• No results found

3 Methyl 1 phenyl 4 [(Z) phenyl(p tolyl­amino)­methyl­ene] 1H pyrazol 5(4H) one

N/A
N/A
Protected

Academic year: 2020

Share "3 Methyl 1 phenyl 4 [(Z) phenyl(p tolyl­amino)­methyl­ene] 1H pyrazol 5(4H) one"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o3264

Rong-Ming Ma C

24H21N3O doi:10.1107/S1600536805026656 Acta Cryst.(2005). E61, o3264–o3265 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

3-Methyl-1-phenyl-4-[(

Z

)-phenyl(

p-

tolylamino)-methylene]-1

H-

pyrazol-5(4

H

)-one

Rong-Ming Ma

Department of Chemistry and Life Science, Xianning College, Xianning 437005, People’s Republic of China

Correspondence e-mail: baofengstorm@126.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.002 A˚

Rfactor = 0.040

wRfactor = 0.121

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The NH unit on the exocyclic C C double bond in the title

compound, C24H21N3O, which is on the same side of the

double bond as the C O unit of the pyrazolone ring, interacts with the carbonyl group through an intramolecular N—H O hydrogen bond [2.685 (2) A˚ ].

Comment

5-Methyl-2-phenyl-4-[(Z

)-(2-tolylamino)phenylmethylene]-pyrazol-3(2H)-one exists as a monomeric compound whose

NH unit is linked to the C O unit by a short [N O =

2.695 (2) A˚ ] hydrogen bond (Bao et al., 2004). The isomeric title compound, (I) (Fig. 1), displays a somewhat shorter hydrogen bond [2.685 (2) A˚ ]; otherwise, there are no signifi-cant differences between the two isomers. The two hydrogen bonds are slightly shorter than that found in 4-[(phen-yl)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3-one [2.704 (2) A˚ ; Ma, 2005].

Experimental

1-Phenyl-3-methyl-benzoyl-5-pyrazolone (2.50 g, 9.0 mmol) and 4-aminotoluene (0.96 ml, 9.4 mmol) were dissolved in ethanol (35 ml) and the solution was refluxed for 6 h. The solvent was removed and the pure title compound was obtained upon recrystallization from a 1:1 ethanol/n-heptane mixture (35 ml) in about 75% yield. Crystals were grown from an ethanol solution. Analysis calculated for C24H21N3O: C 78.45, H 5.76, N 11.44%; found: C 78.37, H 5.42, N

11.61%.

Crystal data

C24H21N3O

Mr= 367.44

Triclinic,P1

a= 7.4272 (10) A˚

b= 11.0766 (14) A˚

c= 13.6124 (17) A˚

= 110.095 (2) = 99.798 (2) = 104.067 (2) V= 979.8 (2) A˚3

Z= 2

Dx= 1.245 Mg m

3 MoKradiation Cell parameters from 892

reflections

= 2.1–26.1 = 0.08 mm1

T= 295 (2) K Block, yellow 0.500.450.27 mm

(2)

Data collection

Bruker SMART area-detector diffractometer

!scans

5537 measured reflections 3811 independent reflections 2816 reflections withI> 2(I)

Rint= 0.013

max= 26.1

h=9!9

k=10!13

l=16!16

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.040

wR(F2) = 0.121

S= 1.01 3811 reflections 259 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0638P)2 + 0.1375P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.17 e A˚

3

min=0.15 e A˚

3

The C-bound H atoms were positioned geometrically [C— Haromatic= 0.93 A˚ andUiso(H) = 1.2Ueq(C); C—Hmethyl= 0.96 A˚ and Uiso(H) = 1.5Ueq(C)], and were included in the refinement in the

riding model approximation; the methyl groups were rotated for a best fit with the electron density. The N-bound H atom was located in a difference Fourier map and was refined with a distance restraint of N—H = 0.86 (1) A˚ . The displacement parameter of this H atom was also refined.

Data collection:SMART(Bruker, 1999); cell refinement:SAINT

(Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEP

inSHELXTL(Bruker, 1999); software used to prepare material for publication:SHELXL97.

