• No results found

Valuing Renewables as a Long-Term Price Hedge, Even in an Era of Low Natural Gas Prices

N/A
N/A
Protected

Academic year: 2021

Share "Valuing Renewables as a Long-Term Price Hedge, Even in an Era of Low Natural Gas Prices"

Copied!
26
0
0

Loading.... (view fulltext now)

Full text

(1)

Mark Bolinger

Lawrence Berkeley National Laboratory 2013 EIA Energy Conference

Washington, DC June 17, 2013

Valuing Renewables as a Long-Term Price Hedge,

Even in an Era of Low Natural Gas Prices

(2)

Introduction

• Low natural gas and wholesale power prices make it harder for wind

and other renewable power technologies to compete on price alone

(despite recent improvements in their cost and performance)

• Renewables may increasingly need to rely on other attributes, such

as their “portfolio” or “hedge” value, to help justify future deployment

• This work investigates whether wind power in particular can serve

as a cost-effective hedge against rising natural gas prices, given the

significant reduction in gas prices in recent years, coupled with

expectations that gas prices will remain low for years to come

• It does so by comparing prices from a sizable sample of long-term

wind power purchase agreements (PPAs) to a range of long-term

natural gas price projections

(3)

Roadmap

I.

Thoughts on LCOE, LACE…and PPA prices

II.

Overview and Analysis of the LBNL Wind PPA Sample

III.

Natural Gas Prices: Low By Historical Standards, But

Difficult to Lock In Over Longer Terms

IV.

Comparison of Wind PPA Prices to Natural Gas Price

Projections

V.

In Their Own Words: Wind Buyers on Wind’s

(4)

Thoughts on LCOE, LACE…and PPA Prices

Advantages of PPA prices (relative to LCOE, or perhaps even LACE):

• PPA prices are actual data points – not estimated/calculated (LCOE) or modeled (LACE) • More reliable/verifiable than most inputs to LCOE equation, and also cut directly to the

chase (if purpose of calculating LCOE is to proxy PPA price)

• They reflect current market conditions, including policy, incentives, cost, finance, demand, and competition – some of which are not easily captured by LCOE or LACE

• Can approximate LCOE (post-incentive) when PPA is long-term and market is competitive • Can approximate LACE in states/regions where “value-based” (as opposed to “cost plus”)

pricing occurs

• Can account for time-differentiated energy value through time-of-delivery pricing

• Price escalators not a problem – full-term PPA price streams can be levelized (like LCOE)

Disadvantages of PPA prices:

• Often proprietary or hard to piece together

• Pricing reflects current or near-term conditions – not really a forecasting tool • Not as useful as LACE in estimating future value of energy

(5)

Roadmap

I.

Thoughts on LCOE, LACE…and PPA prices

II. Overview and Analysis of the LBNL Wind PPA Sample

III. Natural Gas Prices: Low By Historical Standards, But

Difficult to Lock In Over Longer Terms

IV. Comparison of Wind PPA Prices to Natural Gas Price

Projections

V.

In Their Own Words: Wind Buyers on Wind’s

(6)

Wind PPA Sample is Drawn from Universe of

Projects Built From 1998 Through 2012

• 60 GW of wind in the US, 98% of which have been built since 1997

• This study focuses on full-term (and levelized) PPA prices from a subset of projects built from 1998 through 2012

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Annual U.S. Wind Capacity (left scale) Cumulative U.S. Wind Capacity (right scale)

Cum ul a tiv e Cap a c ity (G W) A nn ua l Cap a c ity (G W)

Post-1997 period is the focus of this presentation

(7)

Certain Types of Wind Projects

Are Ineligible for the PPA Sample

Merchant projects (i.e., those that sell their power on the spot market,

without a contract) are excluded, because their future revenue is unknowable by definition

Projects that sell RECs separately from energy are generally excluded

(unless the separate REC sale price is known) for the same reason

Projects built in Alaska, Hawaii, and Puerto Rico are excluded,

because challenging construction environments and isolated power markets can result in PPA prices that are anomalous

Utility-owned projects are excluded because there is no sale of power

on the wholesale market (no PPA)

Behind-the-meter projects are excluded because there is generally no

(8)

LBNL Wind PPA Sample is Sizable:

71% of Total Possible Universe (in MW)

Possible Post-1997 Sample = 35,380 MW

+ 58,878 MW were built in the U.S. from 1998-2012 (98% of all US MW)

– 389 MW built in Alaska, Hawaii, and Puerto Rico (assumed outliers)

– 13,750 MW are merchant or semi-merchant (with no PPA)

– 9,085 MW are utility-owned (therefore no PPA)

– 274 MW are on-site (behind the meter, with no PPA) = 35,380 MW possible sample of PPAs from 1998-2012

