• No results found

Graphing formulas: unraveling experts’ recognition processes

N/A
N/A
Protected

Academic year: 2020

Share "Graphing formulas: unraveling experts’ recognition processes"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

Peter

M.G.M.

Kop

a,∗

,

Fred

J.J.M.

Janssen

a

,

Paul

H.M.

Drijvers

b

,

Jan

H.

van

Driel

c

aIclon,LeidenUniversity,TheNetherlands

bFreudenthalInstitute,UtrechtUniversity,TheNetherlands

cMelbourneGraduateSchoolofEducation,TheUniversityofMelbourne,Australia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10June2016

Receivedinrevisedform12January2017 Accepted25January2017

Availableonline9February2017

Keywords:

Graphingformulas Experts’recognition Functionfamilies Prototypesandattributes

a

b

s

t

r

a

c

t

Aninstantlygraphableformula(IGF)isaformulathatapersoncaninstantlyvisualize usingagraph.TheseIGFsarepersonalandserveasbuildingblocksforgraphingformulas byhand.Thequestionsaddressedinthispaperarewhatexperts’repertoiresofIGFsareand whatexpertsattendtowhilerecognizingtheseformulas.Threetasksweredesignedand administeredtofiveexperts.Thedataanalysis,whichwasbasedonBarsalouandSchwarz andHershkowitz,showedthatexperts’repertoiresofIGFscouldbedescribedusingfunction familiesthatreflectthebasicfunctionsinsecondaryschoolcurriculaandrevealedthat experts’recognitioncouldbedescribedintermsofprototype,attribute,andpart-whole reasoning.Wegivesuggestionsforteachinggraphingformulastostudents.

©2017ElsevierInc.Allrightsreserved.

1. Introduction

Algebraicconcepts,likefunctions,canbeexploredmoredeeplythroughlinkingdifferentrepresentations(Duval,2006;

Heid,Thomas,&Zbiek,2012).Graphsandalgebraicformulasareimportantrepresentationsoffunctions.Graphsseemtobe

moreaccessiblethanformulas(Leinhardt,Zaslavsky,&Stein,1990;Moschkovich,Schoenfeld,&Arcavi,1993).Inaddition, graphsgivemoredirectinformationoncovariation,thatis,howthedependentvariablechangesasaresultofchangesof theindependentvariable(Carlson,Jacobs,Coe,Larsen,&Hsu,2002).Agraphshowsfeaturessuchassymmetry,intervals ofincreaseordecrease,turningpoints,andinfinitybehavior.Inthisway,itvisualizesthe“story”thatanalgebraicformula tells.Thereforegraphsareimportantinlearningalgebra,inparticularinlearningtoreadalgebraicformulas(Eisenberg&

Dreyfus,1994;Kieran,2006;Kilpatrick&Izsak,2008;NCTM,2000;Sfard&Linchevski,1994).

Studentshavedifficultiesinseeingafunctionbothasaninput-outputmachineandasanobject(Ayalon,Watson,&

Lerman,2015;Gray&Tall,1994;Oehrtman,Carlson,&Thompson,2008;Sfard,1991).Graphsappealtoagestalt-producing

ability,andinthiswaycanhelptoconsolidatethefunctionalrelationshipintoagraphicalentity(Kieran,2006;Moschkovich etal.,1993).Graphsarealsoconsideredimportantinproblemsolving.Graphsareusedforunderstandingtheproblem situation,recordinginformation,exploring,andmonitoringandevaluatingresults(Polya,1945;Stylianou&Silver,2004).

So,theabilitytoswitchbetweenrepresentations,representationversatility,inparticularconversionsfromalgebraic formulastographs,isimportantinunderstandingalgebraandinproblemsolving(Duval,2006;NCTM,2000;Stylianou,

2011;Thomas,Wilson,Corballis,Lim,&Yoon,2010).

∗ Correspondingauthor.

E-mailaddress:koppmgm@iclon.leidenuniv.nl(P.M.G.M.Kop).

http://dx.doi.org/10.1016/j.jmathb.2017.01.002

(2)

Inapreviousstudyaframeworkwasdevelopedtodescribestrategiesforgraphingformulaswithoutusingtechnology

(Kop,Janssen,Drijvers,Veenman,&VanDriel,2015).Intheframework,itisindicatedhowrecognitionguidesheuristic

search.Whenonehastographaformulatherearedifferentpossiblelevelsofrecognition:fromcompleterecognition(one immediatelyknowsthegraph)tonorecognitionatall(onedoesnotknowanythingaboutthegraph).Foreverylevelof recognitiontheframeworkprovidesstrongtoweakheuristics.

Forthetwohighestlevelsofrecognitionthegraphiscompletelyrecognizedortheformulaisrecognizedasamemberof afunctionfamilywhosegraphcharacteristicsareknown.Forinstance,atthehighestlevelofrecognitionthegraphofy=x2

isinstantlyrecognizedasaparabolawithminimum(0,0).Atthesecondlevelofrecognition,y=4·0.75x+3isrecognizedas

amemberofthefamilyofdecreasingexponentialfunctions,andsothehorizontalasymptoteisreadfromtheformula.In thiswaythegraphcanbeinstantlyvisualized.Anotherexampleatthislevel:y=−x4+6x2isrecognizedasapolynomial

functionofdegree4;becauseofthenegativeheadcoefficientitsgraphhasanM-shapeoran-shape;ashortinvestigation of,forinstance,thezeroeswillinstantlygivethegraph.

Atthesetwohighestlevelsofrecognitionintheframework,formulascanbeinstantlylinkedtographs.Therefore,these formulasaredefinedasinstantlygraphableformulas(IGF).AlargesetofIGFsisbeneficialtoproficiencyingraphingformulas. Thecurrentstudywasfocusedonexperts’recognitionprocesseswhendealingwithIGFs.Forthisstudywedefinedanexpert asapersonwithatleastamaster’sdegreeinmathematicsandatleast10yearsofexperienceteachingatthesecondary orcollegelevel,withexperienceingraphingformulasbyhand.Althoughtheseexpertsareexpectedtobeabletoinstantly linkmanyformulastographs,theirrepertoiresofIGFsremainunknown.Inaddition,weinvestigatedwhatexpertsattend towhenrecognizingIGFs.ThisinformationmightgivesuggestionsforarepertoireofIGFsforstudentsandforafocusin teachingstudentsIGFs.

2. Theory

2.1. Cognitiveunitsasbuildingblocks

IGFscanbeseenasbuildingblocksinthinkingandreasoningwithandaboutformulasandgraphs.BarnardandTall(1997)

introducedtheconceptof“cognitiveunit”,anelementofcognitiveknowledgethatcanbethefocusofattentionaltogether atonetime.Forexperts,well-connectedcognitiveunitscanbecompressedintoanewsinglecognitiveunitwhichcan beusedasjustonestepinathinkingprocess(Crowley&Tall,1999).Inthiswayexperts’knowledgeiswellorganizedin hierarchicalmentalnetworkswithcomplexcognitiveunits,whichcanbeenlistedwhennecessary(Campitelli&Gobet,

2010;Chi,Feltovich,&Glaser,1981;Chi,2011).

