• No results found

trans Bis­(carbazol 3 yl­ethynyl)­bis­­(tri n butyl­phosphine)­platinum(II)

N/A
N/A
Protected

Academic year: 2020

Share "trans Bis­(carbazol 3 yl­ethynyl)­bis­­(tri n butyl­phosphine)­platinum(II)"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m774

Muhammad S. Khanet al. [Pt(C12H27P)2(C14H8N)2] DOI: 10.1107/S1600536803017872 Acta Cryst.(2003). E59, m774±m776 Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

trans

-Bis(carbazol-3-ylethynyl)bis(tri-n

-butylphosphine)platinum(II)

Muhammad S. Khan,a Rahma K. M. Al-Saadi,a

Louise Male,b* Paul R. Raithbyb and Jens K. Bjernemosec

aDepartment of Chemistry, College of Science, Sultan Qaboos University, Sultanate of Oman, bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England, and cDepartment of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Correspondence e-mail: chplm@bath.ac.uk

Key indicators

Single-crystal X-ray study

T= 150 K

Mean(C±C) = 0.005 AÊ

Rfactor = 0.024

wRfactor = 0.062

Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Pt(C12H27P)2(C14H8N)2], is a mono-nuclear PtII di-yne exhibiting -conjugation along the molecular backbone. It is used as a model species for rigid-rod platinum poly yne compounds of which it is a precursor. Such compounds are of interest due to the extended -conjugation through the hetero-aromatic linker unit in the backbone.

Comment

Here we report the structural characterization of the title compound, (I), which is a mononuclear platinum(II) di-yne species, trans-[Pt(PnBu

3)2(ÐC CR)2] (R = carbazol-3-yl). Such platinum-containing species form the building blocks for rigid-rod organometallic poly-ynes of general formulatrans -[Pt(PnBu

3)2ÐC CÐRÐC CÐ]1 (R = aromatic or a

heteroaromatic linker unit). Platinum(II) poly-ynes are of immense current interest due to-electron conjugation along the backbone, donor±acceptor metal±ligand interactions and novel photophysical properties (Wittmann et al., 1994; Beljonne et al., 1996; Younus et al., 1998; Chawdhury et al., 1998, 1999; Khan, Al-Mandhary, Al-Suti, Hisahmet al., 2002; Khan, Al-Mandhary, Al-Suti, Feeder et al., 2002; Khan, Al-Mandhary, Al-Suti, Corcoranet al.2003; Khan, Al-Sutiet al., 2003; Khan, Al-Mandhary, Al-Suti, Ahrenset al., 2003). They possess interesting opto-electronic properties useful for application in light-emitting diodes and photocells (Wilsonet al., 2000; Wilson, Chawdhuryet al., 2001; Wilson, Dhootet al., 2001). Precursors to these species, such as the title compound, are studied as models of the molecular and electronic prop-erties and structure±property relationships in the metal poly-ynes.

The structure of (I) exhibits a CÐH N close contact between the alkyl H atom H25A and nitrogen N1, with a C25 N1 distance of 3.674 (5) AÊ (Table 2).

Experimental

The title compound was synthesized by the following procedure. To a stirred solution of trans-[(PnBu

3)2PtCl2] (0.38 g, 0.5 mmol) and

3-ethynylcarbazole (0.19 g, 1.0 mmol) in CH2Cl2/iPr2NH (50 ml, 1:1v/v)

under nitrogen was added a catalytic amount of CuI (5 mg). The

(2)

yellow solution was stirred at room temperature for 15 h, after which all volatile components were removed under reduced pressure. The residue was dissolved in CH2Cl2and passed through a silica column

eluting with hexane/CH2Cl2(1:1,v/v). Removal of the solvents under

vacuo gave the title complex as a pale-yellow solid in 72% yield.

Crystal data

[Pt(C12H27P)2(C14H8N)2] Mr= 980.13

Monoclinic,P21=a a= 9.2860 (1) AÊ b= 19.4330 (3) AÊ c= 13.6980 (2) AÊ

= 104.238 (1) V= 2395.94 (6) AÊ3 Z= 2

Dx= 1.359 Mg mÿ3 MoKradiation

Cell parameters from 25483 re¯ections

= 2.9±27.5

= 3.03 mmÿ1 T= 150 (2) K Block, white

0.330.250.13 mm

Data collection

Bruker±Nonius KappaCCD diffractometer

'and!scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995) Tmin= 0.538,Tmax= 0.683 35095 measured re¯ections

4221 independent re¯ections 3270 re¯ections withI> 2(I) Rint= 0.070

max= 25.0 h=ÿ11!11 k=ÿ23!23 l=ÿ16!16

Re®nement

Re®nement onF2 R[F2> 2(F2)]= 0.024 wR(F2) = 0.062 S= 1.03 4221 re¯ections 260 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0312P)2 + 0.9277P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.70 e AÊÿ3 min=ÿ1.32 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0016 (3)

Table 1

Selected geometric parameters (AÊ,).

