• No results found

A dimeric tellurastannoxane carbonate cluster, tetra tert butyl di μ3 carbonato tetra­kis­[4 (N,N di­methyl­amino)phenyl]­di μ oxo ditelluriumditin chloro­form tetrasolvate

N/A
N/A
Protected

Academic year: 2020

Share "A dimeric tellurastannoxane carbonate cluster, tetra tert butyl di μ3 carbonato tetra­kis­[4 (N,N di­methyl­amino)phenyl]­di μ oxo ditelluriumditin chloro­form tetrasolvate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1978

Beckmannet al. [Sn2Te2(C4H9)4(CO3)2O2(C8H10N)4]4CHCl3doi: 10.1107/S1600536804028120Acta Cryst.(2004). E60, m1978±m1979

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A dimeric tellurastannoxane carbonate cluster,

tetra-tert-butyl-di-

l

3

-carbonato-tetrakis-[4-(N,N-dimethylamino)phenyl]di-

l

-oxo-ditelluriumditin chloroform tetrasolvate

Jens Beckmann,*³ Dainis Dakternieks, Andrew Duthie and Cassandra Mitchell

Centre for Chiral and Molecular Technologies, Deakin University, Geelong 3217, Victoria, Australia

³ Present address: Institut fuÈr Chemie, Freie UniversitaÈt Berlin, Fabeckstrasse 34±36, 14195 Berlin, Germany.

Correspondence e-mail: beckmann@chemie.fu-berlin.de

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.008 AÊ

Rfactor = 0.054

wRfactor = 0.111

Data-to-parameter ratio = 22.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Sn2Te2(C4H9)4(CO3)2O2(C8H10N)4] -4CHCl3 or [(p-Me2NC6H4)2TeOSntBu2CO3]24CHCl3, contains an almost planar centrosymmetric inorganic

Sn2Te2O8C2 core and hypercoordinated Sn and Te atoms.

The structure features four secondary intramolecular Te O

contacts.

Comment

The title compound, [(p-Me2NC6H4)2TeOSntBu2CO3]2

-4CHCl3, (I), is a close analogue of the recently published

compound [(p-MeOC6H4)2TeOSntBu2CO3]2, (II), and was

formed when a solution of (tBu

2SnO)3 and (p-Me2 N-C6H4)2TeO (Sn:Te ratio = 1:1) was purged with an excess of carbon dioxide (Beckmannet al., 2004).

The centrosymmetric structure of (I) (Fig. 1 and Table 1) features an almost planar Sn2Te2C2O8 core, the largest deviation from the mean plane being 0.461 (15) AÊ for atom Te1. The geometry of the Sn atom is distorted trigonal bipyramidal and is de®ned by a C2O3donor set. The distortion appears to originate from the chelating coordination mode of the carbonate moiety. When considering the primary and secondary coordination spheres, but not the stereochemically active lone pair, the geometry of the Te atom is strongly distorted octahedral, de®ned by a C2O2+ O2donor set.

The most striking feature of the structure of (I) is the

network of four (two independent) secondary Te O

inter-actions [3.159 (3) and 3.255 (3) AÊ], which seem to contribute to the con®gurational stability of the cluster. The three CÐO bond lengths of the carbonate group are rather different [1.252 (6), 1.282 (6) and 1.326 (6) AÊ], which presumably stems from the varying donation of electron density of the O atoms to the Sn and Te atoms, respectively.

The absorption of gaseous carbon dioxide by the two organometallic oxides (`®xation') and the discrepancy of the

(2)

CÐO bond lengths (`bond activation') suggest applications of (I) as a recyclable C1 feedstock for commodity chemicals, such as urea and dimethyl carbonate (DMC).

Experimental

Compound (I) was prepared in a manner analogous to that used for [(p-MeOC6H4)2TeOSntBu2CO3]2, (II) (Beckmannet al., 2004), and

obtained in yield of 95%. Crystals (m.p. 501±503 K) were grown from a solution in chloroform (100 mg mlÿ1) at room temperature.