AsIGFsarecognitiveunitsingraphingformulas,theycanbecombined(addition,multiplication,chaining,etc.)andcan formnew,morecomplexIGFs.Forinstance,whendealingwithy=−x4+6x2,novicesmayrecognizetheIGFsy=x4and y=6x2andhavetocombinethesetwoIGFstodrawagraph,whereasy=x4+6x2isanIGFforexperts,whorecognizea

4thdegreepolynomialfunction.Forexperts,aformulalikey=x26x+5cantriggerothercognitiveunits,like“itsgraph

isaparabolawithaminimumvalue”,andtheequivalentformulasy=(x−1)(x−5) andy=(x−3)2−4,whichcangive informationaboutthezeroesandtheminimumvalue,etc.Expertsareexpectedtohavemore,andmorecomplex,IGFsthan novices,whichgenerallyenablethemtographformulaswithfewerdemandsontheworkingmemory(Sweller,1994).

Thecurrentstudywasfocusedonrecognition:inparticular,whichformulasand/orfunctionfamilieswereinstantly recognizedbyexpertsandhowtherecognitionprocessescanbedescribed.

2.2. RecognitiondescribedusingBarsalou’smodelwithprototype,attribute,andpart-wholereasoning

Barsalou(1992)showedhowhumanknowledgeisorganizedincategoriesorconcepts.Peopleconstructthesecategories

basedonattributes.Whenataskrequiresadistinctiontobedrawnbetweenexemplarsofacategory,peopleconstructnew attributesandinthiswaynewcategories(Barsalou,1992).Forinstance,fortheconceptbird,attributes(variables)likesize, color,andbeak,withseveralvalues,canbeusedtodistinguishdifferentexemplars.Categoriescanhavealargediversityof exemplars,buthaveagradedstructure(Eysenck&Keane,2000;Barsalou,2008).Someexemplarsinacategoryaremore centraltothatcategorythanothers;thesearecalledprototypes.Forinstance,arobinisconsideredamoretypicalexample ofabirdthan,forinstance,achickenorapenguin.Whendealingwithexemplarsofacategory,peopletendtoassociate prototypicalfeatureswiththeseexemplars(Barsalou,2008;Schwarz&Hershkowitz,1999).Thetendencytoreasonfrom prototypescanposeproblems.Sinceconceptformationisnotnecessarilydoneusingpuredefinitions,WatsonandMason

(2005)emphasizedtheneedtogobeyondprototypesandtosearchfortheboundariesofaconcept.Inthiswayonebecomes

awareofthedimensionsofpossiblevariationandineachdimensionoftherangeofpermissiblechange(Billsetal.,2006;

Sandefur,Mason,Stylianides,&Watson,2013;Watson&Mason,2005).Thepersonalexamplespace,thecollectionof

examplesandtheinterconnectionbetweentheexamplesapersonhasathis/herdisposal(theaccessibleexamplespace), playamajorroleinhowapersonmakessenseofthetaskshe/sheisconfrontedwith(Watson&Mason,2005;Goldenberg

&Mason,2008).VinnerandDreyfus(1989)usedconceptimagetoemphasizethepersonalcharacterofpeople’smental

(3)

theexemplar(s)withthesetofhighestfrequencyofattributevaluesinthecategoryorwiththehighestcorrelationwith otherexemplarsinthecategory(Barsalou,1992).Prototypesaretheexamplesthatareacquiredfirstandareusuallythe examplesthathavethelongestlistofattributes:thecriticalattributesofthecategoryandtheself-attributes(non-critical attributes)oftheexemplar(Schwarz&Hershkowitz,1999).Prototypesareusedasareferencepointforjudgingmembership ofthecategory:anexemplarisjudgedtobeamemberofacategoryifthereisagoodmatchbetweenitsattributesandthose ofthecategoryprototype(Barsalou,2008;Eysenck&Keane,2000).Whenaskedforaprototypeofacategory,itisexpected thatapersonwillnotuseadefinitionofprototypebutwilluseageneralideaaboutwhatprototypesare:namely,the mostcentralexemplar(s)ofacategoryfromhis/herpersonalperspective.Asaconsequence,whendealingwithacategory,

theprototypesarethefirstexamplesthatcometoone’smindandarethenaturalexamplesthatareusedwithoutany

explanation.Examplesinthedomainofgraphingformulasincludeprototypicalformulaslikey=x2andy=x3,withtheir

prototypicalgraphs.Inthisstudyweusedthetermprototypereasoninginthisway.

Attributeunderstandingcanbedefinedastheabilitytorecognizetheattributesofafunctionacrossrepresentations

(Schwarz&Hershkowitz,1999).Forinstance,fromtheformulay=(x−1)(x−5),itisconcludedthatitsgraphisaparabola,

ithaszeroesatx=1andatx=5andasymmetryaxisatx=3.Theseattributesorpropertiesofthisfunctioncanberecognized inthegraphical,tabular,andalgebraicrepresentations.

Inhisproperty-orientedviewoffunctions,Slavit(1997)usedproperties(orattributes)likesymmetry,monotonicity, horizontalandslantasymptotes,intercepts(zeroes),extrema,andpointsofinflection.

Dependingonthetask,peopleconstructattributestobeabletodistinguishexemplars:inthisstudy,formulasandgraphs

(Barsalou,1992).Todistinguishdifferentgraphsof4thdegreepolynomialfunctionsinFig.1,onecanuseattributeslike

symmetry,infinitybehavior,numberofturningpoints,numberofzeroes,andlocationofzeroesrelativetothey-axis.When relatingformulasandgraphs,asingraphingformulas,onechoosesorcreatesattributestofocusonfeaturesofformulasand graphs.Wecallthisreasoningaboutattributesandtheirvaluesattributereasoning.

Part-wholereasoningreferstotheabilitytorecognizethatdifferentformulasordifferentgraphsrelatetothesameentity: inthiscase,tothesamefunction.Inthegraphicalrepresentation,differentscalingcanresultindifferentpicturesofgraphs belongingtothesamefunction.Inthealgebraicrepresentation,formulamanipulationcanresultindifferentformulasofthe samefunction:forinstance,y=x24x,y=(x2)24,andy=x(x4).Fromthesedifferentformulasdifferentattributesof

thegraphcanberead.Therefore,part-wholereasoningisimportantintherecognitionofIGFs.

Forattributereasoningandpart-wholereasoningonehastograspthestructureofaformula.Intheliteraturethisiscalled symbolsense(Arcavi,1994).Symbolsenseisaverygeneralnotionof“whenandhow”tousesymbolsandhasseveralaspects, suchastheabilitytoreadthroughalgebraicexpressions,toseetheexpressionasawholeratherthanaconcatenationof letters,andtorecognizeitsglobalcharacteristics(Arcavi,1994).PierceandStacey(2001)usedalgebraicinsighttocapture thesymbolsenseintransformationalactivitiesinthe“solving”phaseofproblemsolving(PierceandStacey,2001).The algebraicinsightisdividedintwoparts:algebraicexpectationandtheabilitytolinkrepresentations.Algebraicexpectation hastodowithrecognitionandidentificationofobjects,forms,keyfeatures,dominantterms,andmeaningsofsymbols

(Kenney,2008;Pierce&Stacey,2001).Algebraicinsightisshownwhenapersonhasexpectationsaboutgraphsthatare

linkedtofeaturesofthesymbolicrepresentationandwhenequivalentalgebraicexpressionsarerecognized(Ball,Stacey,&

Pierce,2003;PierceandStacey,2001,2004).