C3ÐN1 1.383 (4)

C3ÐC4 1.408 (4)

C4ÐC12 1.453 (4)

C7ÐN1 1.381 (4)

C7ÐC12 1.414 (4)

C10ÐC13 1.447 (4)

C13ÐC14 1.199 (4)

C14ÐPt1 2.013 (3)

C15ÐP1 1.825 (3)

C19ÐP1 1.830 (3)

C23ÐP1 1.819 (3)

P1ÐPt1 2.2935 (8)

N1ÐC3ÐC4 108.5 (3)

C3ÐC4ÐC12 106.9 (3)

N1ÐC7ÐC12 108.7 (3)

C7ÐC12ÐC4 106.3 (3)

C14ÐC13ÐC10 176.7 (3)

C13ÐC14ÐPt1 177.5 (3)

C7ÐN1ÐC3 109.5 (3)

C23ÐP1ÐPt1 117.91 (11)

C15ÐP1ÐPt1 112.13 (11)

C19ÐP1ÐPt1 111.94 (10)

C14ÐPt1ÐP1 93.30 (8)

N1ÐC3ÐC4ÐC12 ÿ0.6 (3)

C8ÐC9ÐC10ÐC13 ÿ178.2 (3)

N1ÐC7ÐC12ÐC4 0.5 (3)

C3ÐC4ÐC12ÐC7 0.1 (3)

C12ÐC7ÐN1ÐC3 ÿ0.9 (3)

C4ÐC3ÐN1ÐC7 1.0 (3)

C13ÐC14ÐPt1ÐP1 ÿ170 (7)

C23ÐP1ÐPt1ÐC14 ÿ5.91 (15) C15ÐP1ÐPt1ÐC14 115.13 (14) C19ÐP1ÐPt1ÐC14 ÿ127.65 (15)

Acta Cryst.(2003). E59, m774±m776 Muhammad S. Khanet al. [Pt(C12H27P)2(C14H8N)2]

m775

metal-organic papers

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(3)

metal-organic papers

m776

Muhammad S. Khanet al. [Pt(C12H27P)2(C14H8N)2] Acta Cryst.(2003). E59, m774±m776

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C25ÐH25A N1i 0.99 2.69 3.674 (5) 171

Symmetry code: (i)1

2‡x;12ÿy;z.

Aromatic, methylene and methyl H atoms were constrained as riding atoms, ®xed to the parent atoms with distances of 0.95, 0.99 and 0.98 AÊ, respectively. The isotropic displacement parameters were ®xed to 120% of that of the parent atom for aromatic and methylene H atoms and 150% for methyl H atoms.

Data collection:COLLECT(Nonius, 1997); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction:HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997),

X-SEED(Barbour, 2001) andPOV-Ray for Windows(Cason, 1999); software used to prepare material for publication: WinGX public-ation routines (Farrugia, 1999).

We wish to thank Sultan Qaboos University, Oman, the EPSRC, England, and the Cambridge Crystallographic Data Centre, England, for funding.

References

Barbour, L. J. (2001).J. Supramol.Chem.1, 189±191.

Beljonne, D., Wittmann, H. F., KoÈhler, A., Graham, S., Younus, M., Lewis, J., Raithby, P. R., Khan, M. S., Friend, R. H. & Bredas, J. L. (1996).J. Chem. Phys.105, 3868±3877.

Blessing, R. H. (1995).Acta Cryst.A51, 33±38

Cason, C. (1999). POV-Ray for Windows. POV-Team, Williamstown, Australia.

Chawdhury, N., KoÈhler, A., Friend, R. H., Wong, W.-Y., Lewis, J., Younus, M., Raithby, P. R., Corcoran, T. C., Al-Mandhary, M. R. A. & Khan, M. S. (1999).J. Chem. Phys.110, 4963±4970.

