• No results found

(μ2 Chlorido) (μ2 pyridine 2 carboxyl­ato 1:2κN,O:O) di­chlorido(ethanol κO)bis­­[N hy­dr­oxy 1 (pyridin 2 yl)methan­imine κ2N,N′]dicobalt(II)

N/A
N/A
Protected

Academic year: 2020

Share "(μ2 Chlorido) (μ2 pyridine 2 carboxyl­ato 1:2κN,O:O) di­chlorido(ethanol κO)bis­­[N hy­dr­oxy 1 (pyridin 2 yl)methan­imine κ2N,N′]dicobalt(II)"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

(

l

2

-Chlorido)-(

l

2

-pyridine-2-carboxyl-ato-1:2

j

N

,

O

:

O

)-dichlorido(ethanol-

j

O

)-bis[

N

-hydroxy-1-(pyridin-2-yl)methan-imine-

j

2

N

,

N

000

]dicobalt(II)

Lei Chen

Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection, Business School, Linyi University, Linyi 276005, China Correspondence e-mail: lytucl@126.com

Received 20 September 2012; accepted 5 October 2012

Key indicators: single-crystal X-ray study;T= 293 K; mean(C–C) = 0.007 A˚;

Rfactor = 0.036;wRfactor = 0.165; data-to-parameter ratio = 14.2.

The dinuclear title compound, [Co2Cl3(C6H4NO2)(C6H6 -N2O)2(C2H5OH)], contains two six-coordinate Co

II atoms with different octahedral coordination environments. One CoIIatom is coordinated by two N atoms from one pyridine-2-carbaldehyde oxime ligand, by one terminal and one bridging Clion, by one O atom from an ethanol molecule, and by one O atom from a bridging pyridine-2-carboxylate (picolinate) anion. The second CoIIatom is coordinated by two N atoms from another pyridine-2-carbaldehyde oxime ligand, one N and one O atom from the bridging picolinate anion, and by one terminal Cl and one bridging Cl anion. The structure displays intramolecular O—H O and O—H Cl hydrogen bonds. Weak C—H Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network.

Related literature

For examples of CoIIcomplexes with pyridine-2-carbaldehyde oxime ligands, see: Stamatatoset al.(2005a,b, 2009); Rosset al. (2001). For the isostructural NiIIanalogue, see: Zheng et al. (2011).

Experimental

Crystal data

[Co2Cl3(C6H4NO2)(C6H6N2O)2 -(C2H6O)]

Mr= 636.64

Monoclinic,P21=c a= 8.7443 (17) A˚

b= 18.144 (4) A˚

c= 16.643 (3) A˚

= 99.23 (3)

V= 2606.4 (9) A˚3

Z= 4

MoKradiation

= 1.62 mm1

T= 293 K

0.300.250.21 mm

Data collection

Bruker APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin= 0.642,Tmax= 0.727

17261 measured reflections 4520 independent reflections 3778 reflections withI> 2(I)

Rint= 0.026

Refinement

R[F2> 2(F2)] = 0.036

wR(F2) = 0.165

S= 1.18 4520 reflections 319 parameters

14 restraints

H-atom parameters constrained

max= 1.09 e A˚

3 min=1.31 e A˚

3

Table 1

Selected bond lengths (A˚ ).

Co1—O3 2.087 (2)

Co1—O5 2.110 (3)

Co1—N1 2.111 (3)

Co1—N2 2.118 (4)

Co1—Cl5 2.3648 (11)

Co1—Cl3 2.4781 (12)

O3—Co2 2.111 (3)

Co2—N3 2.118 (3)

Co2—N5 2.117 (3)

Co2—N4 2.133 (3)

Co2—Cl4 2.3948 (10)

[image:1.610.83.258.598.701.2]

Co2—Cl3 2.4603 (10)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O2—H2A Cl5 0.82 2.29 3.103 (3) 172

O1—H1 O4 0.82 1.83 2.615 (4) 160

O5—H5A Cl4 0.85 2.32 3.147 (3) 164

C12—H12 Cl4i

0.93 2.80 3.684 (4) 160

C10—H10 Cl5ii

0.93 2.82 3.684 (5) 156

C14—H14 Cl4iii 0.93 2.74 3.556 (4) 147

C2—H2 Cl4iv

0.93 2.81 3.654 (5) 152

C17—H17 Cl5v

0.93 2.80 3.491 (4) 132

Symmetry codes: (i) x1;y;z; (ii) x;yþ1 2;z

1

2; (iii) x;yþ 1 2;zþ

1 2; (iv)

xþ1;yþ1 2;zþ

1

2; (v)x;y 1 2;zþ

1 2.