Thethreeaspectsprototype,attribute,andpart-wholereasoningfromSchwarzandHershkowitzcanbeusedtodescribe therecognitionprocessingraphingformulas.ABarsaloumodelforrecognizingIGFsisformulatedinFig.2.Inthecase ofgraphingformulas,itisdifficulttomentionallpossiblevalues.Forinstance,theattribute“zeroes”canhavevalueslike 0,1,2,3,toindicatethenumberofzeroes,butalsothelocationcanbeusedasvaluesofanattribute(forinstance,azeroat

x=5).Forthesakeofreadability,thevaluesbelongingtotheattributesareomittedinFig.2.

(4)

Fig.2. IGFsintheformofaBarsaloumodelbasedonSchwarzandHershkowitz(1999).

prototypeofafunctionfamily.Itisthenpossiblethatthegraphisdirectlyknown,orthat,usingattributereasoning,agraph canbevisualized.

Someexamplescanillustratethisrecognitionprocess.InIGFy=4·3x+2theprototype3xcanberecognized(prototype

reasoning),andviaatranslation(attributereasoning)thegraphcanbevisualized.InIGFy=−2x(x−3)(x−6),theprototype

x3canberecognized,x3asareversion(attributereasoning),andviazeroesatx=0,x=3,x=6(attributereasoning)the

graphcanbevisualized.However,wheny=−2x(x−3)(x−6)isnotrecognizedasamemberofafunctionfamilyorprototype ofafunctionfamily,theformulaisnotanIGF(Kopetal.,2015).Inthiscasethegraphhastobeconstructedby,forinstance, reasoningaboutattributeslikeinfinitybehaviorandzeroes.If,whengraphingy=4x−2,theformulacanberewrittento y=4/x2(part-wholereasoning)andrecognizedasa1/x2(prototypereasoning),theformulaisanIGF.Butwhenfromthe

formulay=4/x2itisreadthatithasaverticalasymptoteatx=0,andthatalloutcomesarepositiveandwhenx±∞then y=0(infinitybehavior),thenwesaythatthegraphisconstructedthroughqualitativereasoning(Kopetal.,2015),andso theformulaisnotanIGF.

2.3. Globalandlocalperspectives

Covariationalreasoningisessentialforgraphingformulas.Incovariationalreasoning,oneisabletoimaginerunning throughallinput-outputpairssimultaneouslyandsotoreasonabouthowafunctionisactingonanentireintervalofinput values(Carlsonetal.,2002).InrecognizingIGFsonehastohaveapictureofthefunctionasanentity.Intheliteraturethis perspectiveofthefunction,seeingthefunctionasawhole,isalsoaddressedastheobjectorglobalperspective(Confrey

&Smith,1995;Even,1998;Gray&Tall,1994;Oehrtmanetal.,2008;Sfard,1991).Thereisalsoanotherperspectiveofthe

function,namely,toseeafunctionasaninput-outputmachine.Thisperspectivehastodowiththefundamentalviewon functions(whatitmeansthatacertainy-valuebelongstoagivenx-value),andisaddressedasthepointwise,process, orcorrespondenceperspective.Switchingbetweenbothkindsofperspectiveisnecessaryforreasoningaboutfunctions.

Slavit(1997)spokeaboutthelocalandglobalnatureoffunctionalgrowthpropertiesinaddressingbothkindsofperspective

(Slavit,1997).Theglobalgrowthpropertiesconcernattributeslikesymmetry,monotonicity,horizontalandslantasymptotes,

(5)

Fig.3.Anumberofthecardsusedintask1.

usingthesepropertiesorattributes.Beforethecurrentresearch,itwasunknownwhichattributesexpertsuseinrecognizing IGFs.

2.4. Researchquestions

Inthecurrentstudywefocusedonexperts’repertoiresofformulasthatcanbeinstantlyvisualizedusingagraph(IGFs) andontheirconceptimagesofIGFs,withattributes,prototypes,andpart-wholereasoning.Weexpectedthatexpertswould havelargerepertoiresofIGFsthatarestructuredincategories.However,wedidnotyetknowwhatanexpertrepertoireof IGFswouldbe.

Weexpectedexpertstobeabletomanipulatealgebraicformulas(part-wholereasoning),tousesymbolsenseandin particularalgebraicinsight,andtousesetsofattributeswithvaluesetstodistinguishdifferentgraphs.However,wedidnot knowwhichprototype,attribute,andpart-wholereasoningtheywoulduseinlinkingformulasandgraphsofIGFs.

Thisleadtothefollowingresearchquestions:

Canwedescribeexperts’repertoiresofinstantgraphableformulas(IGFs)usingcategoriesoffunctionfamilies? WhatdoexpertsattendtowhenlinkingformulasandgraphsofIGFs,describedintermsofprototype,attribute,and

part-wholereasoning?

3. Method

Thecurrentstudycanbecharacterizedasanexploratorystudy,inwhichweinvestigated“snapshots”ofexperts’concept imagesoffunctionfamilieswiththeiralgebraicformulasandgraphs.

3.1. Tasks

Threedifferenttasksweredevelopedtoelicittheexperts’repertoiresofIGFsandtoexploretheexperts’prototype, attribute,andpart-wholereasoning:acard-sortingtask,amatchingtask,andamultiplechoicetask.

Card-sortingtasksareoftenusedinelicitingstructuredknowledge(Chietal.,1981;Jonassen,Beissner,&Yacci,1993;de

Jong&Ferguson-Hessler,1986;Goldenberg&Mason,2008;Sandefuretal.,2013).

Intask1,60formulasweregivenandtheparticipantswereaskedtocategorizethemaccordingtotheirgraph.After this,theywereaskedtogiveanameandaprototypicalformulaforeachoftheircategories.Westructuredthistaskby addinggraphstothecardsshowingtheformulas.Whensuchtasksaregivenwithoutstructuringbeforehand,gettinga completepictureorcomparingtheresultscanposeproblems,becauseofthedifferentcriteriathatcanbeusedtosortthe cards(Ruiz-Primo&Shavelson,1996).Becauseweaddfourgraphstothe60cardswithformulas,theparticipantswere explicitlycompelledtofocusonthegraphsoftheformulas.Wedidnotindicatewhetheraparticipantshoulddiscriminate betweenparabolaswithamaximumorminimumbecausethelevelofdetailcanbeanindicatorofexpertise.Fig.3shows 20cardsfromtask1.Mostoftheseformulas,butnotall,arerelatedtooneofthebasicfunctionfamilies,whicharestudied ingrades10–12:y=xn,y=ax,y=log

2(x),y=1/x,y=√x,y=ln(x),y=ex.Since,weusedthebasicfunctionsfromsecondary

(6)

Fig.4.Somealternativesoftask2.

InTask2,thematchingtask,alistof40formulaswasgivenandtheparticipantswereaskedtoselectthecorrectalternative outof21alternatives:20graphsandonealternativestating“noneofthese”.Thislastalternativewasprovidedtodiscourage guessing.Inthistaskthefocuswasoninstantlinkingofformulastotheglobalshapeofgraphs.Thereforeastricttime limitwasusedtoencouragerecognitionandtodiscourageconstructionofagraph.Wechoseamatchingtaskwithmany alternativesratherthanagraphingtasktoindicatethelevelofdetailthatwasneeded:theexpertshadtorecognizethe globalshapeofthegraphofthegivenformula.