Chawdhury, N., KoÈhler, A., Friend, R. H., Younus, M., Long, N. J., Raithby, P. R. & Lewis, J. (1998).Macromolecules,31, 722±727.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838.

Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Ahrens, B., Mahon, M. F., Male, L., Raithby, P. R., Boothby, C. E. & KoÈhler, A. (2003).J. Chem. Soc. Dalton Trans.pp. 74±84.

Khan, M. S., Mandhary, M. R. A., Suti, M. K., Corcoran, T. C., Al-Mahrooqi, Y., Att®eld, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., KoÈhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003).New J. Chem.27, 140±149.

Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Feeder, N., Nahar, S., KoÈhler, A., Friend, R. H., Wilson, P. J. & Raithby, P. R. (2002).J. Chem. Soc. Dalton Trans.pp. 2441±2448.

Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Hisahm, A. K., Raithby, P. R., Ahrens, B., Mahon, M. F., Male, L., Marseglia, E. A., Tedesco, E., Friend, R. H., KoÈhler, A., Feeder, N. & Teat, S. J. (2002).J. Chem. Soc. Dalton Trans.pp. 1358±1368.

Khan, M. S., Al-Suti, M. K., Al-Mandhary, M. R. A., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Male, L., Raithby, P. R., Friend, R. H., KoÈhler, A. & Wilson, J. S. (2003).J. Chem. Soc. Dalton Trans.pp. 65±73.

Nonius (1997).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307±326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Wilson, J. S., Chawdhury, N., Al-Mandhary, M. R. A., Younus, M., Khan, M. S., Raithby, P. R., KoÈhler, A. & Friend, R. H. (2001).J. Am. Chem. Soc.123, 9412±9417.

Wilson, J. S., Dhoot, A. S., Seeley, A. J. A. B., Khan, M. S., KoÈhler, A. & Friend, R. H. (2001).Nature (London),413, 828±831.

Wilson, J. S., KoÈhler, A., Friend, R. H., Al-Suti, M. K., Al-Mandhary, M. R. A., Khan, M. S. & Raithby, P. R. (2000).J. Chem. Phys.113, 7627±7634. Wittmann, H. F., Friend, R. H., Kahn, M. S. & Lewis, J. (1994).J. Chem. Phys.

101, 2693±2698.

(4)

supporting information

sup-1

Acta Cryst. (2003). E59, m774–m776

supporting information

Acta Cryst. (2003). E59, m774–m776 [doi:10.1107/S1600536803017872]

trans

-Bis(carbazol-3-ylethynyl)bis(tri-

n

-butylphosphine)platinum(II)

Muhammad S. Khan, Rahma K. M. Al-Saadi, Louise Male, Paul R. Raithby and Jens K.

Bjernemose

S1. Comment

In this paper, we report the structural characterization of the title compound, (I), which is a mononuclear platinum(II)

di-yne species, trans-[Pt(PnBu

3)2(—C≡CR)2] (R = carbazol-3-yl). Such platinum-containing species form the building blocks

for rigid-rod organometallic poly-ynes of general formula trans-[Pt(PnBu

3)2—C≡C—R—C≡C—]∞ (R = aromatic or

heteroaromatic linker unit). Platinum(II) poly-ynes are of immense current interest due to π-electron conjugation along

the backbone, donor–acceptor metal–ligand interactions and novel photophysical properties (Wittmann et al., 1994;

Beljonne et al., 1996; Younus et al., 1998; Chawdhury et al., 1998, 1999; Khan et al., 2002, 2003). They possess

interesting optoelectronic properties useful for application in light-emitting diodes and photocells (Wilson et al., 2000,

2001). Precursors to these species, such as the title compound, are studied as models of the molecular and electronic

properties and structure-property relationships in the metal poly-ynes.

The structure of (I) exhibits a C—H···N close contact between alkynyl atom H25a and N1, with a C25···N1 distance of

3.674 (5) Å (Table 2).

S2. Experimental

The title compound was synthesized by the following procedure. To a stirred solution of trans-[(PnBu

3)2PtCl2] (0.38 g, 0.5

mmol) and 3-ethynylcarbazole (0.19 g, 1.0 mmol) in CH2Cl2/iPr2NH (50 ml, 1:1 v/v) under nitrogen was added a catalytic

amount of CuI (5 mg). The yellow solution was stirred at room temperature for 15 h, after which all volatile components

were removed under reduced pressure. The residue was dissolved in CH2Cl2 and passed through a silica column eluting

with hexane/CH2Cl2 (1:1, v/v). Removal of the solvents under vacuo gave the title complex as a pale-yellow solid in 72%

yield.