Data collection:APEX2(Bruker, 2005); cell refinement:SAINT (Bruker, 2005); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL(Sheldrick, 2008) andDIAMOND(Brandenburg, 1999); software used to prepare material for publication:SHELXTL.

The Ministry of Education, Humanities and Social Sciences (project No. 10YJC790024) and the Shandong Province Natural Science Foundation (project No. ZR2011GL013) are acknowledged for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2687).

Acta Crystallographica Section E Structure Reports

Online

(2)

References

Brandenburg, K. (1999).DIAMOND.Crystal Impact GbR, Bonn, Germany. Bruker (2005).APEX2,SAINTandSADABS. Bruker AXS Inc., Madison,

Wisconsin, USA.

Ross, S., Weyhermuller, T., Bill, E., Wieghardt, K. & Chaudhuri, P. (2001).

Inorg. Chem.40, 6656–6665.

Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

Stamatatos, T. C., Bell, A., Cooper, P., Terzis, A., Raptopoulou, C. P., Heath, S. L., Winpenny, R. E. P. & Perlepes, S. P. (2005a).Inorg. Chem. Commun.8, 533–538.

Stamatatos, T. C., Dionyssopoulou, S., Efthymiou, G., Kyritsis, P., Raptop-oulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005b).

Inorg. Chem.44, 3374–3376.

Stamatatos, T. C., Katsoulakou, E., Terzis, A., Raptopoulou, C. P., Winpenny, R. E. P. & Perlepes, S. P. (2009).Polyhedron,28, 1638–1645.

Zheng, L.-N., Hu, B., Chen, W.-Q., Chen, Y.-M., Lei, T. & Li, Y.-H. (2011).

Chin. J. Inorg. Chem.27, 2162–2166.

metal-organic compounds

m1366

Lei Chen [Co
(3)

supporting information

Acta Cryst. (2012). E68, m1365–m1366 [doi:10.1107/S1600536812041736]

2

-Chlorido)-(µ

2

-pyridine-2-carboxylato-1:2κ

N

,

O

:

O

)-dichlorido(ethanol-κ

O

)bis[

N

-hydroxy-1-(pyridin-2-yl)methanimine-

κ

2

N

,

N

]dicobalt(II)

Lei Chen

S1. Comment

Pyridine-2-carbaldehyde oxime is a frequently used ligand in synthesis of metal complexes. A large number of cobalt

complexes based on pyridine-2-carbaldehyde oxime have been reported, such as mononuclear Co complexes (Stamatatos

et al., 2005a), mixed-valence complexes with trinuclear Co3 clusters (Stamatatos et al., 2009), mixed-valence

cobalt(III/II/III) complexes with a linear arrangement (Stamatatos et al., 2005a), mixed-valence 12-metallacrown-4 complexes (Stamatatos et al., 2005b) and some heterodinuclear complexes (Ross et al., 2001). Some of these complexes exhibit interesting magnetic properties (Ross et al., 2001; Stamatatos et al., 2005b, 2009). We are interested in the coordination chemistry of cobalt in combination with pyridine-2-carbaldehyde oxime and carboxylic acids. Here, we

report a new mixed-bridged binuclear cobalt(II) complex, [Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H5OH)], (I).

Compound (I) is isostructural with its Ni(II) analogue (Zheng et al., 2011). There are two six-coordinate Co(II) atoms with different coordination environments present in the structure (Fig. 1). The coordination sphere around each Co(II)

atom is distorted octahedral. The two Co(II) cations are bridged through one Cl- ion and one carboxylic oxygen atom

(O3) from the picolinate anion. The coordination sphere around Co1 is completed by two N atoms from one

pyridine-2-carbaldehyde oxime ligand, by one terminal Cl- ion and by one O atom from an ethanol molecule. For Co2 the

coordination sphere contains also two N atoms from another pyridine-2-carbaldehyde oxime ligand, one N from the

bridging picolinate anion, and one terminal Cl- anion. The Co···Co distance in the dinuclear species is 3.4153 (9) Å.

Intramolecular O—H···O and O—H···Cl hydrogen bonds consolidate the conformation of the complex whereas weak C

—H···Cl hydrogen bonding interactions connect the molecules into a three-dimensional network. (Table 2; Fig. 2).