The formulas used in this task resembled the formulas used in the first task. The following are some

exam-ples:y=2x(x−2)(x+4);y=6x22x4; y=e2x+1;y=x4/x; y=42x+x/4; y=4/2x; y=x6+2;y=ln(e2·x); y=2x−4; y=2(x−1)44;y=

8x2;y=ln(4/x);y=9x/√3x;y=ln(e2·x).EightofthealternativegraphsareshowninFig.4.

Task2wasalsodevelopedtoelicitparticipants’repertoiresofIGFs.Thereforesomefunctionswereaddedthatdonot belongtothefunctionfamiliesofbasicfunctions,forinstance,y=

8−x2,y=30/(x216),y=x4/x,becausewewanted

toinvestigatetheboundariesoftheexperts’repertoiresofIGFs.Becausetheformulasusedweresimilartothoseintask1, thistaskwasusedtovalidatetheresultsoftask1.When,forinstance,intask1nodistinctionwasmadebetweenincreasing anddecreasingparabola,butintask2thisdistinctionwasmade,itwasconcludedthattheparticipantcouldindeedmake suchadistinction.

Tasks3Aand3B,thinkingaloudmultiplechoicetasks,weredevelopedtoelicittheparticipants’prototype,attribute,and part-wholereasoningandinthiswaytogetmoredetailedknowledgeoftheparticipants’conceptimages.Theparticipants wereaskedtochoosethecorrectalternativeoutoffouralternatives.AsimilartaskwasusedbySchwarzandHershkowitz

(1999)intheirstudyofconceptimagesoffunctions.Bothtasksconsistedofsixitems.Intask3Baformulawasgivenandthe

expertshadtofindthecorrectgraph.Intask3Aagraphwasgivenandtheexpertshadtoprovideaformula.Ingeneral,tasks like3Aareconsideredtobemorechallenging.Butthisisnotclearwhendealingwiththefunctionfamiliesofwell-known basicfunctions.Inthiswaywegotmoredetailedinformationabouttheexperts’conceptimagesofIGFs.Threeexamplesof thistaskareshowninFig.5.

Theformulaswereagainchosenfromthesamesetoffunctionsasintasks1and2.Participantshadtoconsiderall alternativesbecausemorethanonealternativecouldbecorrect.

Intasks1and2thefocuswasonsketchesofgraphs;inthistask,moredetailedanswerswereneeded.Forinstance,in tasks1and2itwasnotnecessarytodistinguishy=−2x(x−2)(x−4)andy=−2x(x+3)(x+6),butintask3thisdistinction hadtobemade(seetask3A-4inFig.5).

3.2. Participants

(7)

Fig.5.Someexamplesoftask3:task3A-4,3A-6,3B-3.

3.3. Dataanddataanalysis

3.3.1. Datacollectionprocedure

Writteninstructionswerehandedoutforeverytask,togetherwithanindicationofthetimeneededtoperformthetask. Fortask1,atimeindicationofmaximum40minwasgiven;fortasks2and3,20min.Foralltasks,thetimeneededwas recorded,asthetimerequiredtoperformataskcanbeanindicationofexpertise.Duringthetasksthefirstauthoronly emphasizedtheneedtokeeponthinkingaloudwhentheexpertsstoppedtalking.Aftereachtask,thefirstauthoraskedthe expertstolookbackandtodescribethestrategies,theyhadusedinthetask.Theinterviewswerevideotaped.

Intask1,thecard-sortingtask,60cardswerelaidonatableandtheparticipantscouldphysicallygrouptheformulas intodifferentcategories.Afterwards,thecategoriesweregluedonalargesheet.Theparticipantsthenwrotethecategory namesandtheprototypicalformulasforeachcategory.Intask2andtask3,theparticipantsfilledintheanswersonaform. Duringtasks1and3theparticipantswereaskedtothinkaloud;thiswasvideotaped.Thinkingaloudisconsideredto givereliableinformationabouttheproblem-solvingactivitieswithoutdisturbingthethinkingprocess(Ericsson,2006).For task3thethinking-aloudprotocolsweretranscribedinordertoanalyzetheprototype,attribute,andpart-wholereasoning.

3.3.2. Dataanalysis

3.3.2.1. Task1.Theaimoftask1wastogatherinformationonwhichcategoriesexpertsuseintheirrepertoiresofIGFs.It wasexpectedthatexpertswouldusesalient,globalpropertiesofgraphs,likesymmetry,in/decreasing,verticalasymptotes, infinitybehavior,andnumberofturningpoints,tocategorizetheirIGFs.Basedonthesesalientproperties,thefirstauthor madeatheoretical,hypotheticalexperts’categorizationbeforethestartofthisstudy.Thecategorizationsofthefiveexperts werecomparedwitheachotherandwiththefirstauthor’scategorization.Basedonthesefindingsacommoncategorization wasconstructed.Thiswasdoneinseveralsteps.First,commonelementsinthecategoriesandprototypesintheexperts’ categorizationsandthefirstauthor’scategorizationweredetermined.Fromthesefindingsapreliminarycommonexpert categorizationwasformulated.Inthesecondstep,thelevelofdetailwasconsidered.Ahigherlevelofdetailmeantthat subcategorieswereused.Ifoneormoreexpertsusedahigherlevelofdetail,thenthislevelofdetailwasusedinthe(final) commonexpertcategorization.Inthelaststep,thedistancesbetweenindividualcategorizationsandthecommonexpert

categorizationwerecalculated.Weconsideredwhethersmalladjustmentsinthecommonexpertcategorizationwould

resultinalowerminimumofthetotalofalldistances.Whennoprogressioncouldbemade,thefinalcommonexpert

categorizationwasfound.

Todeterminethedistancebetweenanindividualcategorizationandacommoncategorization,thefollowingprotocol

wasused:

(8)

-Ifnosubcategoriesweremadeintheindividualcategorizationandthecommonexpertcategorizationmadeadistinction betweenincreasinganddecreasing,thenthedistanceincreasedby+2(forinstance,nosubcategoriesbetweenparabolas withmaximumandparabolaswithminimumgaveanincreaseofthedistanceby+2ifthecommonexpertcategorization madethisdistinction)

-Iftwocategoriesofthecommonexpertcategorizationweremergedintheindividualcategorization(otherthanthe distinctionbetweenincreasinganddecreasing),thenthedistanceincreasedby+4(forinstance,3rdand4thgradefunctions wereputtogetherinonecategory)

-Ifa completely newcategory, differentfromthecommon expertcategorization, wasformulated,then thedistance

increasedby+6.

3.3.2.2. Task2.Inthistaskthenumbersofmistakesperexpertwerecounted.Themistakeswereindicatedinatablein ordertoseewhethertheyweremadeinparticularfunctionfamilies.

3.3.2.3. Task3.Toanalyzetheresultsoftask3,thetranscriptswerecutintofragmentswhichcontainedcrucialstepsof explanations:ideaunits.Ideaunitsareprimitiveelementsinthejustificationsofparticipants(Schwarz&Hershkowitz, 1999).TheseideaunitswereencodedusingtheelementsfromFig.2:prototype,attribute,orpart-wholereasoning.

Sinceprototypesarethenaturalexamplesofcategoriesthatcanbeusedwithoutanyexplanation,graphsandformulas thataparticipantusedasthestartofareasoningprocesswereconsideredprototypesfortheexpert.Ifnoprototypereasoning wasusedorfunctionfamilywasmentioned,wesaidthattheformulawasnotanIGF,andthatthegraphwasconstructed.