S3. Refinement

Aromatic, methylene and methyl H atom types were constrained as riding atoms fixed to the parent atoms with distances

of 0.95, 0.99 and 0.98 Å, respectively. The isotropic displacement parameters were fixed to 120% of that of the parent

(5)

supporting information

sup-2

[image:5.610.135.478.71.305.2]

Acta Cryst. (2003). E59, m774–m776

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50%

probability level.

Figure 2

Packing diagram of compound (I), showing the close intermolecular contact between atoms N1 and H25a.

(I)

Crystal data

[Pt(C12H27P)2(C14H8N)2] Mr = 980.13

Monoclinic, P21/a

[image:5.610.134.475.359.599.2]
(6)

supporting information

sup-3

Acta Cryst. (2003). E59, m774–m776 β = 104.238 (1)°

V = 2395.94 (6) Å3 Z = 2

F(000) = 1008 Dx = 1.359 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 25483 reflections θ = 2.9–27.5°

µ = 3.03 mm−1 T = 150 K Block, white

0.33 × 0.25 × 0.13 mm

Data collection

Bruker–Nonius KappaCCD diffractometer

φ and ω scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995) Tmin = 0.538, Tmax = 0.683

35095 measured reflections

4221 independent reflections 3270 reflections with I > 2σ(I) Rint = 0.070

θmax = 25.0°, θmin = 3.9°

h = −11→11

k = −23→23

l = −16→16

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.024 wR(F2) = 0.062 S = 1.03 4221 reflections 260 parameters 0 restraints

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0312P)2 + 0.9277P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.70 e Å−3

Δρmin = −1.32 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0016 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 −0.9298 (4) 0.1955 (2) −0.5822 (3) 0.0479 (10)

H1 −1.0071 0.2058 −0.64 0.057*

C2 −0.9142 (4) 0.23525 (19) −0.4978 (3) 0.0439 (10)

H2 −0.9795 0.2726 −0.4961 0.053*

C3 −0.7997 (4) 0.21912 (16) −0.4149 (2) 0.0319 (8)

C4 −0.7016 (3) 0.16412 (15) −0.4165 (2) 0.0277 (7)

C5 −0.7203 (4) 0.12433 (18) −0.5033 (2) 0.0371 (8)

H5 −0.6552 0.087 −0.5059 0.044*

C6 −0.8352 (4) 0.1400 (2) −0.5858 (3) 0.0449 (9)

H6 −0.8498 0.113 −0.6452 0.054*

C7 −0.6357 (3) 0.21772 (15) −0.2628 (2) 0.0264 (7)

C8 −0.5550 (4) 0.23210 (15) −0.1652 (2) 0.0298 (8)

H8 −0.5814 0.2693 −0.1281 0.036*

C9 −0.4354 (4) 0.19049 (15) −0.1244 (2) 0.0291 (7)

H9 −0.3792 0.1997 −0.0578 0.035*

(7)

supporting information

sup-4

Acta Cryst. (2003). E59, m774–m776

C11 −0.4738 (3) 0.12194 (15) −0.2752 (2) 0.0240 (7)

H11 −0.4462 0.0852 −0.3125 0.029*

C12 −0.5956 (3) 0.16302 (15) −0.3189 (2) 0.0247 (7)

C13 −0.2679 (4) 0.09229 (16) −0.1272 (2) 0.0268 (7)

C14 −0.1660 (4) 0.05812 (16) −0.0815 (2) 0.0281 (7)

C15 0.3196 (3) 0.07956 (16) −0.0225 (2) 0.0304 (7)

H15A 0.3695 0.0518 0.0368 0.036*

H15B 0.3913 0.0861 −0.0645 0.036*

C16 0.2821 (4) 0.15066 (16) 0.0146 (2) 0.0349 (8)

H16A 0.3763 0.1759 0.0412 0.042*

H16B 0.2242 0.1768 −0.0441 0.042*

C17 0.1956 (4) 0.15002 (19) 0.0951 (3) 0.0428 (9)

H17A 0.0915 0.1367 0.0639 0.051*

H17B 0.2386 0.1147 0.146 0.051*

C18 0.1964 (6) 0.2188 (2) 0.1472 (3) 0.0672 (14)