Analysis calculated for C50H76N4O8Sn2Te2 (Mr 1353.78): C 44.36,

H 5.66%; found: C 44.44, H 5.67%. Spectroscopic analysis:1H NMR

(299.98 MHz, CDCl3, , p.p.m.): 1.17 [s, 2J(1H±117/119Sn) 105, 36H,

tBu], 2.96 (d, 24H, NMe

2), 6.68 (d, 8H, C6H4), 7.94 (s, 8H, C6H4); 13C{1H} NMR (75.44 MHz, CDCl

3,, p.p.m.): 29.36 (tBu), 38.95 (tBu),

40.16 (NMe2), 112.40 (C6H4), 124.34 (C6H4), 133.27 (C6H4), 151.74

(C6H4), 165.36 (CO3); 119Sn{1H} NMR (100.73 MHz, CDCl3, ,

p.p.m.):ÿ257.9;119Sn MAS NMR (149.10 MHz,

iso, p.p.m.):ÿ267.5; 125Te{1H} NMR (85.34 MHz, CDCl

3, , p.p.m.): 1213.2;125Te MAS

NMR (126.27 MHz,iso, p.p.m.): 1195.4.

Crystal data

[Sn2Te2(C4H9)4(CO3)2O2 -(C8H10N)4]4CHCl3

Mr= 1831.20

Monoclinic,P21=c

a= 11.0573 (8) AÊ

b= 14.4144 (10) AÊ

c= 23.1203 (17) AÊ

= 96.946 (1)

V= 3658.0 (5) AÊ3

Z= 2

Dx= 1.663 Mg mÿ3

MoKradiation Cell parameters from 4050

re¯ections

= 2.3±25.9

= 1.95 mmÿ1

T= 293 (2) K Rod, colourless 0.500.150.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan

8301 independent re¯ections 6590 re¯ections withI> 2(I)

Rint= 0.048

= 27.5

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.055

wR(F2) = 0.111

S= 1.09 8301 re¯ections 370 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0434P)2

+ 5.0552P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 1.25 e AÊÿ3

min=ÿ1.30 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Sn1ÐO1 2.040 (3)

Sn1ÐO3 2.313 (3)

Sn1ÐO4 2.085 (3)

Sn1ÐC31 2.157 (6)

Sn1ÐC41 2.157 (5)

Te1ÐO1i 1.918 (3)

Te1ÐO2 2.501 (4)

Te1ÐC11 2.097 (5)

Te1ÐC21 2.112 (5)

C1ÐO2 1.252 (6)

C1ÐO3 1.282 (6)

C1ÐO4 1.326 (6)

C1ÐO2ÐTe1 116.1 (3)

C1ÐO3ÐSn1 88.5 (3)

C1ÐO4ÐSn1 97.7 (3)

O1ÐSn1ÐO3 147.58 (13)

O1ÐSn1ÐO4 88.12 (14)

O3ÐSn1ÐO4 59.50 (13)

O1ÐSn1ÐC31 98.05 (18)

O1ÐSn1ÐC41 101.25 (19)

O3ÐSn1ÐC31 93.88 (18)

O3ÐSn1ÐC41 93.35 (18)

O4ÐSn1ÐC31 113.03 (19)

O4ÐSn1ÐC41 112.51 (19)

C31ÐSn1ÐC41 130.7 (2)

O1iÐTe1ÐO2 174.14 (13)

O1iÐTe1ÐC11 94.36 (18)

O1iÐTe1ÐC21 90.64 (17)

O2ÐTe1ÐC11 82.95 (16)

O2ÐTe1ÐC21 84.54 (16)

C11ÐTe1ÐC21 97.10 (19)

Te1iÐO1ÐSn1 126.49 (18)

O2ÐC1ÐO3 123.7 (5)

O2ÐC1ÐO4 122.0 (5)

O3ÐC1ÐO4 114.3 (5)

Symmetry code: (i) 1ÿx;1ÿy;ÿz.