Thefragmentsoftheprotocolswereencodedasfollows:

-pr(prototypereasoning):onlyaprototypicalexemplarwasmentioned;forinstance,“itlookslikealog”,“itisanxinthe power6”,“itisanexpo”,“itisanoscillation”.Ifafunctionfamilywasmentioned,likein“itisanexponentialfunction”or “4thdegreepolynomial”,thiswasconsideredprototypereasoning

-att(attributereasoning):anattributewasmentioned;forinstance,“thisonehasaverticalasymptoteatx=0”,“itisalways positive”,“itgoestominusinfinity”.

-pw(part-wholereasoning):theformulawasmanipulatedtoanequivalentformula,forinstance,y=4x−2toy=4/x2

-con(construction):nofunctionfamilyorprototypewasmentioned,theformulawasnotanIGF:thegraphwasconstructed through,forinstance,attributereasoningorcalculatingpoints.

WegivetwoexamplesoftheencodinginFig.6.

4. Results

4.1. Resultsoftask1

Theexperts’andauthors’categorizationsareshowninAppendixA.Theexpertsshowedagreatdealofagreementintheir choicesofcategories,namesofthesecategories,andprototypesofthecategories.OnlyexpertSusedadifferentapproachin hiscategorizationofpolynomialfunctions.Hebasedhiscategorizationonthenumberofturningpoints.Theotherexperts allusedthedegreeofpolynomialfunctions.The4thdegreepolynomialfunctionsweredividedintographswithaW-form, aM-form,andaV-form(orastheexpertsmentioned,“increasingordecreasing”).Nolargedifferenceswerefoundon exponentialfunctionsandlogarithmicfunctions,althoughsomeexperts(PandR)madenodistinctionbetween“normal” and“reversed”graphs(forinstance,y=exversusy=e−xandy=ln(x)versusy=ln(x)).Allexpertsagreedonlinearbroken functionsandsquare-rootfunctions.Moredifferenceswerefoundinthecategoriesofpowerfunctions,whereonlyexpert Qmadedistinctionsbasedondomainand/oronconcavity.

Intheconstructionofthecommonexpertcategorization,thedistancesbetweenindividualcategorizationsandthe commonexpertcategorizationwerecalculated.ThefinalcommonexpertcategorizationisshowninTable1.

Thefollowingdistancesfromthefinalcategorizationwerefound:11,3,19,20,and15(forP,Q,R,S,andT,respectively). Theexpertsneededanaverageof18min:23,20,11,14,and21min(forP,Q,R,S,andT,respectively).

Forthistasktheexpertsusedalotofpart-wholereasoninginordertocategorize,forinstance,thefollowingformulas

correctly:ln(e2x),(1x)(2+x)+x2,ln(1/x),x(x1)/(x+1)(x1),(2x13) 5

.

(9)

Fig.6.Examplesoftheencodingoffragmentsofprotocolsoftask3.

Table1

Commonexpertcategorization.

Categories:

Linear

x+5(4−x),ln(e2x),(1x)(2+x)+x2 Parabola

parabolawithmax:x(9−x),−(x−3)2+2,(x+5)(3x),2x3(x+2)(x2),−(x1)2+2(x1)+6; parabolawithmin:x27(x5),(6x)2,x2+(−x+1)2

3rddegreeoscillation

(x27)(x5),2(x3)2(x+3),2x3+4x216x,x39x,e3ln(x) 4thdegree

W-shape:x416x2+28,(x27)2

;(6edegreeW-shape:3(x46)(x28)); M-shape:−3(x24)(x26),2x3(6x);V-shape:(x+3)49,x2(9+x2) Exponential

increasing:4−3+x,2.(2)x;decreasing:18·0.3x,26−x,8e−x,10−2x+5,8/3x;

reversedexponential:6−2x;100ex

Logarithmic

inceasing:ln(e2·x),1+2log(x),ln(x)+ln(2);decreasing:−ln(x),ln(1/x) distractor:1/ln(x)

Hyperbola

hyperbola:x(x−1)/(x+1)(x−1),(4x+2)/x,1−5/(x+1)

powerfunctionswithnegativeoddpower:8x−3;withnegativeevenpower:2/x4,3x−2 slantasymptote:x−4/x;twoverticalasymptotes(x21)−1

,2/x−3/(x−1) ‘Roots’

increasing‘√x-like’:3√x+6,2√x−6;(100x)12;decreasingx-like’:410x,(2x)12+2

halfacircle:

8−x2;V-shape:

8+x2 powerfunctions

exponent‘1

3-like’<1:2

3

x,8√3x4/2x;exponent1

3-like’>1:(2x 1 3)

5

;exponent‘11 2-like’:2x

(10)

Table2

Resultsoftask2.

Participant Numbermistakes Mistakes

P 3 (4x+1)/(x+2);7x√x;10/x3

Q 1 (4x+1)/(x+2)

R 1 (4x+1)/(x+2)

S 0

T 5 6x22x4;2x−4;42x+x/4;(4x+1)/(x+2);5x7

Table3

Timeneededfortask3Aand3B,thetotalnumberofmistakes,andthenumberofIGFsandconstructions.

Participants Time3A Time3B Numberofmistakes NumberofIGFs Numberofconstructions

P 4:54min 7:44min 0 10 2

Q 4:16min 2:13min 0 11 1

R 3:56min 6:27min 0 9 3

S 4:02min 2:44min 0 6 6

T 6:16min 2:46min 0 9 3

detailedcategorizationwouldbepossible,butnotwithoutcalculations:“InthenextstepIwouldhavetomakecalculations;

Iwouldnottrustmyselftosaymoreaboutthiscategorizationoffthetopofmyhead”(expertQ).

4.2. Resultsoftask2

Theresultsoftask2(seeTable2)showedthatthreeoutofthefiveexpertsmadenomistakesoronlyonemistake.Most

mistakesweremadewiththeformulay=(4x+1)/(x+2).Fourofourexpertsselectedthealternativewiththeincreasing hyperbola.Fromtheotheralternativesitcouldhavebeenconcludedthatadistinctionhadtobemadebetweenanincreasing andadecreasinghyperbola.Sinceastricttimelimitofonly30sforoneformulawasusedandallexpertsfinishedthistask easilywithinthistimelimit,itwasconcludedthatalltheformulasthatdidnotbelongtothealternative“noneofthese” couldbeconsideredIGFsfortheexperts.

Fromtheobservationsandinterviewswelearnedthatallexpertsfirstexaminedthe20graphalternativesandhada globalviewoftheformulastogetanimpressionofwhichaspectswouldplayaroleinthistaskandwhattheyhadtofocus on.Allexpertsreadalmostallgraphsbymentioningafunctionfamilythatfittedthegraph.Whenperformingthistask,they usedpart-wholereasoningifnecessary,recognizedafunctionfamilyandusedattributereasoningtodiscriminatebetween differentoptionsofthesamefunctionfamily.Forinstance,y=4x5y=3e−0,5x+44,y=4/2xwereallrecognizedasmembers

oftheexponentialfunctionfamily,attributereasoning,likeinfinitybehaviorandreversingaprototypicalgraphwasused tochoosethecorrectalternative.

4.3. Resultsoftask3

Intask3theprotocolswereanalyzedusingprototype,attribute,andpart-wholereasoning.Fromtheencodedprotocols, wefoundthatexpertsoftenstartedwithprototypesoffunctionfamilies,followedbyattributereasoning.

