˚3

Z= 4

Dx= 1.492 Mg m 3

MoKradiation Cell parameters from 2340

reflections

= 3.1–26.1

= 0.12 mm1

T= 294 (2) K Block, red

0.240.200.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.963,Tmax= 0.979

7349 measured reflections

2481 independent reflections 1914 reflections withI> 2(I)

Rint= 0.017 max= 25.0

h=7!6

k=10!9

l=31!31

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.034

wR(F2) = 0.096

S= 1.03 2481 reflections 213 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0536P)2

+ 0.1714P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.11 e A˚

3

min=0.21 e A˚

[image:2.610.46.298.74.190.2]

3

Table 1

Selected geometric parameters (A˚ ,).

O5—C11 1.3614 (15) N1—C3 1.4500 (19) N2—C5 1.4462 (18)

N3—C6 1.3457 (18) N3—N4 1.3782 (15) N4—C7 1.2746 (18) C6—N3—N4 119.99 (12) C7—N4—N3 114.37 (12)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H3 O4 0.869 (18) 1.984 (17) 2.6189 (17) 129.0 (14) N3—H3 O4i

0.869 (18) 2.620 (18) 3.4419 (19) 158.2 (14) C2—H2 O5ii

0.93 2.59 3.375 (2) 143 C14—H14B O2iii

0.96 2.56 3.188 (3) 123

Symmetry codes: (i)x;yþ2;z; (ii)xþ2;yþ1;z; (iii)xþ1 2;yþ

1 2;z

3 2.

The H atom attached to N atom was located in a difference Fourier map and refined freely. C-bound H atoms were included in calculated positions and refined using a riding model approximation, with C—H = 0.93 A˚ (aromatic) and 0.96 A˚ (methyl), and with Uiso(H) =

1.2Ueq(C) and 1.5Ueq(C), respectively.

Data collection:SMART(Bruker, 1999); cell refinement:SAINT

(Bruker, 1999); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

References

Bruker (1997). SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999).SMART(version 5.0) andSAINT(Version 4.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005).Acta Cryst.E61, o2545–o2546.

Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005a).Acta Cryst.E61, o3208–o3209.

Jing, Z.-L., Fan, Z., Yu, M., Chen, X. & Deng, Q.-L. (2005b).Acta Cryst.E61, o3495–o3496.

Jing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005).Acta Cryst.E61, o4316–o4317.

Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986).Inorg. Chim. Acta,118, 179–185.

Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001).J. Chem. Soc. Dalton Trans.838–844.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997).SHELXS97&SHELXL97. University of Go¨ttingen,

Germany.

Yu, M., Chen, X. & Jing, Z.-L. (2005).Acta Cryst.E61, o1345–o1346.

Figure 2

[image:2.610.315.566.93.146.2]
(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o862–o863

supporting information

Acta Cryst. (2006). E62, o862–o863 [https://doi.org/10.1107/S160053680600287X]

N

-(2,4-Dinitrophenyl)-

N

-(4-methoxybenzylidene)hydrazine

Zuo-Liang Jing, Yu Liu, Xin Chen and Yu Ming

(I)

Crystal data

C14H12N4O5

Mr = 316.28 Monoclinic, P21/n

a = 6.189 (2) Å

b = 8.581 (3) Å

c = 26.669 (11) Å

β = 96.392 (5)°

V = 1407.5 (9) Å3

Z = 4

F(000) = 656

Dx = 1.492 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 2340 reflections

θ = 3.1–26.1°

µ = 0.12 mm−1

T = 294 K

Block, yellow

0.24 × 0.20 × 0.18 mm

Data collection

CCD area detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.963, Tmax = 0.979

7349 measured reflections 2481 independent reflections 1914 reflections with I > 2σ(I)

Rint = 0.017

θmax = 25.0°, θmin = 2.5°

h = −7→6

k = −10→9

l = −31→31

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.034

wR(F2) = 0.096

S = 1.03

2481 reflections 213 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0536P)2 + 0.1714P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.11 e Å−3