H18A 0.139 0.2152 0.1982 0.101*

H18B 0.1518 0.2538 0.0975 0.101*

H18C 0.299 0.2318 0.1797 0.101*

C19 0.2441 (4) −0.04446 (15) −0.1407 (2) 0.0278 (7)

H19A 0.3005 −0.0706 −0.0815 0.033*

H19B 0.1625 −0.0745 −0.1774 0.033*

C20 0.3479 (4) −0.03028 (19) −0.2099 (2) 0.0319 (7)

H20A 0.2944 −0.0021 −0.2677 0.038*

H20B 0.4342 −0.0033 −0.1723 0.038*

C21 0.4034 (4) −0.09568 (17) −0.2492 (3) 0.0371 (8)

H21A 0.3175 −0.122 −0.2888 0.044*

H21B 0.4542 −0.1246 −0.1914 0.044*

C22 0.5103 (4) −0.0809 (2) −0.3149 (3) 0.0497 (10)

H22A 0.5432 −0.1243 −0.3385 0.075*

H22B 0.5966 −0.0556 −0.2755 0.075*

H22C 0.4599 −0.053 −0.3729 0.075*

C23 0.0899 (4) 0.08302 (16) −0.2067 (2) 0.0283 (7)

H23A 0.0405 0.124 −0.1869 0.034*

H23B 0.1748 0.0994 −0.2321 0.034*

C24 −0.0199 (4) 0.04668 (17) −0.2924 (2) 0.0333 (8)

H24A 0.0286 0.0059 −0.3137 0.04*

H24B −0.1061 0.0305 −0.2682 0.04*

C25 −0.0734 (5) 0.0940 (2) −0.3816 (3) 0.0507 (10)

H25A −0.1147 0.1362 −0.3584 0.061*

H25B 0.013 0.1079 −0.4075 0.061*

C26 −0.1896 (5) 0.0629 (2) −0.4668 (3) 0.0650 (12)

H26A −0.2185 0.0966 −0.5215 0.098*

H26B −0.2769 0.0502 −0.4426 0.098*

H26C −0.1491 0.0218 −0.4918 0.098*

N1 −0.7591 (3) 0.25035 (14) −0.3214 (2) 0.0336 (7)

H1A −0.8049 0.2856 −0.3021 0.04*

P1 0.16139 (9) 0.03072 (5) −0.09511 (6) 0.02533 (19)

(8)

supporting information

sup-5

Acta Cryst. (2003). E59, m774–m776 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.034 (2) 0.074 (3) 0.034 (2) 0.011 (2) 0.0037 (17) 0.0149 (19)

C2 0.033 (2) 0.055 (2) 0.046 (2) 0.0192 (18) 0.0154 (18) 0.0157 (18)

C3 0.0259 (19) 0.0358 (19) 0.0375 (19) 0.0058 (15) 0.0141 (16) 0.0086 (15)

C4 0.0228 (18) 0.0307 (17) 0.0322 (18) 0.0022 (14) 0.0117 (15) 0.0055 (14)

C5 0.031 (2) 0.045 (2) 0.038 (2) 0.0060 (16) 0.0135 (17) 0.0011 (16)

C6 0.037 (2) 0.063 (3) 0.035 (2) 0.005 (2) 0.0087 (18) −0.0016 (18)

C7 0.0235 (18) 0.0253 (17) 0.0337 (18) 0.0048 (14) 0.0132 (15) 0.0081 (14)

C8 0.033 (2) 0.0269 (17) 0.0342 (19) 0.0013 (15) 0.0181 (16) 0.0000 (14)

C9 0.031 (2) 0.0305 (18) 0.0275 (17) −0.0075 (15) 0.0104 (15) 0.0005 (14)

C10 0.0216 (18) 0.0267 (17) 0.0332 (18) −0.0030 (14) 0.0137 (15) 0.0064 (14)

C11 0.0224 (18) 0.0226 (16) 0.0310 (18) 0.0005 (13) 0.0144 (15) 0.0023 (13)

C12 0.0215 (18) 0.0257 (16) 0.0297 (17) −0.0009 (13) 0.0118 (14) 0.0052 (13)

C13 0.0231 (19) 0.0319 (18) 0.0282 (17) −0.0034 (15) 0.0114 (15) 0.0057 (14)

C14 0.0260 (19) 0.0338 (18) 0.0275 (17) −0.0059 (15) 0.0124 (15) 0.0023 (14)