Wegivefourexamples(pr=prototype;att=attributereasoning;pw=part-wholereasoning):

Example1(:expertQintask3A-4(3rddegreepolynomialinFig.5)). Somethingwithahigherdegree(pr),decreasing(att), let’ssee;thisissomethingthatincreases(att),zeroesindeedat0,2,and4(att),thatlooksreliable;andthisat0,3,and6, andthatwillbepossible(att);andthisoneincreases,oh,noitdecreasestoo(att);wouldbeapossiblealternative;andthis onenot,ithasitszeroesonthewrongside(att).

Example2(:expertQintask3A-6(4thdegreepolynomialinFig.5)). Let’ssee,4thdegree(pr),downwards(att);A.thisone hasnooscillations,andisonlytranslated(att);B.ispossible,wherearethezeroes?,factorizinggivesme−x2+9(pw),so

zeroesatx=3andx=−3(att);C.isnotpossible,becausewhenIdividedbyx2(pw)thennoextrazeroes;d.whenIdivided

byx3(pw),itgavemeonlyonemorezero;soithastobeB

Example3(:expertSintask3B-3(exponentialfunctioninFig.5)). 100−50·0.75xisanexponential;function(pr)withy=100

asahorizontalasymptote(att);thatleavesB.andC.;itis100minus....,soitcomesfrombeneaththeasymptote(att),soit hastobeC.

Example4(:expertTintask3B-2(Indicatewhichgraph(s)canfity=−x(x−2)(x−4))). Thisisapolynomialfunctionofdegree 3(pr)andthosegraphsalllookofdegree3(pr);itis−x3(att),sothatmeansthesealternativesarenotpossible(indicatedA.

andB.);thesetwoarepossiblebutitisonlythisone(C.)becauseD.hasnotthecorrectzeroes(att).

(11)

ofapolynomialfunctionofdegree3respectivelydegree4.InFig.7itisindicatedwhichexpertsstartedintask3Atheir thinkingaloudwithmentioningaprototypeofafunctionfamily.Theotherexpertsworkedfromthealternativeformulas tothegraph.

Fromtheprotocolsweseethattheyexpertsusedprototypicalformulasandprototypicalgraphsofbasicfunctions. Theyusedprototypesofexponential,logarithmic,even,andpolynomialofdegree2,3and4functions.Also,y=

a−x2

(half acircle)wasconsidereda functionfamily.OnlyexpertQusedy=1/x2 asafunctionfamily. Attributesthat were

usedtodiscriminatebetweendifferentalternativeswere:increasing/decreasingofgraphlinkedtopositive/negativehead coefficient,infinitybehaviorandhorizontalasymptote,translations,verticalasymptote,numberofzeroesandlocationof zeroes,reversingagraph,positive/negativeoutcomes,domain,andpointofinflection.

ExpertSseemedtousealotofconstructions,perhapsbecauseaprototypeorfunctionfamilywasnotmentioned.From theprotocolsandresultsoftheothertasksitwasconcludedthatthesefunctionfamilieswereimplicitlyusedbythisexpert. Fromobservationsandinterviewswelearntthattheexpertsthoughtthefunctionsusedintask3Awere“easier”than thoseusedintask3Bbecausetheyonlyrequiredsimpletransformations.Anotherreasonforthedifferencesbetweentask 3Aand3Bwastheamountofvisualinformationintask3B:“fourformulasandonegraphiseasiertodealwiththanfour graphsandoneformula”(expertQ).ExpertPmentionedthatingeneral“itismoredifficulttothinkfromthegraphthan tothinktothegraph”.Nevertheless,allexpertsindicatedthatbothtasksrequiredthesameknowledgeelements:namely, linkingvisualfeaturesofthegraphsandfeaturesoftheformulas.

5. Conclusionsanddiscussion

5.1. Conclusions

Thefirstaimofthecurrentresearchwastodescribeexperts’repertoiresofIGFs.Wehypothesizedthatexpertswould usecategoriestoorganizetheirknowledgeofgraphsandformulas.Theexperts’resultsintask1showedthatthecategories theyconstructedwereverysimilarandalsothatthecategorydescriptionsweresimilar.Thesedescriptionswereclosely relatedtothefunctionfamiliesofbasicfunctionsthataretaughtinsecondaryschool:linearfunctions,polynomialfunctions, exponentialandlogarithmicfunctions,brokenfunctions,andpowerfunctions.OnlyexpertSuseddescriptionscontaining numbersofturningpointsforthepolynomialfunctions.Thereforeacommoncategorizationcouldbeconstructed.The dis-tancesbetweentheindividualcategorizationsandthefinalcategorizationvariedfrom3to20.Manyofthesedifferences couldbeexplainedbytheabsenceofsubcategories.Forinstance,someoftheexpertsdidnotdistinguishbetween

increas-inganddecreasingexponentialgraphsorbetweenparabolawithamaximumorwithaminimum.However,theexperts’

performancesintask2confirmedthattheycouldrecognizethesedifferencesbetweensubcategoriesastheymadealmost nomistakesinthistask.

Thetimetheexpertsneededtoperformthiscategorizationtaskvariedfrom11to23min.Whentakingabout20min tocategorize60cards,theexpertsneededonly20spercardtoread,torecognize,tocomparewithothers,andtogroup

formulaswithsimilargraphs.Thismeantthattherewasalmostnotimefortheconstructionofnew,unknowngraphs.

Someoftheformulas,likey=1/ln(x),y=(x21)−1,y=x4/x,y=2/x3/(x1)werecategorizedinacategorywithasingle

(12)

ThesecondaimofthecurrentstudywastodescribewhatexpertsattendtowhenlinkingformulastographsofIGFs.The recognitionprocesswhenworkingfromformulastographscanbewelldescribedusingtheBarsaloumodelofFig.2.Itis showninTable3thatinrecognizingIGFs,theexpertsoftenstartedwithprototypes.Thisprototypereasoningwas,when necessary,followedbyattributereasoning.Forinstance,y=−2x(x−3)(x−6)isrecognizedasaprototypical“x3”,whichis

“reversed”andhaszeroesat0,3,and6;y=log2(x+3)asalogtranslatedtotheleft;y=−(x+2)4+16asan“x4”,reversedand

translated;y=

6−x2as“half-a-circle”.TheseexampleswereinlinewiththefindingsofSchwarzandHershkowitz(1999),

whofoundthatproficientstudentsusedprototypesasleversforhandlingotherexamplesandshowedgreaterunderstanding of(critical)attributes.

Theexpertsalsorecognizedprototypicalgraphsforwell-knownfunctionfamilies,astheyshowedintask2andtask3A. Forwell-knownfunctionfamiliesthereseemedtobelittledifferencebetweenworkingfromformulatographandworking fromgraphtoformula.WhenworkingwithIGFs,theexperts’conceptimagesthatweretriggeredbythegivenformulaor givengraph,seemedtocontainequivalentformula(s),graph(s),attributesofgraphsandofformulas,functionfamilywith prototypes,formulasofotherfunctionsinthisfunctionfamily.

Inordertoelicitexperts’attributereasoning,allattributestheexpertsusedintask3weregathered:translationtothe right/leftandabove/below,stretchinghorizontalorvertical,reversion(oftenindicatedbyreasoningaboutnegativehead coefficient),infinitybehavior(withhorizontalasymptotes),increasing/decreasing,numberandlocationofturningpoints, locationandnumberofzeroes,positive/negative,domain,pointofinflection,andverticalasymptotes.