S2. Experimental

A mixture of CoCl2.6H2O (0.0476 g, 0.20 mmol), carbaldehyde oxime (0.0246 g, 0.20 mmol),

pyridine-2-carboxylic acid (0.0250 g, 0.20 mmol) and ethanol (4 ml) was sealed into a 10 ml sample bottle reactor and heated at 393

K for 3 d under autogenous pressure, and then cooled to room temperature. Brown block-shaped crystals of the title

compound were isolated, washed with distilled water, and dried in air (yield: 25%).

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H =

0.93 Å for aromatic H atoms, 0.96 Å for CH3 type H atoms and 0.97 Å for CH2 type H atoms, respectively. Uiso(H) values

(4)

supporting information

[image:4.610.131.482.73.267.2]

sup-2

Acta Cryst. (2012). E68, m1365–m1366

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Figure 2

[image:4.610.125.483.302.638.2]
(5)

(µ2-Chlorido)-(µ2-pyridine-2-carboxylato-1:2κN,O:O) -dichlorido(ethanol-κO)bis[N

-hydroxy-1-(pyridin-2-yl)methanimine- κ2N,N]dicobalt(II)

Crystal data

[Co2Cl3(C6H4NO2)(C6H6N2O)2(C2H6O)] Mr = 636.64

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 8.7443 (17) Å

b = 18.144 (4) Å

c = 16.643 (3) Å

β = 99.23 (3)°

V = 2606.4 (9) Å3 Z = 4

F(000) = 1288 char

Dx = 1.622 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3510 reflections

θ = 2.6–25.3°

µ = 1.62 mm−1 T = 293 K Block, brown

0.30 × 0.25 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2005)

Tmin = 0.642, Tmax = 0.727

17261 measured reflections 4520 independent reflections 3778 reflections with I > 2σ(I)

Rint = 0.026

θmax = 25.0°, θmin = 2.2°

h = −10→7

k = −21→17

l = −18→19

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.036 wR(F2) = 0.165 S = 1.18 4520 reflections 319 parameters 14 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.1P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.035

Δρmax = 1.09 e Å−3

Δρmin = −1.31 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.24774 (6) 0.45656 (2) 0.21872 (3) 0.0402 (2)

O3 0.2615 (3) 0.34808 (12) 0.26096 (15) 0.0431 (5)

(6)

supporting information

sup-4

Acta Cryst. (2012). E68, m1365–m1366

N1 0.2554 (3) 0.56337 (14) 0.16917 (18) 0.0390 (7)

Cl3 0.08768 (10) 0.39748 (4) 0.09972 (5) 0.0428 (3)

N5 0.1902 (3) 0.20948 (15) 0.27256 (18) 0.0405 (7)

Cl4 0.38894 (10) 0.25504 (5) 0.12436 (5) 0.0446 (3)

N2 0.4077 (4) 0.51273 (17) 0.3068 (2) 0.0532 (8)

Cl5 0.04241 (13) 0.47676 (5) 0.29287 (7) 0.0599 (3)

C13 0.2646 (4) 0.24129 (18) 0.3398 (2) 0.0422 (8)

C5 0.1754 (4) 0.58864 (19) 0.1008 (2) 0.0452 (8)

H5 0.1081 0.5569 0.0686 0.054*

O5 0.4324 (4) 0.42495 (16) 0.1587 (2) 0.0755 (9)

H5A 0.4181 0.3816 0.1395 0.091*

N3 0.0182 (4) 0.20307 (16) 0.0874 (2) 0.0474 (7)

C17 0.1477 (5) 0.13908 (19) 0.2775 (3) 0.0499 (9)

H17 0.0967 0.1159 0.2309 0.060*

N4 −0.0840 (4) 0.28758 (17) 0.1948 (2) 0.0508 (8)

C6 0.4351 (5) 0.5793 (2) 0.2900 (3) 0.0539 (10)

H6 0.5061 0.6073 0.3248 0.065*

C1 0.3537 (4) 0.61002 (19) 0.2159 (2) 0.0436 (8)

C2 0.3710 (5) 0.6820 (2) 0.1930 (3) 0.0533 (10)

H2 0.4399 0.7130 0.2253 0.064*

C18 0.3098 (5) 0.32080 (19) 0.3299 (2) 0.0473 (7)

O4 0.3859 (5) 0.35214 (16) 0.3880 (2) 0.0806 (10)

O2 −0.1396 (4) 0.33138 (18) 0.2505 (2) 0.0702 (9)

H2A −0.0851 0.3682 0.2592 0.105*

C14 0.2986 (5) 0.2054 (2) 0.4128 (2) 0.0534 (10)