Δρmin = −0.21 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.3423 (2) 0.45260 (16) 0.24373 (4) 0.0786 (4)

O2 0.0374 (2) 0.57267 (15) 0.24395 (4) 0.0732 (4)

O3 −0.21341 (15) 0.91196 (13) 0.11194 (4) 0.0544 (3)

O4 −0.05330 (15) 0.93642 (13) 0.04464 (4) 0.0485 (3)

O5 1.16761 (16) 0.67880 (13) −0.15044 (4) 0.0534 (3)

N1 0.2021 (2) 0.54176 (16) 0.22460 (5) 0.0554 (4)

N2 −0.06467 (17) 0.88067 (13) 0.08692 (4) 0.0396 (3)

N3 0.31318 (19) 0.79195 (15) 0.03573 (4) 0.0410 (3)

H3 0.218 (3) 0.856 (2) 0.0209 (6) 0.063 (5)*

N4 0.49046 (17) 0.74551 (14) 0.01246 (4) 0.0407 (3)

C1 0.4396 (2) 0.63427 (17) 0.10686 (5) 0.0438 (4)

H1 0.5617 0.6076 0.0914 0.053*

C2 0.4153 (2) 0.57340 (18) 0.15287 (6) 0.0468 (4)

H2 0.5199 0.5063 0.1685 0.056*

C3 0.2329 (2) 0.61192 (16) 0.17645 (5) 0.0430 (3)

C4 0.0793 (2) 0.71209 (16) 0.15458 (5) 0.0413 (3)

H4 −0.0409 0.7378 0.1709 0.050*

C5 0.1041 (2) 0.77512 (15) 0.10779 (5) 0.0361 (3)

C6 0.2851 (2) 0.73685 (15) 0.08180 (5) 0.0369 (3)

C7 0.4991 (2) 0.80444 (17) −0.03114 (5) 0.0392 (3)

H7 0.3898 0.8727 −0.0439 0.047*

C8 0.6728 (2) 0.76941 (16) −0.06176 (5) 0.0366 (3)

C9 0.8453 (2) 0.66906 (16) −0.04617 (5) 0.0394 (3)

H9 0.8509 0.6203 −0.0149 0.047*

C10 1.0061 (2) 0.64189 (17) −0.07647 (5) 0.0407 (3)

H10 1.1199 0.5748 −0.0657 0.049*

C11 1.0002 (2) 0.71415 (16) −0.12336 (5) 0.0394 (3)

C12 0.8303 (2) 0.81308 (17) −0.13959 (5) 0.0405 (3)

H12 0.8245 0.8612 −0.1710 0.049*

C13 0.6694 (2) 0.83953 (17) −0.10867 (5) 0.0398 (3)

H13 0.5554 0.9063 −0.1196 0.048*

C14 1.1818 (3) 0.7624 (2) −0.19634 (6) 0.0601 (5)

H14A 1.0598 0.7361 −0.2203 0.090*

H14B 1.3141 0.7347 −0.2098 0.090*

H14C 1.1811 0.8723 −0.1897 0.090*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o862–o863

O2 0.0946 (9) 0.0761 (9) 0.0554 (7) 0.0086 (7) 0.0364 (7) 0.0042 (6)

O3 0.0427 (6) 0.0635 (7) 0.0608 (7) 0.0119 (5) 0.0231 (5) 0.0002 (5)

O4 0.0453 (6) 0.0573 (7) 0.0442 (6) 0.0096 (5) 0.0103 (5) 0.0060 (5)

O5 0.0477 (6) 0.0642 (7) 0.0528 (6) 0.0114 (5) 0.0257 (5) 0.0062 (5)

N1 0.0774 (10) 0.0484 (8) 0.0416 (7) −0.0004 (7) 0.0121 (7) −0.0024 (6)

N2 0.0341 (6) 0.0406 (7) 0.0454 (7) 0.0001 (5) 0.0098 (5) −0.0048 (5)