Actual LBNL Sample = 25,115 MW

(306 contracts)

Missing from Sample = 10,265 MW

(35,380 – 25,115)

• Texas projects heavily under-represented (ERCOT not subject to FERC reporting requirements)

• Sample will grow as more information about existing projects comes to light (and as new projects come online)

(9)

Wind PPA Sample is Broadly Representative

• 71% representation nationwide • Three regions >70% • Other two at 64% (Northeast) and 55% (Great Lakes) Interior Great Lakes West Southeast Northeast

(10)

PPAs in Sample are Stable-Priced and Long-Term

• 10% vary prices seasonally and 15% vary prices diurnally (8% vary prices both seasonally and diurnally)

 Stands in stark contrast to utility-scale solar market, where 64% of LBNL solar PPA sample varies prices both seasonally and diurnally

 Time-of-delivery pricing in CA benefits solar (over wind) by ~$25/MWh

• 20-year contracts are by far the most common (followed by 25-year): 85% of MW in sample have contract terms of 20 years or longer

• 59% (of MW in the sample) feature flat annual pricing (48%

are totally flat)

• Another 38%

escalate annually, but at a pre-defined rate (often pegged to inflation)

(11)

Since 2009, Cost and Capacity Factor

Improvements Have Enabled Lower PPA Pricing

• In general, the Interior is a low-priced region, the West is a high-priced region (value-based pricing?), and the others lie somewhere in between

$0 $20 $40 $60 $80 $100 $120 Ja n -9 6 Ja n -9 7 Ja n -9 8 Ja n -9 9 Ja n -0 0 Ja n -0 1 Ja n -0 2 Ja n -0 3 Ja n -0 4 Ja n -0 5 Ja n -0 6 Ja n -0 7 Ja n -0 8 Ja n -0 9 Ja n -1 0 Ja n -1 1 Ja n -1 2 Ja n -1 3

PPA Execution Date

Interior (14,802 MW, 173 contracts) West (6,835 MW, 68 contracts)

Great Lakes (2,356 MW, 33 contracts) Northeast (855 MW, 20 contracts) Southeast (268 MW, 6 contracts) Lev el iz ed PPA Pr ic e (2 0 1 2 $ /M W h ) 75 MW 150 MW

(12)

A Smoother Look at the Time Trend

Time trend closely follows trends in turbine prices and installed project costs over the past decade: a significant increase from 2003 through 2009, followed

Within each time period (based on PPA execution date), PPA price streams are first generation-weighted, and then the resulting generation-weighted average price stream is levelized over the composite contract period.

$0 $10 $20 $30 $40 $50 $60 $70 $80 $90 $100 1996-99 10 553 2000-01 17 1,249 2002-03 24 1,382 2004-05 30 2,190 2006 30 2,311 2007 26 1,781 2008 39 3,465 2009 47 3,982 2010 40 3,999 2011 34 3,533 2012 8 630 A ve rag e L e ve lize d PP A Pr ic e ( R e al 2012 $/ M Wh ) Nationwide Interior Great Lakes West Northeast

PPA Year: Contracts: MW:

(13)

Roadmap

I.

Thoughts on LCOE, LACE…and PPA prices

II. Overview and Analysis of the LBNL Wind PPA Sample

III.

Natural Gas Prices: Low By Historical Standards, But

Difficult to Lock In Over Longer Terms

IV. Comparison of Wind PPA Prices to Natural Gas Price

Projections

V.

In Their Own Words: Wind Buyers on Wind’s

(14)

Gas Prices Cannot Go Much Lower:

$0 Absolute Floor, $2 Effective Floor(?)

• Dashed lines represent 95% confidence intervals around the futures strip (as derived from the price of options on gas futures) at monthly intervals

Risk is skewed towards higher prices (though the degree of skew has shrunk)

0 2 4 6 8 10 12 14 16 18 Jan -07 A p r-0 7 Ju l-0 7 Oct -07 Jan -08 A p r-0 8 Ju l-0 8 Oct -08 Jan -09 A p r-0 9 Ju l-0 9 Oct -09 Jan -10 A p r-1 0 Ju l-1 0 Oct -10 Jan -11 A p r-1 1 Ju l-1 1 Oct -11 Jan -12 A p r-1 2 Ju l-1 2 Oct-12 Jan -13 A p r-1 3 Ju l-1 3 Oct -13 Jan -14 A p r-1 4 Ju l-1 4 Oct -14 N o m in al $/ M M B tu (Hen ry Hu b )

Historical Henry Hub spot price

NYMEX futures strip Upper 95% CI's

Lower 95% CI's Source: EIA STEO

(15)

But It’s Hard To Lock In Today’s Low Prices,

Because the Futures Curve is Upward Sloped…

• Because the futures strip is upwards sloping (implying higher expected spot prices in the future), it is difficult to lock in today’s low spot gas prices

• One could buy a series of “in the money” call options with strike prices below 0 2 4 6 8 10 12 14 20 02 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 N o min al $/ M M B tu (H en ry Hu b )

Henry Hub spot price (historical)

NYMEX natural gas futures strip (from June 12, 2013)

(16)

…And The Futures Market

Is Illiquid After Just A Few Years

Trying to lock in any serious amount of volume via the futures strip may be problematic out beyond a year or two.

