• No results found

(E) 3 (2 Nitro­phen­yl) 1 {1 phenyl­sulfonyl 2 [(phenyl­sulfon­yl)meth­yl] 1H indol 3 yl}prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "(E) 3 (2 Nitro­phen­yl) 1 {1 phenyl­sulfonyl 2 [(phenyl­sulfon­yl)meth­yl] 1H indol 3 yl}prop 2 en 1 one"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

(

E

)-3-(2-Nitrophenyl)-1-{1-phenyl-sulfonyl-2-[(phenylsulfonyl)methyl]-1

H

-indol-3-yl}prop-2-en-1-one

S. Karthikeyan,aK. Sethusankar,a* Ganesan Gobi Rajeswaranband Arasambattu K. Mohanakrishnanb

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, andbDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India

Correspondence e-mail: ksethusankar@yahoo.co.in

Received 18 November 2011; accepted 28 November 2011

Key indicators: single-crystal X-ray study;T= 293 K; mean(C–C) = 0.005 A˚;

Rfactor = 0.058;wRfactor = 0.186; data-to-parameter ratio = 18.4.

In the title compound, C30H22N2O7S2, the configuration about

the propene C C bond is E. The indole unit is essentially planar, with a maximum deviation of 0.031 (3) A˚ . The dihedral angle between the planes of the phenyl rings of the two phenylsulfonyl groups is 80.95 (19). The central

prop-2-ene-1-one group is oriented at a dihedral angle of 44.26 (11)with

respect to the nitrophenyl ring and at 39.24 (8)with respect to

the indole unit. The S atoms are in a distorted tetrahedral configuration. In the crystal, molecules are linked into centrosymmetric dimers via pairs of C—H O hydrogen bonds with anR22(24) graph-set motif. The crystal structure is

stabilized by further C—H O interactions. Short intra-molecular C—H O contacts result in several S(6) rings.

Related literature

For the biological activity of sulfonamides and their substi-tuted derivatives, see: Brown (1971). For related structures, see: Seetharaman & Rajan (1995); Vargheseet al.(1986). For graph-set motifs, see: Bernsteinet al.(1995).

Experimental

Crystal data

C30H22N2O7S2 Mr= 586.62

Monoclinic,P21=n

a= 7.9905 (2) A˚

b= 22.2076 (6) A˚

c= 15.7378 (4) A˚

= 102.913 (2)

V= 2722.04 (12) A˚3

Z= 4

MoKradiation

= 0.25 mm1

T= 293 K

0.300.250.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer

32862 measured reflections

6823 independent reflections 4782 reflections withI> 2(I)

Rint= 0.030

Refinement

R[F2> 2(F2)] = 0.058

wR(F2) = 0.186

S= 1.03 6823 reflections

370 parameters

H-atom parameters constrained

max= 1.01 e A˚

3

min=0.36 e A˚

[image:1.610.314.565.283.355.2] [image:1.610.47.241.592.714.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C27—H27 O2i

0.93 2.56 3.221 (3) 128 C13—H13 O1ii

0.93 2.58 3.275 (5) 132 C19—H19 O4iii

0.93 2.58 3.222 (4) 126 C2—H2 O4 0.93 2.37 2.946 (4) 120 C9—H9A O3 0.97 2.21 2.846 (3) 122 C9—H9B O5 0.97 2.37 3.029 (3) 125

Symmetry codes: (i)xþ1;y;z; (ii)xþ1 2;yþ

1 2;zþ

1

2; (iii)xþ1;y;z.

Data collection:APEX2(Bruker, 2008); cell refinement:SAINT (Bruker, 2008); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 2008); program(s) used to refine structure:SHELXL97(Sheldrick, 2008); molecular graphics:OLEX2 (Dolomanovet al., 2009) andMercury(Macraeet al., 2008); software used to prepare material for publication:SHELXL97andPLATON (Spek, 2009).