C15 0.0191 (18) 0.0376 (19) 0.0351 (18) −0.0028 (14) 0.0078 (15) 0.0057 (15)

C16 0.034 (2) 0.0377 (19) 0.0315 (19) −0.0022 (16) 0.0050 (16) 0.0011 (15)

C17 0.040 (2) 0.050 (2) 0.040 (2) −0.0012 (18) 0.0136 (18) −0.0040 (17)

C18 0.112 (4) 0.054 (3) 0.043 (2) 0.009 (3) 0.036 (3) −0.006 (2)

C19 0.0244 (19) 0.0306 (19) 0.0323 (18) 0.0010 (14) 0.0144 (15) 0.0044 (14)

C20 0.0264 (19) 0.0387 (18) 0.0328 (18) 0.0046 (16) 0.0119 (15) 0.0058 (16)

C21 0.032 (2) 0.044 (2) 0.037 (2) 0.0052 (16) 0.0118 (17) 0.0017 (16)

C22 0.046 (3) 0.064 (3) 0.045 (2) 0.012 (2) 0.024 (2) 0.000 (2)

C23 0.0248 (19) 0.0322 (18) 0.0297 (17) 0.0006 (14) 0.0101 (15) 0.0075 (14)

C24 0.027 (2) 0.041 (2) 0.0347 (19) 0.0006 (15) 0.0129 (16) 0.0026 (15)

C25 0.050 (3) 0.050 (2) 0.043 (2) 0.002 (2) −0.005 (2) 0.0085 (18)

C26 0.060 (3) 0.079 (3) 0.046 (2) −0.002 (2) −0.006 (2) 0.010 (2)

N1 0.0332 (17) 0.0329 (15) 0.0386 (17) 0.0138 (13) 0.0162 (14) 0.0040 (13)

P1 0.0195 (4) 0.0297 (4) 0.0283 (4) −0.0002 (4) 0.0089 (4) 0.0053 (4)

Pt1 0.01673 (11) 0.03025 (12) 0.02588 (12) 0.00045 (8) 0.00753 (7) 0.00580 (8)

Geometric parameters (Å, º)

C1—C2 1.369 (5) C17—H17B 0.99

C1—C6 1.398 (5) C18—H18A 0.98

C1—H1 0.95 C18—H18B 0.98

C2—C3 1.388 (5) C18—H18C 0.98

C2—H2 0.95 C19—C20 1.534 (4)

C3—N1 1.383 (4) C19—P1 1.830 (3)

C3—C4 1.408 (4) C19—H19A 0.99

C4—C5 1.393 (4) C19—H19B 0.99

C4—C12 1.453 (4) C20—C21 1.519 (5)

C5—C6 1.384 (5) C20—H20A 0.99

C5—H5 0.95 C20—H20B 0.99

C6—H6 0.95 C21—C22 1.522 (5)

(9)

supporting information

sup-6

Acta Cryst. (2003). E59, m774–m776

C7—C8 1.391 (4) C21—H21B 0.99

C7—C12 1.414 (4) C22—H22A 0.98

C8—C9 1.376 (4) C22—H22B 0.98

C8—H8 0.95 C22—H22C 0.98

C9—C10 1.414 (4) C23—C24 1.525 (4)

C9—H9 0.95 C23—P1 1.819 (3)

C10—C11 1.393 (4) C23—H23A 0.99

C10—C13 1.447 (4) C23—H23B 0.99

C11—C12 1.393 (4) C24—C25 1.513 (4)

C11—H11 0.95 C24—H24A 0.99

C13—C14 1.199 (4) C24—H24B 0.99

C14—Pt1 2.013 (3) C25—C26 1.508 (5)

C15—C16 1.541 (4) C25—H25A 0.99

C15—P1 1.825 (3) C25—H25B 0.99

C15—H15A 0.99 C26—H26A 0.98

C15—H15B 0.99 C26—H26B 0.98

C16—C17 1.516 (5) C26—H26C 0.98

C16—H16A 0.99 N1—H1A 0.88

C16—H16B 0.99 P1—Pt1 2.2935 (8)

C17—C18 1.514 (5) Pt1—C14i 2.013 (3)

C17—H17A 0.99 Pt1—P1i 2.2935 (8)

C2—C1—C6 121.9 (3) C20—C19—H19A 108.1

C2—C1—H1 119.1 P1—C19—H19A 108.1

C6—C1—H1 119.1 C20—C19—H19B 108.1

C1—C2—C3 117.7 (3) P1—C19—H19B 108.1

C1—C2—H2 121.2 H19A—C19—H19B 107.3

C3—C2—H2 121.2 C21—C20—C19 112.8 (3)