The author thanks Xianning College for supporting this study.

References

Bao, F., Lu¨, X.-Q., Wu, Q., Kang, B.-S. & Ng, S. W. (2004).Acta Cryst. E60, o155–o156.

Bruker (1999).SAINT,SHELXTLandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Ma, R.-M. (2005). Unpublished results.

[image:2.610.318.567.70.229.2]

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o3264–o3265

supporting information

Acta Cryst. (2005). E61, o3264–o3265 [doi:10.1107/S1600536805026656]

3-Methyl-1-phenyl-4-[(

Z

)-phenyl(

p-

tolylamino)methylene]-1

H-

pyrazol-5(4

H

)-one

Rong-Ming Ma

S1. Comment

5-Methyl-2-phenyl-4-[(Z)-(2-tolylamino)phenylmethylene]pyrazol-3(2H)-one exists as a monomeric compound whose

NH unit is linked to the C═O unit by a short [2.695 (2) Å] hydrogen bond (Bao et al., 2004). The isomeric title

compound, (I) (Fig. 1), displays a somewhat shorter hydrogen bond [2.685 (2) Å]; otherwise, there are no significant

differences between the two isomers. The two hydrogen bonds are slightly shorter than that found in

4-[(phenyl)phenyl-methylene]-5-methyl-2-phenyl-2H-pyrazol-3-one [2.704 (2) Å; Ma, 2005].

S2. Experimental

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone (2.50 g, 9.0 mmol) and 4-aminotoluene (0.96 ml, 9.4 mmol) were dissolved

in ethanol (35 ml) and the solution was refluxed for 6 h. The solvent was removed and the pure product was obtained

upon recrystallization from a 1:1 ethanol/n-heptane mixture (35 ml) in about 75% yield. Crystals were grown from an

ethanol solution. CHN elemental analysis calculated for C24H21N3O: C 78.45, H 5.76, N 11.44%; found: C 78.37, H 5.42,

N 11.61%.

S3. Refinement

The C-bound H atoms were positioned geometrically [C—Haromatic = 0.93 Å and Uiso(H) = 1.2Ueq(C); C—Hmethyl = 0.96 Å

and Uiso(H) = 1.5Ueq(C)], and were included in the refinement in the riding model approximation; the methyl groups were

rotated for a best fit with the electron density. The N-bound H atom was located in a difference Fourier map and was

(4)
[image:4.610.129.482.72.295.2]

Figure 1

ORTEP (Bruker, 1999) plot showing the numbering scheme of (I). Displacement ellipsoids are drawn at the 50%

probability level and H atoms are drawn as spheres of arbitrary radii.

5-Methyl-2-phenyl-4-[(Z)-4-(tolylamino)phenylmethylene]pyrazol-3(2H)-one

Crystal data

C24H21N3O Mr = 367.44

Triclinic, P1 Hall symbol: -P 1

a = 7.4272 (10) Å

b = 11.0766 (14) Å

c = 13.6124 (17) Å

α = 110.095 (2)°

β = 99.798 (2)°

γ = 104.067 (2)°

V = 979.8 (2) Å3

Z = 2

F(000) = 388

Dx = 1.245 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 892 reflections

θ = 2.1–26.1°

µ = 0.08 mm−1 T = 295 K Block, yellow

0.50 × 0.45 × 0.27 mm

Data collection

Bruker SMART area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

5537 measured reflections 3811 independent reflections

2816 reflections with I > 2σ(I)

Rint = 0.013

θmax = 26.1°, θmin = 2.1°

h = −9→9

k = −10→13

l = −16→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.121

259 parameters 1 restraint

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o3264–o3265

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0638P)2 + 0.1375P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.17 e Å−3

Δρmin = −0.15 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.49606 (16) 1.12709 (11) 0.23819 (9) 0.0563 (3)

N1 0.30856 (18) 1.09773 (12) 0.35506 (10) 0.0481 (3) N2 0.24519 (19) 1.00079 (13) 0.39655 (10) 0.0512 (3) N3 0.63223 (19) 0.91817 (13) 0.17181 (10) 0.0520 (3)

H3N 0.611 (3) 0.9941 (13) 0.1732 (14) 0.070 (5)*

C1 0.0413 (2) 1.18365 (17) 0.37729 (13) 0.0580 (4)

H1 −0.0309 1.1015 0.3761 0.070*

C2 −0.0367 (3) 1.2871 (2) 0.38764 (14) 0.0679 (5)

H2 −0.1626 1.2742 0.3929 0.081*

C3 0.0701 (3) 1.4088 (2) 0.39029 (14) 0.0683 (5)

H3 0.0166 1.4779 0.3970 0.082*

C4 0.2547 (3) 1.42792 (18) 0.38312 (15) 0.0689 (5)

H4 0.3270 1.5104 0.3850 0.083*

C5 0.3355 (3) 1.32616 (16) 0.37305 (14) 0.0587 (4)

H5 0.4623 1.3405 0.3692 0.070*

C6 0.2282 (2) 1.20374 (15) 0.36873 (11) 0.0470 (4)

C7 0.4280 (2) 1.06380 (15) 0.29099 (12) 0.0453 (3)

C8 0.4487 (2) 0.94046 (14) 0.29704 (11) 0.0443 (3)

C9 0.3285 (2) 0.90911 (15) 0.36307 (11) 0.0472 (3)

C10 0.2844 (3) 0.79083 (18) 0.39412 (15) 0.0635 (4)

H10A 0.1874 0.7952 0.4325 0.095*

H10B 0.3996 0.7932 0.4402 0.095*

H10C 0.2378 0.7079 0.3297 0.095*

C11 0.5529 (2) 0.86998 (14) 0.23734 (11) 0.0440 (3)

C12 0.5688 (2) 0.73938 (14) 0.23876 (11) 0.0459 (3)

C13 0.6766 (2) 0.73512 (16) 0.33028 (13) 0.0544 (4)

H13 0.7367 0.8142 0.3933 0.065*

C14 0.6945 (3) 0.61309 (19) 0.32770 (15) 0.0662 (5)

H14 0.7676 0.6100 0.3889 0.079*

C15 0.6043 (3) 0.49575 (18) 0.23468 (16) 0.0707 (5)

H15 0.6183 0.4139 0.2329 0.085*

C16 0.4942 (3) 0.49955 (17) 0.14488 (15) 0.0685 (5)

H16 0.4308 0.4198 0.0829 0.082*

C17 0.4773 (2) 0.62065 (16) 0.14615 (13) 0.0561 (4)

H17 0.4040 0.6230 0.0846 0.067*

C18 0.7540 (2) 0.87058 (14) 0.10822 (12) 0.0479 (4)

C19 0.8978 (2) 0.82606 (18) 0.14621 (13) 0.0594 (4)

H19 0.9173 0.8249 0.2152 0.071*

(6)

H20 1.1072 0.7509 0.1066 0.076* C21 0.9915 (2) 0.78670 (17) −0.02061 (13) 0.0589 (4) C22 0.8504 (3) 0.83445 (17) −0.05586 (13) 0.0601 (4)

H22 0.8346 0.8391 −0.1236 0.072*

C23 0.7315 (2) 0.87566 (16) 0.00680 (13) 0.0530 (4)

H23 0.6360 0.9069 −0.0191 0.064*

C24 1.1209 (3) 0.7397 (3) −0.08927 (18) 0.0919 (7)

H24A 1.0833 0.6423 −0.1184 0.138*

H24B 1.2526 0.7779 −0.0451 0.138*

H24C 1.1090 0.7691 −0.1480 0.138*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0640 (7) 0.0570 (6) 0.0666 (7) 0.0297 (5) 0.0309 (6) 0.0338 (6) N1 0.0552 (7) 0.0450 (7) 0.0530 (7) 0.0243 (6) 0.0221 (6) 0.0212 (6) N2 0.0585 (8) 0.0498 (7) 0.0519 (7) 0.0222 (6) 0.0214 (6) 0.0222 (6) N3 0.0606 (8) 0.0525 (8) 0.0539 (7) 0.0294 (7) 0.0240 (6) 0.0231 (6) C1 0.0541 (10) 0.0537 (9) 0.0603 (10) 0.0203 (8) 0.0172 (8) 0.0137 (8) C2 0.0594 (10) 0.0784 (13) 0.0661 (11) 0.0385 (10) 0.0188 (9) 0.0175 (9) C3 0.0912 (14) 0.0688 (12) 0.0622 (10) 0.0531 (11) 0.0278 (10) 0.0251 (9) C4 0.0909 (14) 0.0550 (10) 0.0794 (12) 0.0389 (10) 0.0384 (11) 0.0315 (9) C5 0.0641 (10) 0.0537 (9) 0.0682 (11) 0.0288 (8) 0.0278 (9) 0.0253 (8) C6 0.0543 (9) 0.0455 (8) 0.0417 (7) 0.0235 (7) 0.0134 (7) 0.0130 (6) C7 0.0465 (8) 0.0451 (8) 0.0446 (8) 0.0183 (6) 0.0127 (6) 0.0163 (6) C8 0.0481 (8) 0.0420 (8) 0.0429 (7) 0.0193 (6) 0.0110 (6) 0.0151 (6) C9 0.0520 (9) 0.0456 (8) 0.0434 (8) 0.0184 (7) 0.0125 (7) 0.0161 (6) C10 0.0748 (12) 0.0592 (10) 0.0731 (11) 0.0294 (9) 0.0317 (9) 0.0358 (9) C11 0.0450 (8) 0.0438 (8) 0.0388 (7) 0.0167 (6) 0.0070 (6) 0.0122 (6) C12 0.0487 (8) 0.0442 (8) 0.0467 (8) 0.0206 (7) 0.0164 (7) 0.0153 (6) C13 0.0626 (10) 0.0543 (9) 0.0489 (8) 0.0280 (8) 0.0147 (7) 0.0180 (7) C14 0.0831 (13) 0.0764 (12) 0.0668 (11) 0.0493 (10) 0.0321 (10) 0.0399 (10) C15 0.1013 (15) 0.0548 (10) 0.0842 (13) 0.0440 (10) 0.0533 (12) 0.0354 (10) C16 0.0928 (14) 0.0427 (9) 0.0646 (11) 0.0198 (9) 0.0331 (10) 0.0116 (8) C17 0.0623 (10) 0.0503 (9) 0.0483 (9) 0.0170 (8) 0.0141 (7) 0.0129 (7) C18 0.0496 (9) 0.0430 (8) 0.0466 (8) 0.0148 (7) 0.0142 (7) 0.0127 (6) C19 0.0546 (10) 0.0800 (12) 0.0439 (8) 0.0287 (9) 0.0127 (7) 0.0210 (8) C20 0.0520 (10) 0.0806 (12) 0.0556 (10) 0.0303 (9) 0.0130 (8) 0.0201 (9) C21 0.0515 (9) 0.0625 (10) 0.0502 (9) 0.0155 (8) 0.0158 (7) 0.0096 (8) C22 0.0642 (11) 0.0679 (11) 0.0461 (9) 0.0170 (9) 0.0187 (8) 0.0220 (8) C23 0.0544 (9) 0.0530 (9) 0.0548 (9) 0.0188 (7) 0.0155 (7) 0.0243 (7) C24 0.0848 (15) 0.1216 (19) 0.0731 (13) 0.0455 (13) 0.0412 (12) 0.0265 (13)

Geometric parameters (Å, º)

O1—C7 1.2496 (17) C11—C12 1.486 (2)

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, o3264–o3265

N1—C6 1.4137 (18) C13—C14 1.379 (2)

N2—C9 1.3057 (18) C13—H13 0.9300

N3—C11 1.3345 (19) C14—C15 1.378 (3)

N3—C18 1.4246 (19) C14—H14 0.9300

N3—H3N 0.886 (9) C15—C16 1.370 (3)

C1—C6 1.382 (2) C15—H15 0.9300

C1—C2 1.381 (2) C16—C17 1.372 (2)

C1—H1 0.9300 C16—H16 0.9300

C2—C3 1.373 (3) C17—H17 0.9300

C2—H2 0.9300 C18—C19 1.377 (2)

C3—C4 1.361 (3) C18—C23 1.384 (2)

C3—H3 0.9300 C19—C20 1.379 (2)

C4—C5 1.378 (2) C19—H19 0.9300

C4—H4 0.9300 C20—C21 1.383 (2)

C5—C6 1.372 (2) C20—H20 0.9300

C5—H5 0.9300 C21—C22 1.371 (2)

C7—C8 1.439 (2) C21—C24 1.511 (2)

C8—C11 1.3933 (19) C22—C23 1.379 (2)

C8—C9 1.436 (2) C22—H22 0.9300

C9—C10 1.490 (2) C23—H23 0.9300

C10—H10A 0.9600 C24—H24A 0.9600

C10—H10B 0.9600 C24—H24B 0.9600

C10—H10C 0.9600 C24—H24C 0.9600

C7—N1—N2 112.07 (11) C13—C12—C17 119.61 (14)

C7—N1—C6 127.47 (12) C13—C12—C11 121.08 (13)

N2—N1—C6 119.82 (12) C17—C12—C11 119.30 (13)

C9—N2—N1 106.55 (12) C14—C13—C12 119.71 (15)

C11—N3—C18 129.25 (13) C14—C13—H13 120.1

C11—N3—H3N 113.4 (12) C12—C13—H13 120.1

C18—N3—H3N 117.1 (12) C15—C14—C13 120.18 (17)

C6—C1—C2 119.15 (17) C15—C14—H14 119.9

C6—C1—H1 120.4 C13—C14—H14 119.9

C2—C1—H1 120.4 C16—C15—C14 120.08 (16)

C3—C2—C1 120.55 (17) C16—C15—H15 120.0

C3—C2—H2 119.7 C14—C15—H15 120.0

C1—C2—H2 119.7 C15—C16—C17 120.20 (16)

C4—C3—C2 119.74 (16) C15—C16—H16 119.9

C4—C3—H3 120.1 C17—C16—H16 119.9

C2—C3—H3 120.1 C16—C17—C12 120.20 (16)

C3—C4—C5 120.64 (18) C16—C17—H17 119.9

C3—C4—H4 119.7 C12—C17—H17 119.9

C5—C4—H4 119.7 C19—C18—C23 119.31 (14)

C6—C5—C4 119.76 (17) C19—C18—N3 122.31 (14)

C6—C5—H5 120.1 C23—C18—N3 118.31 (14)

C4—C5—H5 120.1 C18—C19—C20 119.45 (15)

C5—C6—C1 120.14 (14) C18—C19—H19 120.3

(8)

C1—C6—N1 119.96 (14) C19—C20—C21 122.01 (16)

O1—C7—N1 125.94 (13) C19—C20—H20 119.0

O1—C7—C8 129.45 (13) C21—C20—H20 119.0

N1—C7—C8 104.59 (12) C22—C21—C20 117.60 (15)

C11—C8—C9 132.52 (13) C22—C21—C24 121.87 (17)

C11—C8—C7 121.77 (13) C20—C21—C24 120.53 (17)

C9—C8—C7 105.39 (12) C21—C22—C23 121.50 (15)

N2—C9—C8 111.33 (13) C21—C22—H22 119.3

N2—C9—C10 118.34 (14) C23—C22—H22 119.3

C8—C9—C10 130.31 (14) C22—C23—C18 120.09 (15)

C9—C10—H10A 109.5 C22—C23—H23 120.0

C9—C10—H10B 109.5 C18—C23—H23 120.0

H10A—C10—H10B 109.5 C21—C24—H24A 109.5

C9—C10—H10C 109.5 C21—C24—H24B 109.5

H10A—C10—H10C 109.5 H24A—C24—H24B 109.5

H10B—C10—H10C 109.5 C21—C24—H24C 109.5

N3—C11—C8 118.41 (13) H24A—C24—H24C 109.5

N3—C11—C12 118.92 (12) H24B—C24—H24C 109.5

C8—C11—C12 122.56 (13)