N3 0.0343 (6) 0.0494 (8) 0.0413 (7) 0.0062 (5) 0.0128 (5) 0.0004 (6)

N4 0.0339 (6) 0.0468 (7) 0.0435 (7) 0.0018 (5) 0.0133 (5) −0.0047 (5)

C1 0.0384 (7) 0.0446 (8) 0.0503 (9) 0.0047 (6) 0.0124 (6) −0.0024 (7)

C2 0.0481 (8) 0.0431 (9) 0.0494 (9) 0.0051 (6) 0.0055 (7) 0.0009 (7)

C3 0.0540 (9) 0.0389 (8) 0.0366 (7) −0.0022 (7) 0.0081 (6) −0.0023 (6)

C4 0.0450 (8) 0.0379 (8) 0.0430 (8) −0.0030 (6) 0.0142 (6) −0.0090 (6)

C5 0.0345 (7) 0.0360 (8) 0.0389 (7) −0.0009 (5) 0.0088 (6) −0.0056 (6)

C6 0.0346 (7) 0.0355 (7) 0.0415 (8) −0.0035 (6) 0.0080 (6) −0.0057 (6)

C7 0.0342 (7) 0.0437 (8) 0.0405 (8) 0.0021 (6) 0.0071 (6) −0.0024 (6)

C8 0.0332 (7) 0.0385 (8) 0.0389 (7) −0.0019 (6) 0.0073 (6) −0.0048 (6)

C9 0.0396 (7) 0.0437 (8) 0.0354 (7) 0.0006 (6) 0.0067 (6) 0.0015 (6)

C10 0.0358 (7) 0.0429 (8) 0.0439 (8) 0.0053 (6) 0.0058 (6) 0.0001 (6)

C11 0.0356 (7) 0.0415 (8) 0.0430 (8) −0.0015 (6) 0.0125 (6) −0.0058 (6)

C12 0.0422 (8) 0.0452 (8) 0.0347 (7) −0.0003 (6) 0.0067 (6) 0.0009 (6)

C13 0.0357 (7) 0.0429 (8) 0.0407 (8) 0.0049 (6) 0.0031 (6) −0.0018 (6)

C14 0.0614 (10) 0.0671 (11) 0.0573 (10) 0.0039 (8) 0.0313 (8) 0.0054 (9)

Geometric parameters (Å, º)

O1—N1 1.2252 (18) C4—C5 1.3841 (19)

O2—N1 1.2217 (17) C4—H4 0.9300

O3—N2 1.2254 (14) C5—C6 1.4199 (18)

O4—N2 1.2339 (15) C7—C8 1.4516 (18)

O5—C11 1.3614 (15) C7—H7 0.9300

O5—C14 1.4298 (18) C8—C13 1.3864 (19)

N1—C3 1.4500 (19) C8—C9 1.3984 (19)

N2—C5 1.4462 (18) C9—C10 1.3703 (18)

N3—C6 1.3457 (18) C9—H9 0.9300

N3—N4 1.3782 (15) C10—C11 1.393 (2)

N3—H3 0.869 (18) C10—H10 0.9300

N4—C7 1.2746 (18) C11—C12 1.383 (2)

C1—C2 1.357 (2) C12—C13 1.3809 (18)

C1—C6 1.412 (2) C12—H12 0.9300

C1—H1 0.9300 C13—H13 0.9300

C2—C3 1.392 (2) C14—H14A 0.9600

C2—H2 0.9300 C14—H14B 0.9600

C3—C4 1.364 (2) C14—H14C 0.9600

C11—O5—C14 117.74 (11) C1—C6—C5 116.28 (13)

O2—N1—O1 123.06 (14) N4—C7—C8 122.69 (13)

O2—N1—C3 118.84 (14) N4—C7—H7 118.7

(6)

O3—N2—O4 122.36 (12) C13—C8—C9 118.03 (12)

O3—N2—C5 118.80 (12) C13—C8—C7 118.68 (12)

O4—N2—C5 118.84 (10) C9—C8—C7 123.29 (12)