N1—C3—C2 129.7 (3) C21—C20—H20A 109

N1—C3—C4 108.5 (3) C19—C20—H20A 109

C2—C3—C4 121.8 (3) C21—C20—H20B 109

C5—C4—C3 119.3 (3) C19—C20—H20B 109

C5—C4—C12 133.8 (3) H20A—C20—H20B 107.8

C3—C4—C12 106.9 (3) C20—C21—C22 112.2 (3)

C6—C5—C4 118.9 (3) C20—C21—H21A 109.2

C6—C5—H5 120.5 C22—C21—H21A 109.2

C4—C5—H5 120.5 C20—C21—H21B 109.2

C5—C6—C1 120.4 (3) C22—C21—H21B 109.2

C5—C6—H6 119.8 H21A—C21—H21B 107.9

C1—C6—H6 119.8 C21—C22—H22A 109.5

N1—C7—C8 129.8 (3) C21—C22—H22B 109.5

N1—C7—C12 108.7 (3) H22A—C22—H22B 109.5

C8—C7—C12 121.5 (3) C21—C22—H22C 109.5

C9—C8—C7 117.6 (3) H22A—C22—H22C 109.5

C9—C8—H8 121.2 H22B—C22—H22C 109.5

C7—C8—H8 121.2 C24—C23—P1 115.1 (2)

C8—C9—C10 123.0 (3) C24—C23—H23A 108.5

(10)

supporting information

sup-7

Acta Cryst. (2003). E59, m774–m776

C10—C9—H9 118.5 C24—C23—H23B 108.5

C11—C10—C9 118.3 (3) P1—C23—H23B 108.5

C11—C10—C13 122.4 (3) H23A—C23—H23B 107.5

C9—C10—C13 119.3 (3) C25—C24—C23 111.4 (3)

C10—C11—C12 120.2 (3) C25—C24—H24A 109.4

C10—C11—H11 119.9 C23—C24—H24A 109.4

C12—C11—H11 119.9 C25—C24—H24B 109.4

C11—C12—C7 119.4 (3) C23—C24—H24B 109.4

C11—C12—C4 134.3 (3) H24A—C24—H24B 108

C7—C12—C4 106.3 (3) C26—C25—C24 114.3 (3)

C14—C13—C10 176.7 (3) C26—C25—H25A 108.7

C13—C14—Pt1 177.5 (3) C24—C25—H25A 108.7

C16—C15—P1 115.4 (2) C26—C25—H25B 108.7

C16—C15—H15A 108.4 C24—C25—H25B 108.7

P1—C15—H15A 108.4 H25A—C25—H25B 107.6

C16—C15—H15B 108.4 C25—C26—H26A 109.5

P1—C15—H15B 108.4 C25—C26—H26B 109.5

H15A—C15—H15B 107.5 H26A—C26—H26B 109.5

C17—C16—C15 115.8 (3) C25—C26—H26C 109.5

C17—C16—H16A 108.3 H26A—C26—H26C 109.5

C15—C16—H16A 108.3 H26B—C26—H26C 109.5

C17—C16—H16B 108.3 C7—N1—C3 109.5 (3)

C15—C16—H16B 108.3 C7—N1—H1A 125.2

H16A—C16—H16B 107.4 C3—N1—H1A 125.2

C18—C17—C16 113.2 (3) C23—P1—C15 104.23 (14)

C18—C17—H17A 108.9 C23—P1—C19 104.85 (15)

C16—C17—H17A 108.9 C15—P1—C19 104.61 (15)

C18—C17—H17B 108.9 C23—P1—Pt1 117.91 (11)

C16—C17—H17B 108.9 C15—P1—Pt1 112.13 (11)

H17A—C17—H17B 107.8 C19—P1—Pt1 111.94 (10)

C17—C18—H18A 109.5 C14i—Pt1—C14 180.0 (3)

C17—C18—H18B 109.5 C14i—Pt1—P1 86.70 (8)

H18A—C18—H18B 109.5 C14—Pt1—P1 93.30 (8)

C17—C18—H18C 109.5 C14i—Pt1—P1i 93.30 (8)

H18A—C18—H18C 109.5 C14—Pt1—P1i 86.70 (8)

H18B—C18—H18C 109.5 P1—Pt1—P1i 180.00 (5)