H14 0.3518 0.2291 0.4585 0.064*

C11 0.0707 (6) 0.1604 (2) 0.0337 (3) 0.0619 (11)

H11 0.1747 0.1640 0.0285 0.074*

O1 0.4862 (5) 0.48710 (18) 0.3784 (2) 0.0836 (11)

H1 0.4460 0.4488 0.3908 0.125*

C15 0.2517 (5) 0.1328 (2) 0.4166 (3) 0.0560 (11)

H15 0.2716 0.1069 0.4655 0.067*

C7 −0.1329 (5) 0.1977 (2) 0.0940 (3) 0.0527 (10)

C16 0.1765 (5) 0.0998 (2) 0.3486 (3) 0.0546 (10)

H16 0.1448 0.0510 0.3502 0.065*

C3 0.2871 (6) 0.7074 (2) 0.1233 (3) 0.0618 (12)

H3 0.2966 0.7563 0.1080 0.074*

C4 0.1879 (5) 0.6610 (2) 0.0751 (3) 0.0572 (10)

H4 0.1304 0.6776 0.0266 0.069*

C19 0.5751 (6) 0.4495 (3) 0.1537 (4) 0.0872 (12)

H19A 0.6444 0.4338 0.2021 0.105*

H19B 0.5732 0.5029 0.1539 0.105*

C12 −0.1848 (5) 0.2464 (2) 0.1537 (3) 0.0571 (11)

H12 −0.2878 0.2473 0.1613 0.068*

C8 −0.2318 (6) 0.1499 (3) 0.0475 (3) 0.0752 (14)

H8 −0.3356 0.1474 0.0535 0.090*

C10 −0.0215 (7) 0.1106 (3) −0.0154 (3) 0.0793 (15)

(7)

C20 0.6395 (7) 0.4247 (3) 0.0818 (4) 0.0869 (17)

H20A 0.6291 0.3722 0.0766 0.130*

H20B 0.7471 0.4379 0.0879 0.130*

H20C 0.5842 0.4479 0.0339 0.130*

C9 −0.1751 (7) 0.1058 (3) −0.0078 (4) 0.0886 (17)

H9 −0.2401 0.0730 −0.0399 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Co1 0.0441 (3) 0.0344 (3) 0.0410 (3) −0.00033 (19) 0.0033 (3) −0.00025 (17) O3 0.0526 (13) 0.0361 (11) 0.0379 (12) 0.0020 (10) −0.0012 (11) 0.0034 (9) Co2 0.0386 (3) 0.0373 (3) 0.0360 (3) −0.00170 (18) 0.0039 (3) 0.00143 (17) N1 0.0405 (16) 0.0351 (13) 0.0410 (17) −0.0009 (12) 0.0053 (14) −0.0003 (12) Cl3 0.0450 (5) 0.0427 (5) 0.0389 (5) −0.0019 (4) 0.0013 (4) 0.0037 (3) N5 0.0423 (16) 0.0403 (14) 0.0388 (17) 0.0020 (12) 0.0059 (14) 0.0061 (12) Cl4 0.0408 (5) 0.0464 (5) 0.0470 (6) 0.0052 (4) 0.0082 (4) −0.0003 (4) N2 0.060 (2) 0.0443 (17) 0.049 (2) −0.0008 (15) −0.0098 (17) 0.0022 (14) Cl5 0.0740 (7) 0.0520 (5) 0.0591 (7) 0.0109 (5) 0.0272 (6) 0.0026 (4) C13 0.050 (2) 0.0398 (16) 0.038 (2) 0.0077 (16) 0.0088 (18) 0.0047 (14) C5 0.046 (2) 0.0465 (18) 0.041 (2) −0.0026 (16) 0.0009 (18) −0.0007 (15) O5 0.0564 (16) 0.0550 (15) 0.124 (3) −0.0128 (13) 0.0415 (18) −0.0243 (16) N3 0.0502 (19) 0.0450 (15) 0.0437 (18) −0.0074 (14) −0.0024 (16) 0.0040 (13) C17 0.054 (2) 0.0426 (19) 0.053 (2) −0.0017 (17) 0.007 (2) 0.0066 (16) N4 0.0475 (19) 0.0470 (16) 0.061 (2) 0.0025 (15) 0.0181 (18) 0.0093 (15) C6 0.061 (2) 0.0441 (19) 0.052 (2) −0.0105 (18) −0.004 (2) −0.0081 (17) C1 0.044 (2) 0.0435 (18) 0.043 (2) −0.0015 (15) 0.0060 (17) −0.0062 (15) C2 0.063 (2) 0.0456 (19) 0.051 (2) −0.0122 (18) 0.007 (2) −0.0038 (17) C18 0.0573 (18) 0.0397 (15) 0.0412 (16) 0.0055 (14) −0.0031 (16) 0.0011 (13) O4 0.128 (3) 0.0466 (15) 0.0528 (19) −0.0108 (18) −0.029 (2) 0.0031 (13) O2 0.0638 (19) 0.0657 (19) 0.088 (2) 0.0002 (15) 0.0337 (19) −0.0059 (16)

C14 0.067 (3) 0.055 (2) 0.039 (2) 0.0097 (19) 0.009 (2) 0.0035 (16)

C11 0.071 (3) 0.059 (2) 0.055 (3) −0.009 (2) 0.008 (2) −0.0079 (19)

O1 0.108 (3) 0.0595 (19) 0.066 (2) −0.0138 (18) −0.037 (2) 0.0093 (15)

C15 0.070 (3) 0.053 (2) 0.049 (2) 0.008 (2) 0.020 (2) 0.0179 (18)

C7 0.047 (2) 0.053 (2) 0.055 (3) −0.0141 (18) −0.002 (2) 0.0151 (18)

C16 0.056 (2) 0.049 (2) 0.060 (3) 0.0027 (18) 0.016 (2) 0.0178 (18)

C3 0.082 (3) 0.0406 (19) 0.062 (3) −0.008 (2) 0.009 (3) 0.0075 (19)

C4 0.068 (3) 0.048 (2) 0.052 (2) −0.001 (2) −0.001 (2) 0.0091 (17)

C19 0.062 (2) 0.077 (2) 0.130 (3) −0.0157 (18) 0.038 (2) −0.028 (2)

C12 0.039 (2) 0.060 (2) 0.073 (3) −0.0074 (19) 0.011 (2) 0.013 (2)

C8 0.064 (3) 0.078 (3) 0.078 (3) −0.027 (3) −0.007 (3) 0.006 (3)

C10 0.104 (4) 0.068 (3) 0.063 (3) −0.021 (3) 0.005 (3) −0.020 (2)

C20 0.082 (4) 0.077 (3) 0.112 (5) −0.012 (3) 0.048 (4) −0.013 (3)

(8)

supporting information

sup-6

Acta Cryst. (2012). E68, m1365–m1366

Geometric parameters (Å, º)

Co1—O3 2.087 (2) C6—H6 0.9300

Co1—O5 2.110 (3) C1—C2 1.376 (5)

Co1—N1 2.111 (3) C2—C3 1.350 (6)

Co1—N2 2.118 (4) C2—H2 0.9300

Co1—Cl5 2.3648 (11) C18—O4 1.223 (5)

Co1—Cl3 2.4781 (12) O2—H2A 0.8200

O3—C18 1.258 (4) C14—C15 1.384 (5)

O3—Co2 2.111 (3) C14—H14 0.9300

Co2—N3 2.118 (3) C11—C10 1.388 (7)

Co2—N5 2.117 (3) C11—H11 0.9300

Co2—N4 2.133 (3) O1—H1 0.8200

Co2—Cl4 2.3948 (10) C15—C16 1.354 (6)

Co2—Cl3 2.4603 (10) C15—H15 0.9300

N1—C5 1.319 (5) C7—C8 1.372 (6)

N1—C1 1.358 (5) C7—C12 1.455 (6)

N5—C17 1.337 (4) C16—H16 0.9300

N5—C13 1.333 (5) C3—C4 1.371 (6)

N2—C6 1.271 (5) C3—H3 0.9300

N2—O1 1.359 (5) C4—H4 0.9300

C13—C14 1.369 (5) C19—C20 1.473 (7)

C13—C18 1.512 (5) C19—H19A 0.9700

C5—C4 1.391 (5) C19—H19B 0.9700

C5—H5 0.9300 C12—H12 0.9300

O5—C19 1.339 (5) C8—C9 1.371 (8)

O5—H5A 0.8499 C8—H8 0.9300

N3—C11 1.319 (5) C10—C9 1.371 (8)

N3—C7 1.347 (5) C10—H10 0.9300

C17—C16 1.370 (6) C20—H20A 0.9600

C17—H17 0.9300 C20—H20B 0.9600

N4—C12 1.269 (6) C20—H20C 0.9600

N4—O2 1.368 (4) C9—H9 0.9300

C6—C1 1.435 (6)

O3—Co1—O5 84.04 (11) O2—N4—Co2 129.1 (3)

O3—Co1—N1 173.45 (10) N2—C6—C1 118.2 (4)

O5—Co1—N1 89.42 (12) N2—C6—H6 120.9

O3—Co1—N2 102.98 (11) C1—C6—H6 120.9

O5—Co1—N2 89.32 (14) N1—C1—C2 121.4 (4)

N1—Co1—N2 76.69 (12) N1—C1—C6 115.5 (3)

O3—Co1—Cl5 88.74 (7) C2—C1—C6 123.1 (4)

O5—Co1—Cl5 172.77 (9) C3—C2—C1 119.5 (4)

N1—Co1—Cl5 97.81 (8) C3—C2—H2 120.2

N2—Co1—Cl5 92.09 (10) C1—C2—H2 120.2

O3—Co1—Cl3 81.72 (7) O4—C18—O3 126.8 (3)

O5—Co1—Cl3 83.16 (10) O4—C18—C13 118.4 (3)

(9)

N2—Co1—Cl3 170.71 (10) N4—O2—H2A 109.5

Cl5—Co1—Cl3 96.05 (4) C13—C14—C15 118.0 (4)

C18—O3—Co1 132.1 (2) C13—C14—H14 121.0

C18—O3—Co2 118.5 (2) C15—C14—H14 121.0

Co1—O3—Co2 108.89 (11) N3—C11—C10 123.3 (4)

O3—Co2—N3 173.23 (10) N3—C11—H11 118.3

O3—Co2—N5 76.08 (11) C10—C11—H11 118.3

N3—Co2—N5 98.43 (12) N2—O1—H1 109.5

O3—Co2—N4 99.41 (12) C16—C15—C14 119.3 (4)

N3—Co2—N4 76.05 (13) C16—C15—H15 120.3

N5—Co2—N4 86.20 (12) C14—C15—H15 120.3

O3—Co2—Cl4 89.33 (7) N3—C7—C8 122.5 (4)

N3—Co2—Cl4 95.19 (9) N3—C7—C12 115.4 (4)

N5—Co2—Cl4 95.35 (8) C8—C7—C12 122.1 (4)

N4—Co2—Cl4 171.24 (10) C15—C16—C17 119.3 (4)

O3—Co2—Cl3 81.68 (7) C15—C16—H16 120.3

N3—Co2—Cl3 102.62 (9) C17—C16—H16 120.3

N5—Co2—Cl3 153.82 (8) C2—C3—C4 119.9 (4)

N4—Co2—Cl3 83.95 (9) C2—C3—H3 120.0

Cl4—Co2—Cl3 98.06 (3) C4—C3—H3 120.0

C5—N1—C1 118.5 (3) C3—C4—C5 118.2 (4)

C5—N1—Co1 127.6 (2) C3—C4—H4 120.9

C1—N1—Co1 113.9 (2) C5—C4—H4 120.9

Co2—Cl3—Co1 87.51 (4) O5—C19—C20 115.5 (5)

C17—N5—C13 117.7 (3) O5—C19—H19A 108.4

C17—N5—Co2 126.9 (3) C20—C19—H19A 108.4

C13—N5—Co2 115.3 (2) O5—C19—H19B 108.4

C6—N2—O1 115.6 (4) C20—C19—H19B 108.4

C6—N2—Co1 115.6 (3) H19A—C19—H19B 107.5

O1—N2—Co1 128.9 (2) N4—C12—C7 117.4 (4)

N5—C13—C14 123.2 (3) N4—C12—H12 121.3

N5—C13—C18 115.0 (3) C7—C12—H12 121.3

C14—C13—C18 121.9 (4) C9—C8—C7 119.0 (5)

N1—C5—C4 122.5 (4) C9—C8—H8 120.5

N1—C5—H5 118.8 C7—C8—H8 120.5

C4—C5—H5 118.8 C9—C10—C11 118.1 (5)

C19—O5—Co1 136.9 (3) C9—C10—H10 120.9

C19—O5—H5A 111.5 C11—C10—H10 120.9

Co1—O5—H5A 110.5 C19—C20—H20A 109.5

C11—N3—C7 117.7 (4) C19—C20—H20B 109.5

C11—N3—Co2 127.4 (3) H20A—C20—H20B 109.5

C7—N3—Co2 114.8 (3) C19—C20—H20C 109.5

N5—C17—C16 122.4 (4) H20A—C20—H20C 109.5

N5—C17—H17 118.8 H20B—C20—H20C 109.5

C16—C17—H17 118.8 C10—C9—C8 119.3 (5)

C12—N4—O2 114.6 (3) C10—C9—H9 120.3

(10)

supporting information

sup-8

Acta Cryst. (2012). E68, m1365–m1366

O5—Co1—O3—C18 107.7 (3) N5—Co2—N3—C11 −95.8 (4)

N2—Co1—O3—C18 19.8 (3) N4—Co2—N3—C11 −179.7 (4)

Cl5—Co1—O3—C18 −72.1 (3) Cl4—Co2—N3—C11 0.4 (3)

Cl3—Co1—O3—C18 −168.4 (3) Cl3—Co2—N3—C11 99.9 (3)

O5—Co1—O3—Co2 −80.18 (14) N5—Co2—N3—C7 82.3 (3)

N2—Co1—O3—Co2 −168.10 (12) N4—Co2—N3—C7 −1.6 (3)

Cl5—Co1—O3—Co2 100.04 (10) Cl4—Co2—N3—C7 178.5 (3)

Cl3—Co1—O3—Co2 3.74 (8) Cl3—Co2—N3—C7 −82.0 (3)

C18—O3—Co2—N5 3.5 (3) C13—N5—C17—C16 0.8 (5)

Co1—O3—Co2—N5 −169.85 (13) Co2—N5—C17—C16 −177.4 (3)

C18—O3—Co2—N4 87.2 (3) O3—Co2—N4—C12 −174.2 (3)

Co1—O3—Co2—N4 −86.18 (13) N3—Co2—N4—C12 0.7 (3)

C18—O3—Co2—Cl4 −92.2 (3) N5—Co2—N4—C12 −99.0 (3)

Co1—O3—Co2—Cl4 94.47 (9) Cl3—Co2—N4—C12 105.3 (3)

C18—O3—Co2—Cl3 169.6 (3) O3—Co2—N4—O2 5.2 (3)

Co1—O3—Co2—Cl3 −3.77 (8) N3—Co2—N4—O2 −179.9 (3)

O5—Co1—N1—C5 92.3 (3) N5—Co2—N4—O2 80.4 (3)

N2—Co1—N1—C5 −178.2 (3) Cl3—Co2—N4—O2 −75.3 (3)

Cl5—Co1—N1—C5 −87.9 (3) O1—N2—C6—C1 −178.9 (3)

Cl3—Co1—N1—C5 9.3 (3) Co1—N2—C6—C1 1.8 (5)

O5—Co1—N1—C1 −88.9 (2) C5—N1—C1—C2 −0.3 (5)

N2—Co1—N1—C1 0.5 (2) Co1—N1—C1—C2 −179.1 (3)

Cl5—Co1—N1—C1 90.8 (2) C5—N1—C1—C6 179.0 (3)

Cl3—Co1—N1—C1 −171.9 (2) Co1—N1—C1—C6 0.2 (4)

O3—Co2—Cl3—Co1 3.01 (7) N2—C6—C1—N1 −1.3 (5)

N3—Co2—Cl3—Co1 177.68 (9) N2—C6—C1—C2 178.0 (4)

N5—Co2—Cl3—Co1 35.0 (2) N1—C1—C2—C3 1.0 (6)

N4—Co2—Cl3—Co1 103.47 (11) C6—C1—C2—C3 −178.3 (4)

Cl4—Co2—Cl3—Co1 −85.12 (4) Co1—O3—C18—O4 −12.9 (6)

O3—Co1—Cl3—Co2 −3.04 (7) Co2—O3—C18—O4 175.5 (4)

O5—Co1—Cl3—Co2 81.89 (10) Co1—O3—C18—C13 166.0 (2)

N1—Co1—Cl3—Co2 170.37 (8) Co2—O3—C18—C13 −5.5 (4)

Cl5—Co1—Cl3—Co2 −90.87 (4) N5—C13—C18—O4 −176.1 (4)

O3—Co2—N5—C17 177.6 (3) C14—C13—C18—O4 3.9 (6)

N3—Co2—N5—C17 1.7 (3) N5—C13—C18—O3 4.9 (5)

N4—Co2—N5—C17 76.9 (3) C14—C13—C18—O3 −175.2 (3)

Cl4—Co2—N5—C17 −94.4 (3) N5—C13—C14—C15 −0.7 (6)

Cl3—Co2—N5—C17 145.0 (2) C18—C13—C14—C15 179.4 (3)

O3—Co2—N5—C13 −0.5 (2) C7—N3—C11—C10 −0.4 (7)

N3—Co2—N5—C13 −176.5 (2) Co2—N3—C11—C10 177.7 (4)