Particularattributesseemedtobelinkedtoparticularfunctionfamilies.Asshownintask3,theseconnectionscould workbothways:fromfunctionfamiliestosalientattributesofgraphsandfromgraphswithsalientattributestofunction families.Thesesalientattributesofafunctionfamilyarecharacteristicofthemembersandprototypesofthefunctionfamily. Forinstance,averticalasymptotewasdirectlylinkedtologarithmicfunctionsorbrokenfunctions.And,whenconfronted withpowerfunctionswithn=p/q,someinstantlystartedwithafocusondomainandconcavity.Forthedifferentfunction familiesinourresearch,theexpertsusedsalientattributes:limiteddomainwaslinkedtorootfunctions,powerfunctionsand logarithmicfunctions;verticalasymptoteswerelinkedtologarithmicfunctionsandbrokenfunctions;horizontalasymptotes werelinkedtoexponentialfunctionsandbrokenfunctions;symmetrywaslinkedtoevenpolynomialfunctions.

Expertsusedattributesappropriatetothetasks.Forinstance,whentheyhadtolinkformulastoglobalgraphs(tasks1 and2),theypaidnoattentiontothefactor7iny=7x√x,ortothefactor3andterm1iny=4−x+3+1.Butwhenparameters

influencedtheglobalshapeofthegraph,theseparametersweregivenampleattention.Forinstance,theminussignsof theheadcoefficientiny=−x4+9x2andiny=28xwhichreversedtheprototypicalgraphsweredirectlynoticedand

mentioned.Whenmoredetailedgraphswererequested,asintask3,theexpertsagainonlyusedthoseattributesthatwere neededforthetask.Forinstance,theydidnotmentionanythingaboutthefactor0.1iny=0.1·x2orabouttheterm12inthe

formulay=x6+12,becausethesewerepositivenumbers.Butwhenthetaskdemandedit,theexpertsquicklynoticedthe

attributesandvaluesneededtographtheformulas.Forinstance,theexpertsinstantlyrecognizedthedifferentlocationsof thezeroesiny=x(3−x)(x−6)andy=−2x(x+3)(x+6).Thesefindingsshowthattheexpertsworkedefficientlyanddidnot payattentionto“whatisnormal”(Chietal.,1981;Chi,2011).

Theexpertssometimeshadtoshowtheirabilitiesinalgebraicmanipulation.Asexpected,theyhadnoproblemswiththis aspectofpart-wholereasoning:thiswasshownin,forinstance,y=6x−2(intask3B),andy=8x−3,y=x(x−1)/((x+1)(x−1)), andy=(1x)(2+x)+x2(intask1).

Theseresultsshowthatexperts’processesof recognitionof IGFscanbedescribed usingthemodelin Fig.2:with prototypes,supportedbyattributeandpart-wholereasoning.

5.2. Discussionandimplications

5.2.1. ABarsaloumodelforrecognitionofIGFs

Thecurrentfindingshighlightthetwohighestlevelsofrecognitionoftheframeworkforstrategiesingraphingformulas (Kopetal.,2015).WedefinedformulasattheselevelsasIGFs,instantlygraphableformulas.Wedescribedtheexperts’ repertoiresofIGFsanddescribedwhatexpertsattendedtoinrecognizingIGFs.Weshowedthattheexpertsusedprototypes andattributereasoninginrecognizingIGFsandfoundhowparticularattributeandvaluesetswerelinkedtoparticular functionfamilies.Forinstance,givenalogarithmicformulasuchasy=log3(2x+4)−3,aprototypey=log3(x)ory=log(x)

wasinstantlyidentifiedandattributereasoning(translation,domainx>−2,and/orverticalasymptoteatx=−2)resultedin agraph.Wealsofoundthatforfunctionfamiliesofbasicfunctions,theexpertscouldeasilyworkfromgraphtoaformula. Givenagraph,theyinstantlyrecognizedafunctionfamilythatfittedthegraph.Forinstance,agraphwithattributeslike domainx>a,averticalasymptoteatx=aandconcavedownwasinstantlyidentifiedasalogarithmicfunction.Thisimplies thattheBarsaloumodelbasedonSchwarzandHershkowitzinFig.2canbeexpandedwithlinkagesbetweenattributeand valuesets,prototypesandfunctionfamiliesandwithlinkagesfromgraphtoattributes,prototypes,andfunctionfamilies.In

(13)

Fig.8. ABarsaloumodelbasedonSchwarzandHershkowitzwithfunctionfamiliesandtheirsalientattributes.

5.2.2. Globalpropertiesingraphingformulas

Theexpertsinourstudyfocusedonattributesandvaluesthatinfluencedtheglobalshapeofthegraph.Forinstance, aparameterthatreversedtheprototypicalgraphofy=x4wasgivenampleattention,like2iny=2x4,butaparameter

thatresultedinonlyasmallchangeoftheprototypicalgraphwasnotmentioned,suchas0.1iny=0.1x4.Intheirattribute

reasoning,theexpertsfocusedonattributesandvaluesthatgaveagreatdealofinformationaboutthewholegraph.These attributescanbeconsideredtheglobalgrowthpropertiesofSlavit’sclassificationoffunctionproperties(Slavit,1997). Startingwiththeseglobalpropertiesisconsideredtobemoreefficientingraphingformulasthanusinglocalproperties

(Even,1998;Slavit,1997).

InthecurrentstudywefoundthattheexpertsusedasetofattributesandvaluesthatdifferfromSlavit’sglobalproperties, partlybecauseSlavit’sfocuswasmoreonthefunctionconcept,whereasourfocuswasontherelationbetweenformulaand graph.SeveralglobalpropertiesSlavitused,suchasintegrabilityandinvertibility,werenotmentionedatallbyourexperts. Basedonthecurrentresults,wesuggestthatrelevantglobalpropertiesforrecognizingIGFsmaybesymmetry,infinity behavior(includinghorizontalandslantasymptotes),verticalasymptotes,domain,increasing/decreasingonintervals,sign (reverse),andconcavity.Forlocalproperties,wesuggestzeroes,turningpoints,pointsofinflection,andindividualpoints.

5.2.3. Suggestionsforfurtherresearchandteaching

(14)

“areversed....”,“itgoestoinfinity”,“itgoesup”,“itcomesfrombelow”,“ininfinityitis...”,“thisoneisonlypositive”,“log totheright”,“anoscillationdownwards”,“a−x3”.

Thesedescriptionsshowthattheexpertsoftendidnotusetheformalmathattribute/propertyconcepts,butusedboth picturesofthewholegraphandactionlanguagesuchas“it(thegraph)runs...”.Peopletalkubiquitouslyaboutabstract conceptsusingconcretemetaphors(Barsalou,2008).Metonymiesandmetaphorsarenecessaryforefficientcommunication andinthelearningofmathematicalconcepts(Presmeg,1998;Zandieh&Knapp,2006).Furtherresearchisnecessarytofind outhowtheseexperts’metonymiesandmetaphorscanbehelpfulintheefficientteachingofgraphingformulas.