SK and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, for providing facilities in the department for carrying out this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2489).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Brown, G. M. (1971).Adv. Biochem.35, 35–40.

Bruker (2008).APEX2andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009).J. Appl. Cryst.42, 339–341.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008).J. Appl. Cryst.41, 466–470.

Seetharaman, J. & Rajan, S. S. (1995).Acta Cryst.C51, 78–80. Sheldrick, G. M. (2008).Acta Cryst.A64, 112–122.

Spek, A. L. (2009).Acta Cryst.D65, 148–155.

Varghese, B., Srinivasan, S., Ramadas, S. R. & Padmanabhan, P. V. (1986).Acta Cryst.C42, 1542–1544.

Acta Crystallographica Section E Structure Reports

Online

(2)

supporting information

Acta Cryst. (2012). E68, o9 [doi:10.1107/S1600536811051026]

(

E

)-3-(2-Nitrophenyl)-1-{1-phenylsulfonyl-2-[(phenylsulfonyl)methyl]-1

H

-indol-3-yl}prop-2-en-1-one

S. Karthikeyan, K. Sethusankar, Ganesan Gobi Rajeswaran and Arasambattu K. Mohanakrishnan

S1. Comment

Sulfonamides and their substituted derivatives are well known drugs and are commonly used to control diseases caused by bacterial infections (Brown, 1971). Herein we report the synthesis and crystal structure of a novel sulfonamides derivative.

In the title compound (Fig. 1), the indole moiety is essentially planar with a maximum deviation of 0.031 (3)Å for the atom C6. The configuration of the keto group with respect to the olefinic double bond is typically S-cis, with O5—C22— C23—C24 torsion angle -18.1 (4)°. The propenone group exhibits an E configuration with respect to the C23═C24 double bond.

The indole moiety, is perpendicular to both the nitro phenyl ring and the phenylsulfonyl ring, bonded to the N atom of the indole ring system with interplanar angles 81.04 (11) and 89.21 (14)°, respectively. The methyl substituted phenyl-sulfonyl ring is inclined with respect to the indole moiety and the phenylphenyl-sulfonyl ring, bonded to N atom of the indole ring system at angles of 9.01 (16)° and 80.95 (19)°. The two sulfonyl bound phenyl rings make a dihedral angle of 73.17 (17)° and 52.35 (15)° with the nitro phenyl ring. The nitro-group is inclined at an angle of 27.63 (16)° with the benzene ring, to which it is attached.

The molecular dimensions in the title compound are in excellent agreement with the corresponding molecular dimensions reported in closely related compounds (Varghese et al., 1986; Seetharaman & Rajan, 1995).

The crystal packing is stabilized by intermolecular C—H···O interactions and molecules are stacked along the a axis; the molecules are linked into centrosymmetric dimers via pairs of C—H···O hydrogen bonds with an R2

2(24) graph-set

motif (Bernstein, et al., 1995) (Fig. 2). Intramolecular C—H···O hydrogen bonds generate S(6) ring motifs.

S2. Experimental

To a solution of (E)-1-(2-(bromomethyl)-1-phenylsulfonyl-indol-3-yl)-3-(2- nitrophenyl)prop-2-en-1-one (0.5 g, 0.95 mmol) in dimethylformamide (5 ml), sodium phenylsulfinate (0.18 g, 1.1 mmol) was added and stirred for 5 h at room temperature. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (100 g). The solid (0.5 g, 90%) formed was filtered and recrystallized from MeOH to afford the title compund as colorless crystals.

S3. Refinement

(3)
[image:3.610.128.477.71.309.2]

Figure 1

The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. The intramolecular S(6) ring motiffs have been drawn by dashed lines.