C20—C19—P1 116.6 (2)

C6—C1—C2—C3 0.4 (6) P1—C15—C16—C17 68.8 (3)

C1—C2—C3—N1 179.9 (3) C15—C16—C17—C18 165.1 (3)

C1—C2—C3—C4 0.3 (5) P1—C19—C20—C21 −176.4 (2)

N1—C3—C4—C5 179.8 (3) C19—C20—C21—C22 −178.1 (3)

C2—C3—C4—C5 −0.5 (5) P1—C23—C24—C25 179.9 (3)

N1—C3—C4—C12 −0.6 (3) C23—C24—C25—C26 −176.4 (3)

C2—C3—C4—C12 179.0 (3) C8—C7—N1—C3 178.6 (3)

C3—C4—C5—C6 0.0 (5) C12—C7—N1—C3 −0.9 (3)

C12—C4—C5—C6 −179.4 (3) C2—C3—N1—C7 −178.7 (3)

(11)

supporting information

sup-8

Acta Cryst. (2003). E59, m774–m776

C2—C1—C6—C5 −0.9 (6) C24—C23—P1—C15 166.1 (2)

N1—C7—C8—C9 179.8 (3) C24—C23—P1—C19 56.4 (3)

C12—C7—C8—C9 −0.8 (4) C24—C23—P1—Pt1 −68.9 (2)

C7—C8—C9—C10 −0.1 (5) C16—C15—P1—C23 63.2 (3)

C8—C9—C10—C11 1.0 (4) C16—C15—P1—C19 173.0 (2)

C8—C9—C10—C13 −178.2 (3) C16—C15—P1—Pt1 −65.5 (2)

C9—C10—C11—C12 −1.0 (4) C20—C19—P1—C23 47.9 (3)

C13—C10—C11—C12 178.2 (3) C20—C19—P1—C15 −61.4 (3)

C10—C11—C12—C7 0.1 (4) C20—C19—P1—Pt1 176.9 (2)

C10—C11—C12—C4 180.0 (3) C13—C14—Pt1—C14i 92 (72)

N1—C7—C12—C11 −179.7 (3) C13—C14—Pt1—P1 −170 (7)

C8—C7—C12—C11 0.8 (4) C13—C14—Pt1—P1i 10 (7)

N1—C7—C12—C4 0.5 (3) C23—P1—Pt1—C14i 174.09 (15)

C8—C7—C12—C4 −179.0 (3) C15—P1—Pt1—C14i −64.87 (14)

C5—C4—C12—C11 −0.3 (6) C19—P1—Pt1—C14i 52.35 (15)

C3—C4—C12—C11 −179.7 (3) C23—P1—Pt1—C14 −5.91 (15)

C5—C4—C12—C7 179.6 (3) C15—P1—Pt1—C14 115.13 (14)

C3—C4—C12—C7 0.1 (3) C19—P1—Pt1—C14 −127.65 (15)

C11—C10—C13—C14 −153 (6) C23—P1—Pt1—P1i 85 (31)

C9—C10—C13—C14 26 (6) C15—P1—Pt1—P1i −154 (31)

C10—C13—C14—Pt1 31 (11) C19—P1—Pt1—P1i −36 (31)

Symmetry code: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C25—H25A···N1ii 0.99 2.69 3.674 (5) 171

Figure

Figure 1The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50%

References

Related documents

When we focus on different types of absences, we find that being ranked 1 percent higher in your class increases the estimated effect of a relaxed class attendance policy on your

(2014b): &#34;The Impact of Public Spending on the Financial Performance of Microfinance Institutions.&#34; In Lucie Sedmihradska (ed.), Proceedings of the 19th International

This increased probability of the revelation of unfavorable evidence reduces the defendant’s expected payoff, and therefore the defendant strictly prefers a biased expert to an

Nevertheless, it is worthwhile establishing the robustness of the results, given the focus of this study on preferences for equality: stakeholders who allocate in a

Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory

Lactobacillus jensenii, Lactobacillus johnsonii, Lactobacillus crispatus and Lactobacillus acidophilus were recovered from Algerian pregnant women with intermediate

The model was able to resolve the fact that they and need had to be aligned to 2 different cepts, rather than eg a larger cept corresponding to a 2-4 alignment, and to produce

A more accurate estimate of the value of expected outcomes is provided by Monte Carlo analysis, which is based on the full distribution of possible values of highly