The H atoms were placed in geometrically calculated positions and re®ned using a riding model, with primary CÐH = 0.96, secondary CÐH = 0.97 and tertiary CÐH = 0.93 AÊ, and with Uiso(H) =

1.2Ueq(C) for non-methyl H atoms and 1.5Ueq(C) for methyl groups.

The highest peak and deepest hole are 0.92 AÊ from Cl1 and 0.94 AÊ from H34C, respectively.

Data collection:SMART(Bruker, 2000); cell re®nement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

DIAMOND (Bergerhoff et al., 1996); software used to prepare material for publication:SHELXL97.

Dr Jonathan White (University of Melbourne) is gratefully acknowledged for the X-ray data collection.

References

Beckmann, J., Dakternieks, D., Duthie, A., Lewcenko, N. A. & Mitchell, C. (2004).Angew. Chem. Int. Ed.In the press.

Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996).J. Res. Natl Inst. Stand. Technol.101, 221±225.

Bruker (2000).SMART,SAINTandSADABS.Bruker AXS Inc., Madison,

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, m1978–m1979

supporting information

Acta Cryst. (2004). E60, m1978–m1979 [https://doi.org/10.1107/S1600536804028120]

A dimeric tellurastannoxane carbonate cluster, tetra-

tert

-butyl-di-

µ

3-carbonato-tetrakis[4-(

N

,

N

-dimethylamino)phenyl]di-

µ

-oxo-ditelluriumditin chloroform

tetrasolvate

Jens Beckmann, Dainis Dakternieks, Andrew Duthie and Cassandra Mitchell

tetra-tert-butyl-di-µ3-carbonato-tetrakis[4-(N,N-dimethylamino)phenyl]di- µ-oxo-ditelluriumditin chloroform

tetrasolvate

Crystal data

[Sn2Te2(C4H9)4(CO3)2O2(C8H10N)4]·4CHCl3 Mr = 1831.20

Monoclinic, P21/c Hall symbol: -P 2ybc a = 11.0573 (8) Å b = 14.4144 (10) Å c = 23.1203 (17) Å β = 96.946 (1)° V = 3658.0 (5) Å3 Z = 2

F(000) = 1808 Dx = 1.663 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 4050 reflections θ = 2.3–25.9°

µ = 1.95 mm−1 T = 293 K Rod, colourless 0.50 × 0.15 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.681, Tmax = 0.823

22007 measured reflections 8301 independent reflections 6590 reflections with I > 2σ(I) Rint = 0.048

θmax = 27.5°, θmin = 1.7° h = −14→13

k = −18→18 l = −30→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.055 wR(F2) = 0.111 S = 1.09 8301 reflections 370 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0434P)2 + 5.0552P]

where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.7036 (5) 0.5654 (3) 0.0895 (2) 0.0199 (11)

C2 0.7907 (5) 0.7886 (4) 0.1500 (3) 0.0320 (14)

H2 0.7881 0.7215 0.1433 0.038*

C3 0.9552 (5) 0.4342 (4) 0.8796 (3) 0.0425 (17)

H3 1.0442 0.4354 0.8811 0.051*

C11 0.5094 (4) 0.7106 (3) −0.0103 (2) 0.0179 (11)

C12 0.5071 (5) 0.8027 (4) −0.0282 (2) 0.0245 (12)

H12 0.5562 0.8218 −0.0559 0.029*

C13 0.4328 (5) 0.8659 (4) −0.0052 (3) 0.0261 (12)

H13 0.4327 0.9273 −0.0175 0.031*

C14 0.3569 (5) 0.8393 (4) 0.0364 (2) 0.0222 (12)

C15 0.3578 (5) 0.7464 (4) 0.0532 (3) 0.0278 (13)