Figure 2

The packing arrangement of the title compound viewed down c axis, showing the formation of centrosymmetric R2 2(24)

[image:3.610.125.484.363.623.2]
(4)

(E)-3-(2-Nitrophenyl)-1-{1-phenylsulfonyl-2-[(phenylsulfonyl)methyl]- 1H-indol-3-yl}prop-2-en-1-one

Crystal data

C30H22N2O7S2

Mr = 586.62

Monoclinic, P21/n

Hall symbol: -p 2yn

a = 7.9905 (2) Å

b = 22.2076 (6) Å

c = 15.7378 (4) Å

β = 102.913 (2)°

V = 2722.04 (12) Å3

Z = 4

F(000) = 1216

Dx = 1.431 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6823 reflections

θ = 1.6–28.5°

µ = 0.25 mm−1

T = 293 K Block, colourless 0.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω and φ scans

32862 measured reflections 6823 independent reflections

4782 reflections with I > 2σ(I)

Rint = 0.030

θmax = 28.5°, θmin = 1.6°

h = −10→10

k = −29→29

l = −20→20

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.058

wR(F2) = 0.186

S = 1.03 6823 reflections 370 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0995P)2 + 1.3462P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 1.01 e Å−3

Δρmin = −0.36 e Å−3

Special details

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is

used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)
(6)

N2 0.8416 (3) −0.00196 (11) −0.10846 (18) 0.0606 (6) O1 0.3735 (3) 0.29516 (9) 0.20506 (12) 0.0577 (5) O2 0.4684 (3) 0.19066 (9) 0.20544 (16) 0.0751 (7) O3 0.6243 (3) 0.39890 (9) 0.21694 (14) 0.0672 (6) O4 0.5114 (3) 0.45290 (8) 0.08011 (16) 0.0676 (6) O5 0.8204 (3) 0.16859 (9) 0.11194 (12) 0.0604 (5) O6 0.9183 (3) 0.04543 (11) −0.1026 (2) 0.0877 (8) O7 0.9119 (3) −0.05005 (12) −0.1109 (3) 0.1135 (12) S1 0.50305 (9) 0.25119 (3) 0.23386 (4) 0.04646 (18) S2 0.63430 (9) 0.41325 (3) 0.13067 (5) 0.0503 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

O3 0.0870 (15) 0.0531 (11) 0.0750 (14) −0.0218 (10) 0.0464 (12) −0.0249 (10) O4 0.0541 (11) 0.0398 (10) 0.1143 (18) 0.0102 (8) 0.0298 (11) −0.0046 (10) O5 0.0734 (13) 0.0507 (11) 0.0512 (11) 0.0185 (9) 0.0009 (9) −0.0003 (8) O6 0.0656 (14) 0.0686 (15) 0.141 (2) −0.0149 (12) 0.0477 (15) −0.0346 (15) O7 0.0705 (16) 0.0616 (15) 0.209 (4) 0.0209 (13) 0.0318 (19) −0.0169 (19) S1 0.0583 (4) 0.0381 (3) 0.0422 (3) −0.0027 (3) 0.0095 (3) −0.0018 (2) S2 0.0520 (4) 0.0350 (3) 0.0717 (5) −0.0048 (3) 0.0303 (3) −0.0119 (3)

Geometric parameters (Å, º)

C1—C2 1.390 (3) C17—C18 1.386 (4)

C1—C6 1.402 (3) C17—H17 0.9300

C1—N1 1.413 (3) C18—C19 1.370 (5)

C2—C3 1.393 (4) C18—H18 0.9300

C2—H2 0.9300 C19—C20 1.353 (5)

C3—C4 1.384 (5) C19—H19 0.9300

C3—H3 0.9300 C20—C21 1.383 (4)

C4—C5 1.370 (4) C20—H20 0.9300

C4—H4 0.9300 C21—H21 0.9300

C5—C6 1.399 (4) C22—O5 1.215 (3)

C5—H5 0.9300 C22—C23 1.473 (4)

C6—C7 1.442 (3) C23—C24 1.329 (3)

C7—C8 1.352 (3) C23—H23 0.9300

C7—C22 1.486 (3) C24—C25 1.461 (3)