0 50,000 100,000 150,000 200,000 250,000 Ju l-13 Au g-13 Sep -1 3 Oc t-1 3 N o v-1 3 D ec-1 3 Jan -14 Feb -1 4 M ar-1 4 Ap r-14 M ay -1 4 Ju n -1 4 Ju l-14 Au g-14 Sep -1 4 Oc t-1 4 N o v-1 4 D ec-1 4 Jan -15 Feb -1 5 M ar-1 5 Ap r-15 M ay -1 5 Ju n -1 5 Ju l-15 Au g-15 Sep -1 5 Oc t-1 5 N o v-1 5 D ec-1 5 # o f N G fu tu re s co n tr ac ts

Natural Gas Futures Contract Delivery Month

Average Daily Open Interest from June 5-12, 2013 Average Daily Trading Volume from June 5-12, 2013

The natural gas futures strip extends all the way out through December 2025,

but only contracts that will expire within the first year trade actively.

(17)

Physical Gas Supply Deals Are Possible, But…

1) Are not very liquid and impose significant counterparty risk

(more so than with an exchange, where this risk is spread)

2) Generally do not exceed 10 years

3) Provide similar pricing to the futures strip (upward slope)

Example:

In Dec. 2010, the CO PUC approved a 10-yr, fixed-price

(with escalation) physical gas contract between PSCo and Anadarko

• Afterwards, PSCo said: “The limitations on these types of long-term contracts include negotiating the additional collateral requirements triggered by the inherent increase in counter-party risk (created by fixing a gas price over an extended contract term) and by the market’s appetite for these types of

transactions being limited to generally a 10-year time horizon.” [Page 3 of “Report of Public Service Company of Colorado Regarding Long-Term Gas Supply Options” filed December 29, 2011]

(18)

Roadmap

I.

Thoughts on LCOE, LACE…and PPA prices

II. Overview and Analysis of the LBNL Wind PPA Sample

III. Natural Gas Prices: Low By Historical Standards, But

Difficult to Lock In Over Longer Terms

IV.

Comparison of Wind PPA Prices to Natural Gas Price

Projections

V.

In Their Own Words: Wind Buyers on Wind’s

(19)

Simplifying Assumption: Wind Offsets Only the

Fuel Costs of Gas-Fired Generation

Considers wind a source of energy (a “fuel saver”),

not

capacity:

• Conservative approach that ignores wind’s (limited) capacity value • Seems to be how at least some utilities (e.g., PSCo) think of wind

To further simplify, comparison ignores other wind benefits…

• Ignores wind’s criteria pollutant and carbon benefits (REC value)

• Ignores offset of gas-fired generation’s non-fuel variable O&M costs

…but it also ignores wind integration and transmission costs

• Integration costs are generally low and area-specific – and may not even be readily quantifiable (a growing recognition among analysts)

• Transmission costs can be significant, but are project-specific and may not be borne by the wind buyer or seller, depending on cost allocation

Bottom Line: This is not intended to be a full-blown social analysis

– the comparison is simply

wind PPA prices vs. projected natural

(20)

Net Impact of Simplifying Assumptions

Could Be Largely a Wash

Subtract from wind PPA price (rough estimates from the literature):

• Wind’s capacity value: $0-$15/MWh

• REC value: $5-$10/MWh

• Variable non-fuel O&M costs for gas-fired generation: $1-$3/MWh Add to wind PPA price (rough estimates from the literature):

• Balancing cost: $2-$5/MWh

• Transmission cost: $10-$15/MWh

In total (based on rough estimates above):

• Subtract from wind PPA price: -$6/MWh to -$28/MWh

• Add to wind PPA price: +$12/MWh to +$20/MWh

NET RESULT: Simplifying assumptions largely net out – or at least the net impact does not seem to be large or uni-directional

(21)

Overview of Data Needed For Comparison

1. Wind PPA Prices

The most recent contracts – those executed in 2011 or 2012 –

from the LBNL wind PPA sample described earlier

2. Projected Natural Gas Fuel Costs

A range of three different EIA projections of natural gas prices

delivered to electricity generators:

• AEO 2013 reference case

• AEO 2013 high oil and gas resource case (=low end of price range) • AEO 2013 low oil and gas resource case (=high end of price range)

(22)