H15 0.3081 0.7267 0.0805 0.033*

C16 0.4329 (5) 0.6825 (4) 0.0294 (2) 0.0224 (11)

H16 0.4313 0.6204 0.0403 0.027*

C17 0.3127 (6) 0.9998 (4) 0.0576 (3) 0.0370 (15)

H17A 0.2542 1.0355 0.0756 0.056*

H17B 0.3110 1.0183 0.0176 0.056*

H17C 0.3926 1.0103 0.0778 0.056*

C18 0.2198 (6) 0.8751 (5) 0.1086 (3) 0.0472 (18)

H18A 0.1727 0.9263 0.1202 0.071*

H18B 0.2780 0.8565 0.1407 0.071*

H18C 0.1666 0.8240 0.0969 0.071*

C21 0.7548 (4) 0.7142 (3) −0.0671 (2) 0.0179 (10)

C22 0.7503 (4) 0.7443 (3) −0.1240 (2) 0.0200 (11)

H22 0.6886 0.7232 −0.1518 0.024*

C23 0.8367 (4) 0.8055 (4) −0.1402 (2) 0.0207 (11)

H23 0.8320 0.8247 −0.1788 0.025*

C24 0.9316 (5) 0.8393 (4) −0.0995 (2) 0.0215 (11)

C25 0.9337 (5) 0.8077 (4) −0.0419 (2) 0.0284 (13)

H25 0.9945 0.8288 −0.0136 0.034*

C26 0.8479 (5) 0.7463 (4) −0.0264 (3) 0.0274 (13)

H26 0.8524 0.7260 0.0120 0.033*

C27 1.0166 (5) 0.9243 (4) −0.1760 (3) 0.0334 (14)

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, m1978–m1979

H27B 0.9398 0.9517 −0.1907 0.050*

H27C 1.0294 0.8693 −0.1979 0.050*

C28 1.1180 (5) 0.9275 (5) −0.0731 (3) 0.0388 (16)

H28A 1.1688 0.9704 −0.0908 0.058*

H28B 1.1646 0.8735 −0.0604 0.058*

H28C 1.0879 0.9564 −0.0403 0.058*

C31 0.5280 (5) 0.5294 (4) 0.2189 (2) 0.0288 (13)

C32 0.4532 (7) 0.6025 (5) 0.1841 (3) 0.055 (2)

H32A 0.5057 0.6408 0.1641 0.082*

H32B 0.4121 0.6401 0.2099 0.082*

H32C 0.3941 0.5730 0.1562 0.082*

C33 0.6245 (6) 0.5752 (5) 0.2623 (3) 0.0446 (17)

H33A 0.6712 0.5282 0.2844 0.067*

H33B 0.5856 0.6142 0.2882 0.067*

H33C 0.6775 0.6121 0.2416 0.067*

C34 0.4456 (7) 0.4686 (6) 0.2505 (3) 0.058 (2)

H34A 0.4936 0.4225 0.2727 0.087*

H34B 0.3869 0.4386 0.2227 0.087*

H34C 0.4041 0.5061 0.2762 0.087*

C41 0.7453 (5) 0.3367 (4) 0.1707 (3) 0.0297 (13)

C42 0.7984 (5) 0.3219 (4) 0.1141 (3) 0.0403 (16)

H42A 0.8373 0.3779 0.1036 0.060*

H42B 0.7344 0.3058 0.0840 0.060*

H42C 0.8572 0.2726 0.1189 0.060*

C43 0.8445 (5) 0.3658 (5) 0.2191 (3) 0.0388 (16)

H43A 0.8092 0.3749 0.2546 0.058*

H43B 0.8812 0.4227 0.2084 0.058*

H43C 0.9055 0.3182 0.2247 0.058*

C44 0.6829 (6) 0.2481 (5) 0.1881 (4) 0.054 (2)