C6—N3—N4 119.99 (12) C10—C9—C8 120.69 (13)

C6—N3—H3 119.3 (10) C10—C9—H9 119.7

N4—N3—H3 120.7 (11) C8—C9—H9 119.7

C7—N4—N3 114.37 (12) C9—C10—C11 120.37 (13)

C2—C1—C6 122.04 (13) C9—C10—H10 119.8

C2—C1—H1 119.0 C11—C10—H10 119.8

C6—C1—H1 119.0 O5—C11—C12 124.60 (13)

C1—C2—C3 119.62 (14) O5—C11—C10 115.57 (12)

C1—C2—H2 120.2 C12—C11—C10 119.83 (12)

C3—C2—H2 120.2 C13—C12—C11 119.21 (13)

C4—C3—C2 121.22 (13) C13—C12—H12 120.4

C4—C3—N1 119.09 (13) C11—C12—H12 120.4

C2—C3—N1 119.67 (14) C12—C13—C8 121.87 (13)

C3—C4—C5 119.35 (12) C12—C13—H13 119.1

C3—C4—H4 120.3 C8—C13—H13 119.1

C5—C4—H4 120.3 O5—C14—H14A 109.5

C4—C5—C6 121.48 (13) O5—C14—H14B 109.5

C4—C5—N2 116.37 (11) H14A—C14—H14B 109.5

C6—C5—N2 122.15 (12) O5—C14—H14C 109.5

N3—C6—C1 120.10 (12) H14A—C14—H14C 109.5

N3—C6—C5 123.62 (13) H14B—C14—H14C 109.5

C6—N3—N4—C7 179.55 (12) C4—C5—C6—N3 178.22 (12)

C6—C1—C2—C3 0.2 (2) N2—C5—C6—N3 −1.4 (2)

C1—C2—C3—C4 −1.1 (2) C4—C5—C6—C1 −1.4 (2)

C1—C2—C3—N1 177.35 (13) N2—C5—C6—C1 179.02 (12)

O2—N1—C3—C4 1.0 (2) N3—N4—C7—C8 −179.74 (12)

O1—N1—C3—C4 −179.69 (14) N4—C7—C8—C13 −179.72 (13)

O2—N1—C3—C2 −177.49 (14) N4—C7—C8—C9 −0.3 (2)

O1—N1—C3—C2 1.8 (2) C13—C8—C9—C10 0.3 (2)

C2—C3—C4—C5 0.8 (2) C7—C8—C9—C10 −179.18 (13)

N1—C3—C4—C5 −177.72 (12) C8—C9—C10—C11 0.0 (2)

C3—C4—C5—C6 0.5 (2) C14—O5—C11—C12 7.1 (2)

C3—C4—C5—N2 −179.86 (12) C14—O5—C11—C10 −173.46 (13)

O3—N2—C5—C4 2.33 (18) C9—C10—C11—O5 −179.86 (12)

O4—N2—C5—C4 −177.93 (12) C9—C10—C11—C12 −0.4 (2)

O3—N2—C5—C6 −178.05 (12) O5—C11—C12—C13 179.85 (13)

O4—N2—C5—C6 1.69 (19) C10—C11—C12—C13 0.5 (2)

N4—N3—C6—C1 1.4 (2) C11—C12—C13—C8 −0.1 (2)

N4—N3—C6—C5 −178.13 (12) C9—C8—C13—C12 −0.2 (2)

C2—C1—C6—N3 −178.59 (14) C7—C8—C13—C12 179.25 (13)

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o862–o863

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3···O4 0.869 (18) 1.984 (17) 2.6189 (17) 129.0 (14)

N3—H3···O4i 0.869 (18) 2.620 (18) 3.4419 (19) 158.2 (14)

C2—H2···O5ii 0.93 2.59 3.375 (2) 143

C14—H14B···O2iii 0.96 2.56 3.188 (3) 123

Figure

Figure 1The molecular structure of (I), with displacement ellipsoids drawn at the30% probability level.
Table 2

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical