• No results found

[(6R,7S,8S,14R) (–) α Isosparteine κ2N,N′]­bis­­(nitrito κ2O,O′)copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "[(6R,7S,8S,14R) (–) α Isosparteine κ2N,N′]­bis­­(nitrito κ2O,O′)copper(II)"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1573±m1575 doi: 10.1107/S1600536804024249 Yoon-Bo Shimet al. [Cu(NO2)2(C15H26N2)]

m1573

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

[(6

R

,7

S

,8

S

,14

R

)-(±)-

a

-Isosparteine-

j

2

N

,

N

000

]-bis(nitrito-

j

2

O

,

O

000

)copper(II)

Yoon-Bo Shim,aSung-Nak Choi,a

Seung Jae Lee,bSung Kwon

Kangb and Yong-Min Leea*

aDepartment of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, South Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, South Korea

Correspondence e-mail: yomlee@pusan.ac.kr

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ Disorder in main residue

Rfactor = 0.040

wRfactor = 0.083

Data-to-parameter ratio = 16.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title complex, [Cu(NO2)2(-C15H26N2)], chiral

(6R,7S,8S,14R)-(ÿ)--isosparteine acts as a bidentate ligand, with two nitrite ligands occupying the remaining coordination

sites as 2-chelating groups, producing a pseudo-octahedral

coordination complex. The molecule of the title complex possesses a crystallographic twofold axis of rotation along a

line through the central C atom of the (ÿ)--isosparteine

ligand and the CuIIatom. However, as a result of the Jahn±

Teller effect operating on the d9 con®guration of the

copper(II) ion, each nitrite ligand coordinates asymmetrically to the copper(II) centre in a bidentate fashion.

Comment

In recent years, a large number of copper(II) complexes with

(ÿ)-sparteine ligands have been reported. The copper(II)

(ÿ)-sparteine complexes are usually four-coordinate and

tetrahedrally distorted around the approximately square-planar copper(II) ion, as a result of the steric requirements imposed by the bulky chelating (ÿ)-sparteine ligand (Choiet al., 1995, 2004; Kimet al., 2001, 2002, 2003; Leeet al., 2000, 2003; Lopez et al., 1998). The chiral diamine alkaloid, (ÿ )-sparteine, has three diastereomers, namely (ÿ)-l-sparteine (C15H26N2), (ÿ)--isosparteine (-C15H26N2) and (ÿ)-

-isosparteine (-C15H26N2), and has been utilized extensively

in medicinal chemistry (Cadyet al., 1977), in the asymmetric

synthesis of chiral compounds (Beaket al., 1996) and in the

preparation of a model compound of the type I copper(II)

sites in copper proteins (Kim et al., 2001). Although

four-coordinate copper(II) compounds with (ÿ)-l-sparteine,

(ÿ)--isosparteine and (ÿ)--isosparteine have similar tetra-hedrally distorted square-planar structures, the different

conformations of three (ÿ)-sparteine diastereomers in these

compounds impose different degrees of steric effect on the geometry around the copper(II) centre. For example, in the crystal structure of [(ÿ)--isosparteine]dinitratocopper(II), [Cu(NO3)2(-C15H26N2)] (Choi et al., 2004), the degree of

distortion from planarity towards a perfect tetrahedron is not as severe as that found in the corresponding copper(II) (ÿ)-l

(2)

sparteine compound [Cu(NO3)2(C15H26N2)] (Choi et al.,

1995).

Whereas many structural studies of four-coordinate

copper(II) complexes with (ÿ)-sparteine have been reported,

to date, relatively little is known about the structural

char-acteristics of copper(II) (ÿ)-sparteine compounds with a

higher coordination number of ®ve or six. The compound [Cu(NO2)2(C15H26N2)] is one of the few copper(II) (ÿ

)-sparteine compounds reported to have a ®ve-coordinate square-pyramidal structure, in which (ÿ)-l-sparteine and one nitrite [CuÐO = 2.025 (5) and 2.402 (6) AÊ] act as bidentate ligands and the other nitrite [CuÐO = 2.002 (5) and

2.637 (5) AÊ] is bound only through one O atom (Lee et al.,

1998).

In this work, we introduced the (ÿ)--isosparteine ligand, instead of (ÿ)-l-sparteine, to the Cu(NO2)2salt to prepare the

title complex, (I) (Fig. 1), and determined its crystal structure. The purpose of this work was to compare the extent of the

steric effect imposed by the two different (ÿ)-sparteine

diastereomers in copper(II) (ÿ)-sparteine compounds with a

coordination number higher than four.

The (ÿ)--isosparteine ligand reacts with Cu(NO2)2 in

ethanol to form (I). Two nitrite groups and one (ÿ)-

-isosparteine group in (I) coordinate to the copper(II) ion in a bidentate fashion to produce a six-coordinate and pseudo-octahedral complex, (I). The bonding parameters and coor-dination geometry of (I) are quite different from those of the

previously reported ®ve-coordinate copper(II) (ÿ)-l

-spar-teine dinitrite [Cu(NO2)2(C15H26N2)] (Lee et al., 1998)

complex. One O atom of each nitrite ligand in (I) occupies an axial position, and the other two O atoms of the nitrite ligands

constitute, with two N atoms of (ÿ)--isosparteine, the

equatorial plane.

The conformation of the coordinated (ÿ)--isosparteine in (I) consists of both terminal rings folded down over the metal (endo±endo), identical to the conformation of the free ligand (Boschmannet al., 1974; Wrobleski & Long, 1977). The mol-ecule possesses a twofold axis of rotation along a line through

atom C9 of (ÿ)--isosparteine and the Cu atom. The CuÐO2

and CuÐO2idistances (see Table 1) are signi®cantly longer

than the CuÐO1 and CuÐO1i distances; each nitrite ion is

asymmetrically chelated to copper(II) as a result of the severe

JahnÐTeller effect operating on the d9 con®guration of

copper(II). The difference in the coordination structures of [Cu(NO2)2(C15H26N2)] and (I) is attributable to the different

ring conformations of the two (ÿ)-sparteine diastereomers;

the conformation of the coordinated (ÿ)-l-sparteine in

[Cu(NO2)2(C15H26N2)] consists of one terminal ring folded

down over the Cu atom (endo) and a second terminal ring

folded back away from the Cu atom (exo), whereas both

terminal rings in (I) are folded down over the Cu atom (endo

-endo). The nitrite in theendosite can coordinate to the Cu

atom in a bidentate fashion, but in the case of the nitrite in the

exosite, only one O atom can bond to the Cu atom. In theexo

site of the coordinated (ÿ)-l-sparteine, the H atoms bonded to atom C10 (see Fig. 2) do not allow the access of a second nitrite O atom to the Cu atom [2.637 (5) AÊ] within a bonding

distance. As a result, the copper(II) (ÿ)-l-sparteine

compound adopts a ®ve-coordinate square-pyramidal struc-ture, whereas (I) adopts a six-coordinate and pseudo-octahe-dral structure.

Experimental

(ÿ)--Isosparteine (±C15H26N2) was derived from commercially

available (ÿ)-l-sparteine (C15H26N2) according to the literature

method (Leonard & Beyler, 1950). The precursor copper(II) complex [Cu(NO3)2(-C15H26N2)] was prepared by mixing an ethanol±

triethylorthoformate (5:1, v/v) solution of copper(II) nitrate 2.5-hydrate with a stoichiometric amount of (ÿ)--isosparteine at room temperature for 3 h, as has been reported (Choiet al., 2004). The resulting blue precipitate was ®ltered off, washed with cold absolute ethanol and then dried in a vacuum. The title complex, (I), was prepared by the substitution reaction of [Cu(NO3)2(±C15H26N2)]

with a stoichiometric amount of NaNO2 in an

ethanol±triethyl-orthoformate (5:1,v/v) solution. Single crystals of (I) were obtained by recrystallization at 278 K from a dichloromethane±triethyl-orthoformate (5:1,v/v) solution under CCl4vapour. Analysis

calcu-metal-organic papers

m1574

Yoon-Bo Shimet al. [Cu(NO2)2(C15H26N2)] Acta Cryst.(2004). E60, m1573±m1575 Figure 1

ORTEP-3 (Farrugia, 1997) diagram of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. Atom O2 is disordered over two positions (O2 and O2A), but atom O2Ahas been omitted for clarity. [Symmetry code: (i)y,x,ÿz.]

Figure 2

(3)

lated for CuC15H26N4O4: C 46.20, H 6.72, N 14.37%; found: C 46.27,

H 6.75, N, 14.31%.

Crystal data [Cu(NO2)2(C15H26N2)]

Mr= 389.94

Tetragonal,P41212

a= 8.2446 (5) AÊ

c= 25.088 (4) AÊ

V= 1705.3 (3) AÊ3

Z= 4

Dx= 1.519 Mg mÿ3

MoKradiation Cell parameters from 22

re¯ections = 11.4±14.1 = 1.31 mmÿ1

T= 293 (2) K Block, dark green 0.300.230.23 mm Data collection

Enraf±Nonius CAD-4 diffractometer Non-pro®led!/2scans Absorption correction: scan

(Northet al., 1968)

Tmin= 0.622,Tmax= 0.730

4231 measured re¯ections 1956 independent re¯ections 1445 re¯ections withI> 2(I)

Rint= 0.061

max= 27.5

h=ÿ10!10

k= 0!10

l= 0!32

3 standard re¯ections every 400 re¯ections intensity decay: none

Refinement Re®nement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.083

S= 1.00 1956 re¯ections 120 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0297P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.44 e AÊÿ3

min=ÿ0.23 e AÊÿ3

Absolute structure: Flack (1983), 737 Friedel pairs

Flack parameter = 0.01 (2)

Table 1

Selected geometric parameters (AÊ,).

CuÐN1 2.043 (3)

CuÐO1 2.019 (3)

CuÐO2 2.50 (3)

N2ÐO1 1.264 (4)

N2ÐO2 1.30 (5)

N1ÐCuÐN1i 89.01 (16)

N1ÐCuÐO1 162.78 (9) N1ÐCuÐO1i 95.43 (12)

N1ÐCuÐO2 107.8 (11) N1ÐCuÐO2i 104.2 (14)

O1ÐCuÐO1i 85.23 (18)

O1ÐCuÐO2 55.0 (11) O1ÐCuÐO2i 90.3 (15)

O2ÐCuÐO2i 135 (3)

O1ÐN2ÐO2 112.4 (13)

Symmetry code: (i)y;x;ÿz.

H atoms on the (ÿ)--isosparteine ligand were positioned geometrically and constrained to ride on their attached atoms at distances of 0.97±0.98 AÊ. TheUiso(H) values were ®xed at 1.2Ueqof

their parent atoms. Atom O2 was disordered over two positions (O2 and O2A). The ®nal occupancy factors for the disordered atom were

0.50 (2) for both sites. The absolute con®guration of (I) was known from the con®guration of the starting material and was con®rmed by the value [0.01 (2)] of the Flack (1983) parameter.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1994); cell re®nement:CAD-4EXPRESS; data reduction:XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows

(Farrugia, 1997); software used to prepare material for publication:

WinGX(Farrugia, 1999).

This research was supported by the Ministry of Health and Welfare, Republic of Korea (02-PJ3-PG6-EV05-0001).

References

Beak, P., Basu, A., Gallagher, D. J., Park, Y. S. & Thayumanavan, S. (1996).

Acc. Chem. Res.29, 552±560.

Boschmann, E., Weinstock, L. M. & Carmack, M. (1974).Inorg. Chem.13, 1297±1300.

Cady, W. A., Boschmann, E., Choi, R. S., Heidelman, J. F. & Smith, S. L. (1977).

Inorg. Chem.16, 1958±1961.

Choi, S.-N., Kwon, M.-A., Kim, Y., Bereman, R. D., Singh, P., Knight, B. & Seff, K. (1995).J. Coord. Chem.34, 241±252.

Choi, S.-N., Park, S.-A., Kim, W. C. & Kang, S. K. (2004).Acta Cryst.E60, m416±m418.

Enraf±Nonius (1994).CAD-4EXPRESS. Enraf±Nonius, Delft, The Nether-lands.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837±838. Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Harms, K. & Wocadlo, S. (1995).XCAD4. University of Marburg, Germany. Kim, B.-J., Lee, Y.-M., Kim, E. H., Kang, S. K. & Choi, S.-N. (2002).Acta Cryst.

C58, m361±m362.

Kim, Y.-J., Kim, S.-O., Kim, Y.-I. & Choi, S.-N. (2001).Inorg. Chem.40, 4481± 4484.

Kim, Y.-K., Kim, B.-J., Kang, S. K., Choi, S.-N. & Lee, Y.-M. (2003).Acta Cryst.

C59, m64±m66.

Lee, Y.-M., Choi, S.-N., Suh, I.-H. & Bereman, R. D. (1998).Acta Cryst.C54, 1582±1584.

Lee, Y.-M., Chung, G., Kwon, M.-A. & Choi, S.-N. (2000).Acta Cryst.C56, 67± 68.

Lee, Y.-M., Kwon, M.-A., Kang, S. K., Jeong, J. H. & Choi, S.-N. (2003).Inorg. Chem. Commun.6, 197±201.

Leonard, N. J. & Beyler, R. E. (1950).J. Am. Chem. Soc.72, 1316±1323. Lopez, S., Muravyov, I., Pulley, S. R. & Keller, S. W. (1998).Acta Cryst.C54,

355±357.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968).Acta Cryst.A24, 351± 359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

Wrobleski, J. T. & Long, G. J. (1977).Inorg. Chem.16, 704±709.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1573–m1575

supporting information

Acta Cryst. (2004). E60, m1573–m1575 [https://doi.org/10.1107/S1600536804024249]

[(6

R

,7

S

,8

S

,14

R

)-(

)-

α

-Isosparteine-

κ

2

N

,

N

]bis(nitrito-

κ

2

O

,

O

)copper(II)

Yoon-Bo Shim, Sung-Nak Choi, Seung Jae Lee, Sung Kwon Kang and Yong-Min Lee

[(6R,7S,8S,14R)-(-)-α-Isosparteine-κ2N,N]bis(nitrito-κ2O,O)copper(II)

Crystal data

[Cu(NO2)2(C15H26N2)] Mr = 389.94

Tetragonal, P41212 Hall symbol: P 4abw 2nw

a = 8.2446 (5) Å

c = 25.088 (4) Å

V = 1705.3 (3) Å3 Z = 4

F(000) = 820

Dx = 1.519 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 22 reflections

θ = 11.4–14.1°

µ = 1.31 mm−1 T = 293 K Block, dark green 0.30 × 0.23 × 0.23 mm

Data collection

Enraf–Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

non–profiled ω/2θ scans Absorption correction: ψ scan

(North et al., 1968)

Tmin = 0.622, Tmax = 0.730 4231 measured reflections

1956 independent reflections 1445 reflections with I > 2σ(I)

Rint = 0.061

θmax = 27.5°, θmin = 2.6° h = −10→10

k = 0→10

l = 0→32

3 standard reflections every 400 reflections intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.083 S = 1.00 1956 reflections 120 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0297P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.44 e Å−3 Δρmin = −0.23 e Å−3

Absolute structure: Flack (1983), 737 Friedel pairs

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1573–m1575 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cu 0.22073 (5) 0.22073 (5) 0.0000 0.03224 (16) N1 −0.0235 (3) 0.2150 (3) 0.01373 (9) 0.0301 (6) N2 0.4899 (5) 0.2616 (5) 0.05914 (17) 0.0661 (11) O1 0.4632 (3) 0.2331 (4) 0.01043 (11) 0.0618 (8)

O2 0.360 (5) 0.247 (8) 0.0882 (13) 0.072 (6) 0.5 (2)

O2A 0.375 (6) 0.278 (11) 0.0838 (18) 0.075 (9) 0.5 (2) C2 −0.0917 (5) 0.3801 (4) 0.02421 (13) 0.0403 (9)

H2A −0.2092 0.3735 0.0249 0.048*

H2B −0.0611 0.4521 −0.0047 0.048*

C3 −0.0326 (5) 0.4506 (4) 0.07654 (14) 0.0479 (10)

H3A 0.0839 0.4666 0.0748 0.058*

H3B −0.0829 0.5555 0.0823 0.058*

C4 −0.0726 (5) 0.3395 (5) 0.12285 (14) 0.0497 (10)

H4A −0.1892 0.3354 0.1279 0.060*

H4B −0.0242 0.3817 0.1552 0.060*

C5 −0.0085 (5) 0.1698 (4) 0.11210 (13) 0.0421 (9)

H5A −0.0423 0.0977 0.1406 0.051*

H5B 0.1092 0.1720 0.1115 0.051*

C6 −0.0712 (4) 0.1056 (4) 0.05904 (12) 0.0329 (8)

H6 −0.1898 0.1089 0.0611 0.039*

C8 −0.1002 (4) 0.1528 (4) −0.03672 (13) 0.0365 (9)

H8A −0.0590 0.2152 −0.0666 0.044*

H8B −0.2163 0.1707 −0.0348 0.044*

C7 −0.0696 (4) −0.0255 (4) −0.04733 (13) 0.0361 (8)

H7 −0.1348 −0.0567 −0.0783 0.043*

C9 −0.1272 (4) −0.1272 (4) 0.0000 0.0425 (12)

H9 −0.2418 −0.1095 0.0066 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1573–m1575

O2A 0.059 (8) 0.12 (2) 0.042 (9) −0.037 (13) −0.006 (8) −0.012 (11) C2 0.048 (2) 0.033 (2) 0.041 (2) 0.0057 (17) 0.0031 (17) −0.0038 (16) C3 0.057 (3) 0.042 (2) 0.045 (2) 0.0044 (18) 0.0098 (19) −0.0112 (18) C4 0.054 (3) 0.062 (3) 0.0335 (19) 0.0007 (19) 0.0068 (19) −0.0166 (18) C5 0.045 (2) 0.054 (3) 0.0275 (17) 0.0003 (17) 0.0052 (16) 0.0014 (16) C6 0.0271 (18) 0.044 (2) 0.0272 (16) −0.0026 (15) 0.0035 (14) 0.0013 (15) C8 0.035 (2) 0.045 (2) 0.0291 (17) 0.0063 (17) −0.0065 (15) −0.0014 (15) C7 0.037 (2) 0.038 (2) 0.0338 (17) −0.0040 (16) −0.0063 (14) −0.0048 (15) C9 0.0396 (17) 0.0396 (17) 0.048 (3) −0.012 (2) 0.004 (2) −0.004 (2)

Geometric parameters (Å, º)

Cu—N1 2.043 (3) C3—H3B 0.9700

Cu—N1i 2.043 (3) C4—C5 1.520 (5)

Cu—O1 2.019 (3) C4—H4A 0.9700

Cu—O1i 2.019 (3) C4—H4B 0.9700

Cu—O2 2.50 (3) C5—C6 1.523 (4)

Cu—O2i 2.50 (3) C5—H5A 0.9700

N1—C2 1.496 (4) C5—H5B 0.9700

N1—C6 1.503 (4) C6—C7i 1.521 (4)

N1—C8 1.505 (4) C6—H6 0.9800

N2—O2A 1.14 (5) C8—C7 1.515 (4)

N2—O1 1.264 (4) C8—H8A 0.9700

N2—O2 1.30 (5) C8—H8B 0.9700

C2—C3 1.517 (5) C7—C6i 1.521 (4)

C2—H2A 0.9700 C7—C9 1.529 (4)

C2—H2B 0.9700 C7—H7 0.9800

C3—C4 1.516 (5) C9—C7i 1.529 (4)