H44A 0.6497 0.2581 0.2241 0.081*

H44B 0.7413 0.1986 0.1929 0.081*

H44C 0.6184 0.2319 0.1582 0.081*

Cl1 0.65667 (18) 0.83685 (17) 0.11664 (10) 0.0737 (7)

Cl2 0.91632 (18) 0.83413 (14) 0.12077 (9) 0.0571 (5)

Cl3 0.80836 (18) 0.80883 (15) 0.22509 (8) 0.0569 (5)

Cl4 0.8961 (2) 0.35948 (15) 0.82413 (10) 0.0673 (6)

Cl5 0.90017 (19) 0.54531 (13) 0.86730 (14) 0.0842 (9)

Cl6 0.9171 (2) 0.39351 (17) 0.94649 (10) 0.0719 (6)

N1 0.2831 (4) 0.9030 (3) 0.0603 (2) 0.0289 (11)

N2 1.0158 (4) 0.9004 (3) −0.1155 (2) 0.0304 (11)

O1 0.4606 (3) 0.3731 (2) 0.12399 (15) 0.0222 (8)

O2 0.7387 (3) 0.6207 (2) 0.05330 (16) 0.0234 (8)

O3 0.7547 (3) 0.5574 (2) 0.14209 (16) 0.0226 (8)

O4 0.6094 (3) 0.5092 (2) 0.07606 (15) 0.0196 (8)

Sn1 0.61146 (3) 0.44587 (2) 0.157210 (15) 0.01782 (10)

(6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.022 (3) 0.019 (3) 0.019 (3) 0.002 (2) 0.003 (2) −0.005 (2)

C2 0.033 (3) 0.028 (3) 0.035 (3) −0.004 (3) 0.003 (3) −0.007 (3)

C3 0.023 (3) 0.031 (3) 0.074 (5) 0.001 (2) 0.005 (3) −0.001 (3)

C11 0.018 (2) 0.016 (2) 0.019 (3) 0.0020 (19) 0.000 (2) −0.001 (2)

C12 0.025 (3) 0.023 (3) 0.026 (3) −0.003 (2) 0.005 (2) 0.000 (2)

C13 0.029 (3) 0.018 (3) 0.033 (3) 0.000 (2) 0.007 (3) 0.001 (2)

C14 0.019 (3) 0.028 (3) 0.018 (3) 0.001 (2) −0.003 (2) −0.005 (2)

C15 0.030 (3) 0.024 (3) 0.033 (3) 0.006 (2) 0.017 (3) 0.000 (2)

C16 0.026 (3) 0.019 (3) 0.022 (3) −0.004 (2) 0.002 (2) 0.005 (2)

C17 0.040 (4) 0.029 (3) 0.044 (4) 0.003 (3) 0.012 (3) −0.005 (3)

C18 0.049 (4) 0.041 (4) 0.057 (5) 0.009 (3) 0.029 (4) −0.003 (4)

C21 0.017 (2) 0.018 (2) 0.019 (3) −0.001 (2) 0.002 (2) 0.003 (2)

C22 0.018 (3) 0.020 (3) 0.021 (3) −0.002 (2) 0.000 (2) −0.001 (2)

C23 0.021 (3) 0.026 (3) 0.015 (3) 0.002 (2) 0.002 (2) 0.003 (2)

C24 0.019 (3) 0.019 (3) 0.027 (3) 0.002 (2) 0.001 (2) 0.003 (2)

C25 0.027 (3) 0.033 (3) 0.022 (3) −0.015 (2) −0.008 (2) 0.003 (3)

C26 0.029 (3) 0.032 (3) 0.020 (3) −0.007 (2) −0.003 (2) 0.004 (2)

C27 0.032 (3) 0.034 (3) 0.036 (4) −0.010 (3) 0.010 (3) 0.007 (3)

C28 0.029 (3) 0.043 (4) 0.041 (4) −0.017 (3) −0.009 (3) 0.006 (3)