N4—Co2—N5—C13 −101.2 (3) C13—C14—C15—C16 0.9 (6)

Cl4—Co2—N5—C13 87.4 (2) C11—N3—C7—C8 0.2 (6)

Cl3—Co2—N5—C13 −33.2 (4) Co2—N3—C7—C8 −178.1 (3)

O3—Co1—N2—C6 172.0 (3) C11—N3—C7—C12 −179.5 (4)

O5—Co1—N2—C6 88.3 (3) Co2—N3—C7—C12 2.2 (4)

N1—Co1—N2—C6 −1.2 (3) C14—C15—C16—C17 −0.4 (6)

Cl5—Co1—N2—C6 −98.8 (3) N5—C17—C16—C15 −0.5 (6)

(11)

O5—Co1—N2—O1 −90.9 (4) C2—C3—C4—C5 0.9 (6)

N1—Co1—N2—O1 179.5 (4) N1—C5—C4—C3 −0.2 (6)

Cl5—Co1—N2—O1 82.0 (4) Co1—O5—C19—C20 −158.8 (4)

C17—N5—C13—C14 −0.2 (5) O2—N4—C12—C7 −179.2 (3)

Co2—N5—C13—C14 178.2 (3) Co2—N4—C12—C7 0.3 (5)

C17—N5—C13—C18 179.8 (3) N3—C7—C12—N4 −1.7 (6)

Co2—N5—C13—C18 −1.9 (4) C8—C7—C12—N4 178.7 (4)

C1—N1—C5—C4 −0.1 (5) N3—C7—C8—C9 0.0 (7)

Co1—N1—C5—C4 178.6 (3) C12—C7—C8—C9 179.6 (5)

O3—Co1—O5—C19 −126.6 (6) N3—C11—C10—C9 0.4 (8)

N1—Co1—O5—C19 53.2 (6) C11—C10—C9—C8 −0.2 (8)

N2—Co1—O5—C19 −23.5 (6) C7—C8—C9—C10 0.0 (8)

Cl3—Co1—O5—C19 151.0 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2A···Cl5 0.82 2.29 3.103 (3) 172

O1—H1···O4 0.82 1.83 2.615 (4) 160

O5—H5A···Cl4 0.85 2.32 3.147 (3) 164

C12—H12···Cl4i 0.93 2.80 3.684 (4) 160

C10—H10···Cl5ii 0.93 2.82 3.684 (5) 156

C14—H14···Cl4iii 0.93 2.74 3.556 (4) 147

C2—H2···Cl4iv 0.93 2.81 3.654 (5) 152

C17—H17···Cl5v 0.93 2.80 3.491 (4) 132

27, 2162–2166. Brandenburg, K. (1999).DIAMOND. Bruker (2005).APEX2 Ross, S., Weyhermuller, T., Bill, E., Wieghardt, K. & Chaudhuri, P. (2001).Inorg. Chem. Sheldrick, G. M. (2008).Acta Cryst. Stamatatos, T. C., Bell, A., Cooper, P., Terzis, A., Raptopoulou, C. P., Heath,S. L., Winpenny, R. E. P. & Perlepes, S. P. (2005 Stamatatos, T. C., Dionyssopoulou, S., Efthymiou, G., Kyritsis, P., Raptop-oulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005

Figure

Table 2Hydrogen-bond geometry (A˚ , �).
Figure 1

References

Related documents

In the present study, using a rabbit model, we exam- ined reactions of HEL in the diaphysis of proximal femur, which is the site most susceptible to the development of

~ur business trend over the next six months, excluding purely seasonal variations, will The consumer confidence indicator is the arithmetic average of the answers

To investigate the influence of the gas jet on particle motion, a numerical simulation of the uniform flow around a spherical particle with a nonuniform outflow or high

In this research, correlation is used to determine the data correlation between the dependent variables (ROA) and independent variables (CGI, Current Ratio, Credit Risk,

In vivo in an MCDS mouse model, which expresses the MCDS-causing N617K mutation in collagen X, CBZ induced a reduction in ER stress and enabled hypertrophic chondrocytes to

We demon- strate a speed-up of several orders of magni- tude when predicting word similarity by vector operations on our embeddings as opposed to directly computing the

We identify online obituaries as a new data source and propose a special named entity recognition and relation extraction solution to extract names and kinships

L’inchiesta avviata dal governo genovese negli anni quaranta del Settecento fornisce interessanti elementi sul sistema assistenziale della Repubblica di Genova, che