C8—N1 1.411 (3) C24—H24 0.9300

C8—C9 1.489 (3) C25—C30 1.397 (4) C9—S1 1.792 (3) C25—C26 1.404 (3)

C9—H9A 0.9700 C26—C27 1.369 (4)

C9—H9B 0.9700 C26—N2 1.458 (3)

C10—C11 1.364 (4) C27—C28 1.367 (4) C10—C15 1.398 (4) C27—H27 0.9300 C10—S1 1.756 (3) C28—C29 1.380 (4) C11—C12 1.428 (7) C28—H28 0.9300 C11—H11 0.9300 C29—C30 1.370 (4) C12—C13 1.372 (8) C29—H29 0.9300

C12—H12 0.9300 C30—H30 0.9300

C13—C14 1.335 (7) N1—S2 1.6749 (19)

C13—H13 0.9300 N2—O6 1.211 (3)

C14—C15 1.369 (5) N2—O7 1.212 (3)

C14—H14 0.9300 O1—S1 1.422 (2)

C15—H15 0.9300 O2—S1 1.424 (2)

C16—C17 1.368 (4) O3—S2 1.414 (2) C16—C21 1.371 (4) O4—S2 1.423 (2) C16—S2 1.759 (3)

(8)
(9)

C16—C17—C18 118.6 (3) O4—S2—N1 106.10 (12) C16—C17—H17 120.7 O3—S2—C16 109.18 (13) C18—C17—H17 120.7 O4—S2—C16 109.20 (13) C19—C18—C17 119.8 (3) N1—S2—C16 104.53 (11) C19—C18—H18 120.1

(10)

C7—C22—C23—C24 162.6 (2) C21—C16—S2—O4 −172.6 (2) C22—C23—C24—C25 173.4 (2) C17—C16—S2—N1 124.6 (2) C23—C24—C25—C30 −31.4 (4) C21—C16—S2—N1 −59.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C27—H27···O2i 0.93 2.56 3.221 (3) 128

C13—H13···O1ii 0.93 2.58 3.275 (5) 132

C19—H19···O4iii 0.93 2.58 3.222 (4) 126

C2—H2···O4 0.93 2.37 2.946 (4) 120 C9—H9A···O3 0.97 2.21 2.846 (3) 122 C9—H9B···O5 0.97 2.37 3.029 (3) 125

Figure

Table 1Hydrogen-bond geometry (A˚ , �).
Figure 1

References

Related documents

In the present paper, the isolation and almost complete sequence of the 20-kD COOH-terminal peptide from bovine cardiac myosin S-I heavy chain fragment is reported and compared with

Vol 11, Issue 6, 2018 Online 2455 3891 Print 0974 2441 COMPARATIVE STUDIES WITH DIFFERENT CYCLODEXTRIN DERIVATIVES IN IMPROVING THE SOLUBILITY AND DISSOLUTION OF SAQUINAVIR BHARANI

We consistently observed mosaic expression or down-regulation of STAT1 protein in wild-type mammary cancer evolving in the control group.. Transplantation experiments show

Overall, less than 10% of the study population achieved the treatment goals for all three risk factors (serum glucose, blood pressure and cholesterol).. Comparable findings have

За введення бФ еКЛ хворим тваринам зни- жувався вміст продуктів ОмП нейтрального характеру в лейкоцитах і плазмі крові на 31,9 і 65,7% та основного характеру на 48,4 і 69,0%

This anisotropy continues to be observed in KS Ti-9 annealed at a temperature below ¢ transus followed by air cooling, but the anisotropy drastically decreases in KS Ti-9 when

Here we present the course of a patient presenting with chylothorax caused by a concomitantly diagnosed CLL who received conservative treatment in conjunction with

The rapid rate of permafrost thaw reported at Scotty Creek led to investigations on how permafrost thaw affects aqueous (e.g. multi-decadal) research at Scotty Creek has