C31 0.031 (3) 0.034 (3) 0.021 (3) −0.008 (2) 0.003 (3) −0.008 (3)

C32 0.062 (5) 0.059 (5) 0.042 (4) 0.027 (4) 0.000 (4) −0.016 (4)

C33 0.050 (4) 0.055 (4) 0.028 (4) −0.016 (3) 0.006 (3) −0.019 (3)

C34 0.065 (5) 0.074 (6) 0.040 (4) −0.023 (4) 0.028 (4) −0.018 (4)

C41 0.023 (3) 0.031 (3) 0.034 (3) 0.003 (2) −0.002 (3) 0.012 (3)

C42 0.029 (3) 0.038 (4) 0.053 (4) 0.011 (3) 0.001 (3) 0.000 (3)

C43 0.029 (3) 0.051 (4) 0.035 (4) 0.008 (3) −0.003 (3) 0.009 (3)

C44 0.038 (4) 0.038 (4) 0.084 (6) 0.000 (3) −0.001 (4) 0.030 (4)

Cl1 0.0487 (11) 0.1032 (17) 0.0614 (13) 0.0278 (11) −0.0247 (10) −0.0375 (13)

Cl2 0.0613 (12) 0.0593 (12) 0.0555 (12) −0.0139 (9) 0.0266 (10) −0.0098 (10)

Cl3 0.0637 (12) 0.0758 (14) 0.0306 (9) 0.0045 (10) 0.0027 (9) 0.0019 (9)

Cl4 0.0748 (14) 0.0679 (14) 0.0596 (13) −0.0059 (11) 0.0102 (11) −0.0172 (11)

Cl5 0.0602 (13) 0.0372 (11) 0.163 (3) 0.0115 (9) 0.0436 (15) 0.0165 (13)

Cl6 0.0657 (13) 0.0952 (17) 0.0532 (13) −0.0127 (12) 0.0004 (11) 0.0003 (12)

N1 0.030 (3) 0.027 (3) 0.031 (3) 0.003 (2) 0.008 (2) −0.002 (2)

N2 0.027 (3) 0.035 (3) 0.028 (3) −0.009 (2) −0.004 (2) 0.010 (2)

O1 0.0221 (18) 0.028 (2) 0.0156 (19) −0.0089 (15) −0.0024 (15) −0.0028 (16)

O2 0.027 (2) 0.024 (2) 0.020 (2) −0.0050 (16) 0.0042 (16) 0.0041 (16)

O3 0.0210 (18) 0.028 (2) 0.0171 (19) −0.0057 (15) −0.0022 (15) 0.0001 (16)

O4 0.0219 (18) 0.0188 (18) 0.0172 (19) −0.0016 (14) −0.0012 (15) 0.0027 (15)

Sn1 0.01702 (18) 0.02152 (19) 0.01437 (18) −0.00305 (14) −0.00044 (14) 0.00216 (15)

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, m1978–m1979 Geometric parameters (Å, º)

Sn1—O1 2.040 (3) C22—C23 1.384 (7)

Sn1—O3 2.313 (3) C22—H22 0.9300

Sn1—O4 2.085 (3) C23—C24 1.408 (7)

Sn1—C31 2.157 (6) C23—H23 0.9300

Sn1—C41 2.157 (5) C24—N2 1.364 (6)

Te1—O1i 1.918 (3) C24—C25 1.405 (7)

Te1—O2 2.501 (4) C25—C26 1.377 (7)

Te1—C11 2.097 (5) C25—H25 0.9300

Te1—C21 2.112 (5) C26—H26 0.9300

C1—O2 1.252 (6) C27—N2 1.443 (7)

C1—O3 1.282 (6) C27—H27A 0.9600

C1—O4 1.326 (6) C27—H27B 0.9600

C1—Sn1 2.615 (5) C27—H27C 0.9600

C2—Cl1 1.731 (6) C28—N2 1.456 (7)