Most Recent PPAs in LBNL Sample Illustrate

Wind’s Long-Term Hedge Value

• Wind as a “fuel saver” is above market at present (on average), but penetrates the fuel cost range in 2016 and increasingly provides hedge value thereafter • Without the PTC, wind as a “fuel saver” would be less compelling (even at

*Fuel cost projections are translated from $/MMBtu into $/MWh terms using average heat rates implied in the AEO13 modeling output 0 20 40 60 80 100 120 140 160 20 13 20 14 20 15 20 16 20 17 20 18 20 19 20 20 20 21 202 2 20 23 20 24 20 25 202 6 20 27 20 28 20 29 20 30 20 31 20 32 20 33 20 34 20 35 20 36 203 7 20 38 20 39 20 40 N o mi n al $ /M W h

Range of AEO13 gas price projections* AEO13 reference case gas price projection* Average wind PPA price if no PTC

Average wind PPA price (2011/2012 contracts only)

Wind PPA sample includes 42 PPAs signed in 2011 or 2012 and totaling 4,136 MW

(23)

Roadmap

I.

Thoughts on LCOE, LACE…and PPA prices

II. Overview and Analysis of the LBNL Wind PPA Sample

III. Natural Gas Prices: Low By Historical Standards, But

Difficult to Lock In Over Longer Terms

IV. Comparison of Wind PPA Prices to Natural Gas Price

Projections

V.

In Their Own Words: Wind Buyers on Wind’s

(24)

Wind Buyers In Their Own Words:

PSCo on Wind’s Long-Term Hedge Value

• “The wind generation is a source of fuel or energy, it’s not a source of

capacity…When we look at dispatching on the wind, or dispatching on gas, it doesn’t matter. It’s providing the energy. That’s what this [Limon II wind contract] is really a play on, a play on energy.”

• “Whenever wind energy is generated from the Limon II [wind] facility, it will

displace fossil-fueled energy on the Public Service system, mostly energy

generated from natural gas. We think of this wind contract as an alternative

fuel, with known contract pricing over 25 years that will displace fuels where the pricing is not yet known. That is the essence of the fuel hedge.”

• “We typically don’t have a lot of long-term natural gas contracts…especially ones that go out 25 years. So this [the Limon II wind contract] is basically

providing a long-term fuel contract or energy contract at known prices.”

[Remarks of Kurtis Haeger (Managing Director of Wholesale Planning, PSCo) during Limon II proceeding before the Colorado Public Utilities Commission]

(25)

Wind Buyers In Their Own Words:

Google on Wind’s Long-Term Hedge Value

• “We see value in getting a long-term embedded hedge. We want to lock in the current electricity price for 20 years. We are making capital investment decisions [regarding data centers] on the order of 15 to 20 years. We would like to lock in our costs over the same period. Electricity is our number one operating expense after head count.”

• “We are signing [conventional] contracts with three to five years of fixed

pricing, but over the life of the data center, those will reset. We are short-term fixed and long-short-term floating, so it [wind] will not be a perfect hedge in

the near term. We are less concerned about hedging our cash flows on a

quarter by quarter basis. We are more concerned about the long term.”

• “We are losing considerable amounts of money on every [wind] MWh [in the

near term]. We just want to ensure the project is there in the later years.”

(26)

Mark Bolinger

Lawrence Berkeley National Laboratory MABolinger@lbl.gov

The work described in this presentation was funded by the

U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy

Thank You!

The report on which this presentation is based

can be downloaded at:

References

Related documents

7 mars 2011 JSIam 2011 10 Imaging Photovoltaics 3D Integration Memories CMOS Logic RF & Microwave Smart Power Silicon Photonics LEDs. Analog & Mixed

Torrent download folder – Enter the full path of the folder where your downloaded torrent files are saved.. For example, torrentflux download directory

The final convolutional layer outputs feature vectors describing overlapping square regions in the image; these are used by the region proposal network (RPN) to predict a fixed

The best-fit optical profile, after the flaring, is a power law of α = -0.41, which is one of the shallowest decay profiles seen in UVOT lightcurves.. The corresponding

22 Manistee River Tournament w/TCAS Chair: Adam Trenz 29 Detroit River Kayak/Small boat Chair: Eric Braden OCTOBER 2 General Membership Meeting.. 6 Ohio Steelhead

Osim toga, kao što možemo vidjeti na slici 7., pri brzini prometovanja od 40 km/h, akcijska vrijednost izloženosti postignuta je na cestama "vrlo loših" svojstava

January 2014 Institute of Public Affairs 11 The greater the level of general government gross fixed capital formation within a given jurisdiction relative to GSP, the lower

Winter Semester: Business Environment + Aspects of Contract and Negligence for Business Spring Semester: Managing Financial Resources and Decisions + Business Decision Making