C3—H3A 0.9700 C9—H9 0.9700

N1—Cu—N1i 89.01 (16) C2—C3—H3B 109.4

N1—Cu—O1 162.78 (9) H3A—C3—H3B 108.0

N1—Cu—O1i 95.43 (12) C3—C4—C5 110.1 (3)

N1—Cu—O2 107.8 (11) C3—C4—H4A 109.6

N1—Cu—O2i 104.2 (14) C5—C4—H4A 109.6

O1—Cu—N1i 95.43 (12) C3—C4—H4B 109.6

O1—Cu—O1i 85.23 (18) C5—C4—H4B 109.6

O1—Cu—O2 55.0 (11) H4A—C4—H4B 108.1

O1—Cu—O2i 90.3 (15) C4—C5—C6 110.9 (3)

O2—Cu—N1i 104.2 (14) C4—C5—H5A 109.5

O2—Cu—O1i 90.3 (15) C6—C5—H5A 109.5

O2—Cu—O2i 135 (3) C4—C5—H5B 109.5

N1i—Cu—O1i 162.78 (9) C6—C5—H5B 109.5

N1i—Cu—O2i 107.8 (11) H5A—C5—H5B 108.0

O1i—Cu—O2i 55.0 (11) N1—C6—C7i 111.0 (2)

C2—N1—C6 108.3 (2) N1—C6—C5 111.3 (3)

C2—N1—C8 107.4 (2) C7i—C6—C5 114.5 (3)

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1573–m1575

C2—N1—Cu 112.3 (2) C7i—C6—H6 106.5

C6—N1—Cu 113.52 (18) C5—C6—H6 106.5

C8—N1—Cu 106.28 (19) N1—C8—C7 114.1 (3)

O2A—N2—O1 113.9 (11) N1—C8—H8A 108.7

O2A—N2—O2 12 (5) C7—C8—H8A 108.7

O1—N2—O2 112.4 (13) N1—C8—H8B 108.7

N2—O1—Cu 107.9 (2) C7—C8—H8B 108.7

N2—O2—Cu 83.7 (14) H8A—C8—H8B 107.6

N1—C2—C3 112.3 (3) C8—C7—C6i 115.6 (3)

N1—C2—H2A 109.1 C8—C7—C9 110.1 (2)

C3—C2—H2A 109.1 C6i—C7—C9 108.0 (2)

N1—C2—H2B 109.1 C8—C7—H7 107.6

C3—C2—H2B 109.1 C6i—C7—H7 107.6

H2A—C2—H2B 107.9 C9—C7—H7 107.6

C4—C3—C2 111.2 (3) C7i—C9—C7 105.2 (3)

C4—C3—H3A 109.4 C7i—C9—H9 110.7

C2—C3—H3A 109.4 C7—C9—H9 110.7

C4—C3—H3B 109.4

References

Related documents

The present study was initiated to assess flowering and pollen viability effects in wild potato populations after controlled application of carbofuran, a pesticide to which

The general aim of the centralized action for the dissemination and exploitation of knowledge resulting from Community research activities, carried out under this

MicroRNAs may regulate in several cardi- ovascular pathologies, not only limited to hypertrophy, heart failure, arr- hythmias, hypertension, myocardial infarction, dyslipidemias

In a parallel work, Press and Smith ( 2018 ) pro- pose an “eager translation” model which also out- puts target-side words before the whole input sen- tence is fed in, but there

mobile phone penetration to affect technology commodity exports in Sub-Saharan Africa for. the

In this proposal, we propose a corpus based study to examine doctor-patient conversation of antibiotic treatment negotiation in Chinese pedi- atric settings, using a mixed

tonic once preferences over constant prospects are known, the set Γ Ĺ Φ of paths with comonotonic endpoints, defines a partial mixture set p X, Γ q that is endogenous to

Cross-language and Cross-encyclopedia Article Linking Using Mixed-language Topic Model and Hy- pernym Translation. Yu-Chun Wang, Chun-Kai Wu and Richard