C2—Cl2 1.745 (6) C28—H28A 0.9600

C2—Cl3 1.749 (6) C28—H28B 0.9600

C2—H2 0.9800 C28—H28C 0.9600

C3—Cl5 1.724 (6) C31—C32 1.509 (9)

C3—Cl4 1.740 (7) C31—C34 1.515 (8)

C3—Cl6 1.753 (8) C31—C33 1.524 (8)

C3—H3 0.9800 C32—H32A 0.9600

C11—C16 1.382 (7) C32—H32B 0.9600

C11—C12 1.390 (7) C32—H32C 0.9600

C12—C13 1.376 (7) C33—H33A 0.9600

C12—H12 0.9300 C33—H33B 0.9600

C13—C14 1.405 (7) C33—H33C 0.9600

C13—H13 0.9300 C34—H34A 0.9600

C14—N1 1.385 (7) C34—H34B 0.9600

C14—C15 1.395 (8) C34—H34C 0.9600

C15—C16 1.397 (7) C41—C42 1.513 (9)

C15—H15 0.9300 C41—C43 1.527 (8)

C16—H16 0.9300 C41—C44 1.528 (8)

C17—N1 1.437 (7) C42—H42A 0.9600

C17—H17A 0.9600 C42—H42B 0.9600

C17—H17B 0.9600 C42—H42C 0.9600

C17—H17C 0.9600 C43—H43A 0.9600

C18—N1 1.445 (8) C43—H43B 0.9600

C18—H18A 0.9600 C43—H43C 0.9600

C18—H18B 0.9600 C44—H44A 0.9600

C18—H18C 0.9600 C44—H44B 0.9600

C21—C22 1.382 (7) C44—H44C 0.9600

C21—C26 1.387 (7)

C1—O2—Te1 116.1 (3) C24—C23—H23 119.2

C1—O3—Sn1 88.5 (3) N2—C24—C25 122.1 (5)

(8)

O1—Sn1—O3 147.58 (13) C25—C24—C23 116.5 (5)

O1—Sn1—O4 88.12 (14) C26—C25—C24 121.5 (5)

O3—Sn1—O4 59.50 (13) C26—C25—H25 119.3

O1—Sn1—C31 98.05 (18) C24—C25—H25 119.3

O1—Sn1—C41 101.25 (19) C25—C26—C21 121.1 (5)

O3—Sn1—C31 93.88 (18) C25—C26—H26 119.4

O3—Sn1—C41 93.35 (18) C21—C26—H26 119.4

O4—Sn1—C31 113.03 (19) N2—C27—H27A 109.5

O4—Sn1—C41 112.51 (19) N2—C27—H27B 109.5

C31—Sn1—C41 130.7 (2) H27A—C27—H27B 109.5

O1i—Te1—O2 174.14 (13) N2—C27—H27C 109.5

O1i—Te1—C11 94.36 (18) H27A—C27—H27C 109.5

O1i—Te1—C21 90.64 (17) H27B—C27—H27C 109.5

O2—Te1—C11 82.95 (16) N2—C28—H28A 109.5

O2—Te1—C21 84.54 (16) N2—C28—H28B 109.5

C11—Te1—C21 97.10 (19) H28A—C28—H28B 109.5

Te1i—O1—Sn1 126.49 (18) N2—C28—H28C 109.5

O2—C1—O3 123.7 (5) H28A—C28—H28C 109.5

O2—C1—O4 122.0 (5) H28B—C28—H28C 109.5

O3—C1—O4 114.3 (5) C32—C31—C34 109.8 (6)

O2—C1—Sn1 174.2 (4) C32—C31—C33 110.1 (6)

O3—C1—Sn1 62.1 (3) C34—C31—C33 110.3 (5)

O4—C1—Sn1 52.2 (2) C32—C31—Sn1 106.8 (4)