C7—N1—N2—C9 2.34 (16) C18—N3—C11—C12 −8.0 (2)

C6—N1—N2—C9 173.82 (13) C9—C8—C11—N3 171.34 (15)

C6—C1—C2—C3 −0.5 (3) C7—C8—C11—N3 −1.1 (2)

C1—C2—C3—C4 −0.3 (3) C9—C8—C11—C12 −4.8 (2)

C2—C3—C4—C5 0.1 (3) C7—C8—C11—C12 −177.26 (13)

C3—C4—C5—C6 0.9 (3) N3—C11—C12—C13 113.28 (16)

C4—C5—C6—C1 −1.7 (2) C8—C11—C12—C13 −70.6 (2)

C4—C5—C6—N1 178.06 (15) N3—C11—C12—C17 −65.4 (2)

C2—C1—C6—C5 1.5 (2) C8—C11—C12—C17 110.76 (17)

C2—C1—C6—N1 −178.26 (14) C17—C12—C13—C14 1.1 (2)

C7—N1—C6—C5 −38.0 (2) C11—C12—C13—C14 −177.57 (15)

N2—N1—C6—C5 151.93 (14) C12—C13—C14—C15 −0.4 (3)

C7—N1—C6—C1 141.71 (16) C13—C14—C15—C16 −1.0 (3)

N2—N1—C6—C1 −28.3 (2) C14—C15—C16—C17 1.7 (3)

N2—N1—C7—O1 175.35 (14) C15—C16—C17—C12 −1.0 (3)

C6—N1—C7—O1 4.7 (2) C13—C12—C17—C16 −0.4 (2)

N2—N1—C7—C8 −2.96 (16) C11—C12—C17—C16 178.32 (15)

C6—N1—C7—C8 −173.64 (13) C11—N3—C18—C19 −40.0 (2)

O1—C7—C8—C11 −1.6 (2) C11—N3—C18—C23 143.00 (16)

N1—C7—C8—C11 176.62 (13) C23—C18—C19—C20 −2.1 (3)

O1—C7—C8—C9 −175.83 (15) N3—C18—C19—C20 −179.02 (15)

N1—C7—C8—C9 2.39 (15) C18—C19—C20—C21 1.7 (3)

N1—N2—C9—C8 −0.66 (16) C19—C20—C21—C22 −0.2 (3)

N1—N2—C9—C10 −179.09 (13) C19—C20—C21—C24 179.61 (18)

C11—C8—C9—N2 −174.45 (15) C20—C21—C22—C23 −1.0 (3)

C7—C8—C9—N2 −1.11 (17) C24—C21—C22—C23 179.24 (17)

C11—C8—C9—C10 3.7 (3) C21—C22—C23—C18 0.6 (3)

(9)

supporting information

sup-7

Acta Cryst. (2005). E61, o3264–o3265

C18—N3—C11—C8 175.70 (14) N3—C18—C23—C22 178.03 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Figure 1
Figure 1

References

Related documents

Registrar, Department of Urology, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, Maharashtra, India. Associate

Knowledge-based WSD methods mainly ex- ploit two kinds of knowledge to disambiguate pol- ysemous words: 1) The gloss, which defines a word sense meaning, is mainly used in Lesk

This situation is more grave while receiving dental or medical treatment as the health professionals might be unaware about the special modes of communication causing

We study the role of labor market mismatch in the adjustment to a trade lib- eralization that results in the o¤shoring of high-tech production.. Our model features

To assess the effect of exchange rate misalignment on Senegal's economic performance, we estimate the real GDP growth equation explained by misalignment (measured by the BEER

However, in a follow-up experiment using a high-quality sample of high-income consumers, we find debt can no longer be explained by poor cognitive reflection and lack of self

In particular, the baseline 2SLS estimates indicates that one additional year of schooling is causally linked to a 6 percentage point increase in the likelihood of

We thus find evidence of an effect of religiosity on migration plans, implying that emigration to OECD countries affects the distribution of cultural traits in the population