Cl1—C2—Cl2 110.8 (4) C34—C31—Sn1 109.0 (4)

Cl1—C2—Cl3 111.2 (3) C33—C31—Sn1 110.8 (4)

Cl2—C2—Cl3 108.8 (3) C31—C32—H32A 109.5

Cl1—C2—H2 108.6 C31—C32—H32B 109.5

Cl2—C2—H2 108.6 H32A—C32—H32B 109.5

Cl3—C2—H2 108.6 C31—C32—H32C 109.5

Cl5—C3—Cl4 111.1 (4) H32A—C32—H32C 109.5

Cl5—C3—Cl6 109.8 (4) H32B—C32—H32C 109.5

Cl4—C3—Cl6 109.5 (3) C31—C33—H33A 109.5

Cl5—C3—H3 108.8 C31—C33—H33B 109.5

Cl4—C3—H3 108.8 H33A—C33—H33B 109.5

Cl6—C3—H3 108.8 C31—C33—H33C 109.5

C16—C11—C12 119.2 (5) H33A—C33—H33C 109.5

C16—C11—Te1 121.6 (4) H33B—C33—H33C 109.5

C12—C11—Te1 119.1 (4) C31—C34—H34A 109.5

C13—C12—C11 120.5 (5) C31—C34—H34B 109.5

C13—C12—H12 119.8 H34A—C34—H34B 109.5

C11—C12—H12 119.8 C31—C34—H34C 109.5

C12—C13—C14 121.2 (5) H34A—C34—H34C 109.5

C12—C13—H13 119.4 H34B—C34—H34C 109.5

C14—C13—H13 119.4 C42—C41—C43 110.7 (5)

N1—C14—C15 120.7 (5) C42—C41—C44 110.1 (6)

N1—C14—C13 121.4 (5) C43—C41—C44 110.2 (5)

C15—C14—C13 117.9 (5) C42—C41—Sn1 108.0 (4)

(9)

supporting information

sup-7

Acta Cryst. (2004). E60, m1978–m1979

C14—C15—H15 119.7 C44—C41—Sn1 108.9 (4)

C16—C15—H15 119.7 C41—C42—H42A 109.5

C11—C16—C15 120.6 (5) C41—C42—H42B 109.5

C11—C16—H16 119.7 H42A—C42—H42B 109.5

C15—C16—H16 119.7 C41—C42—H42C 109.5

N1—C17—H17A 109.5 H42A—C42—H42C 109.5

N1—C17—H17B 109.5 H42B—C42—H42C 109.5

H17A—C17—H17B 109.5 C41—C43—H43A 109.5

N1—C17—H17C 109.5 C41—C43—H43B 109.5

H17A—C17—H17C 109.5 H43A—C43—H43B 109.5

H17B—C17—H17C 109.5 C41—C43—H43C 109.5

N1—C18—H18A 109.5 H43A—C43—H43C 109.5

N1—C18—H18B 109.5 H43B—C43—H43C 109.5

H18A—C18—H18B 109.5 C41—C44—H44A 109.5

N1—C18—H18C 109.5 C41—C44—H44B 109.5

H18A—C18—H18C 109.5 H44A—C44—H44B 109.5

H18B—C18—H18C 109.5 C41—C44—H44C 109.5

C22—C21—C26 118.7 (5) H44A—C44—H44C 109.5

C22—C21—Te1 118.3 (4) H44B—C44—H44C 109.5

C26—C21—Te1 123.0 (4) C14—N1—C17 118.6 (5)

C21—C22—C23 120.7 (5) C14—N1—C18 119.1 (5)

C21—C22—H22 119.6 C17—N1—C18 115.9 (5)

C23—C22—H22 119.6 C24—N2—C27 120.0 (5)

C22—C23—C24 121.6 (5) C24—N2—C28 119.4 (5)

C22—C23—H23 119.2 C27—N2—C28 119.6 (5)

References

Related documents

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are

The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are