ArepertoireofIGFsisnecessaryforgraphingformulas.EisenbergandDreyfus(1994)wroteabouttheneedforarepertoire ofbasicfunctionsandknowledgeofthecharacteristicsoftherepresentationsofthesefunctions.Slavit(1997)speaksabout “propertynoticing”,theabilitytorecognizeandanalyzefunctionsbyidentifyingthepresenceorabsenceoftheseproperties andtheneedfora“library”offunctionalproperties.Ourfindingsshowhowexpertsusedprototypeandattributereasoning forgraphingformulasandsogiveanimpressionofanexpert“library”ofproperties.Fig.8,aBarsaloumodelbasedonSchwarz andHershkowitz,showshowforIFGsthesefunctionfamilies,prototypes,attributes,andpart-wholereasoningareintegrated intheexperts’conceptimages.Ourfindingsmaybehelpfultofurtherdescribetherecognitionandidentificationofobjects, forms,keyfeatures,anddominanttermsusedinPierceandStacey’salgebraicinsight(PierceandStacey,2001;Kenney, 2008).NotonlyingraphingformulasbutalsowhenusingCASorgraphicalcalculatorsoneneedsthisalgebraicinsight.For instance,Heidetal.(2012)showedhowsolvingtheequationln(x)=5sin(x)requiredknowledgeofthecharacteristicsof functionfamiliesofbothformulasy=ln(x)andy=5sin(x)andtheabilitytolinkthegraphimagestotheformulas(Zbiek&

Heid,2011).

Theresultsofthisstudycanberelevantforteachingalgebraandinparticularfunctions.Studentscontinuetoexperience difficultieswithseeingtherelationshipbetweenalgebraicandgraphicalrepresentations,althoughgraphingtechnologycan supportstudents’understandinginlinkingrepresentationsoffunctions(Kieran,2006;Ruthven,Deaney,&Hennessy,2009). Inordertofurtherimproveeducation,wefirstneedadomain-specificknowledgebase(DeCorte,2010).Expertiseresearch canprovidesuchaknowledgebase(DeCorte,2010;Campitelli&Gobet,2010;Stylianou&Silver,2004).Thecurrentfindings showwhatknowledgeexpertsusedinrecognizingIGFs:theyusedthebasicfunctionstoorganizethefunctionfamilies,used prototypestohandleotherexemplarsoffunctionfamilies,andusedprototypesandattributestolinkgraphsandformulas offunctionfamilies.Insecondaryschoolcurriculamuch attentionispaidtobasicfunctions,inparticulartolinearand quadraticfunctions.Ourstudysuggeststhatonlylearningandpracticingbasicfunctionsisnotenoughtobecomeproficient inlinkingtheformulasandgraphsoffunctions.Studentsneedtoknowhowtohandleparametersinformulasandneed opportunitiestointegratetheirknowledgeofprototypesandattributesoffunctionfamiliesintowell-connectedhierarchical mentalnetworks.Besidessuchaknowledge-baseforrecognition,studentsneedheuristicmethods,likesplittingformulas andqualitativereasoning,whenrecognitionfallsshort(Kopetal.,2015).

Forgraphingformulasonehastobeableto“read”algebraicformulas.Furtherresearchisnecessarytoinvestigatewhether graphingformulasindeedimprovesymbolsense,inparticularalgebraicinsightandhowgraphingformulascanbeeffectively andefficientlytaughttostudents.

AppendixA.

Fiveexperts’categorizationsandtheresearcher’scategorizationwithcategorynamesandprototypes.

P.23:22min Q.20:28min R.11:25min S.14:25min T.21:00min Researcher’s

categorization

Linear:ax+b Straightlines:ax+b Linear:ax+b Linear y=x

Linearfunctions Linear

Increasing/decreasing Degree2:ax2+bx+c Parabolawithmax:

−x2

Parabolawithmin:x2

Degree2:ax2+bx+c 1turningpoint

y=x2

Degree2 Parabolawithmaxand withmin

Polynomials:

n

k=0akxk(defined

ondomain)

Degree3(odd):x3 Degree3: ax3+bx2+cx+d

2turningpoints:

y=x33x

Degree3 Degree3increasing

Degree4,decreasing:

−x2(x21)

Degree4,increasing:

x2(x21)

Degree4:ax4+bx3..etc 3turningpoints:

y=(x21)2

5turningpoints y=x2(x21)(x22)

Degree4,with W-shape Degree4without W-shape

Degree4with W-shape M-shape V-shape

Degree6withW-shape (ax+b)k/(cx+d)n Hyperbola:1/x

Quotientfunctionswith morethan1vertical asymptote: y=1/(x21)

Brokenfunctions Verticalandhorizontal asymptotes

y=1/x

Verticaleandslant asymptotesy=x−4/x

2verticalasymptotes: y=1/(x21)

Linearbroken:

y=(ax+b)/(cx+d)

Hyperbolaand Powerfunctionwith highernegativeodd exponent

(15)

rootfunctionwith transformation: c

ax+b+d

right:√x decreasing‘√x

-look-like’

ax2+bx+c Power

functioneven√4

x2

Halfacircle Root Halfacicle:

y=

8−x2

V-shape:y=

8+x2

Brokenpowerfunction, nottransformed frombasicfunction

Oddpowerfunction:

3 √

x

Brokenexponent, definedtotheright: x√x

Brokenexponent:ax p

q Powerfunction,

positiveexponent,no asymptote

Powerfunctionwith brokenexponent, concaveup/down

Various:1/ln(x) Apart:1/ln(x) Rest

1/ln(x);(x21)−1;

3(x46)(x28)

distractor:1/ln(x)

References

Arcavi,A.(1994).Symbolsense:Informalsense-makinginformalmathematics.FortheLearningofMathematics,14(3),24–35.

Ayalon,M.,Watson,A.,&Lerman,S.(2015).Functionsrepresentedaslinearsequentialdata:relationshipsbetweenpresentationandstudentresponses.

EducationalStudiesinMathematics,90(3),321–339.

Ball,L.,Pierce,R.,&Stacey,K.(2003).Recognisingequivalentalgebraicexpressions:Animportantcomponentofalgebraicexpectationforworkingwith CAS.InternationalGroupforthePsychologyofMathematicsEducation,4,15–22.

Barnard,A.D.,&Tall,D.O.(1997).Cognitiveunits,connectionsandmathematicalproof.InE.Pehkonen(Ed.),Proceedingsofthetwentyfirstinternational conferenceforthepsychologyofmathematicseducation(Vol.2)(pp.41–48).

Barsalou,L.W.(1992).Frames,concepts,andconceptualfields.InA.Lehrer,&E.F.Kittay(Eds.),Frames,fields,andcontrasts:Newessaysinsemanticand lexicalorganization.(pp.21–74).Hillsdale,NJ,England:LawrenceErlbaumAssociates,Inc[vi,464pp.].

Barsalou,L.W.(2008).Groundedcognition.AnnualReviewofPsychology,59,617–645.

Bills,L.,Dreyfus,T.,Mason,J.,Tsamir,P.,Watson,A.,&Zaslavsky,O.(2006).Exemplificationinmathematicseducation.Proceedingsofthe30thconference oftheinternationalgroupforthepsychologyofmathematicseducation,Vol.1,126–154.

Campitelli,G.,&Gobet,F.(2010).HerbertSimon’sdecision-makingapproach:Investigationofcognitiveprocessesinexperts.ReviewofGeneral Psychology,14(4),354.

Carlson,M.,Jacobs,S.,Coe,E.,Larsen,S.,&Hsu,E.(2002).Applyingcovariationalreasoningwhilemodelingdynamicevents:Aframeworkandastudy.

JournalforResearchinMathematicsEducation,22(5),352–378.

Chi,M.T.,Feltovich,P.J.,&Glaser,R.(1981).Categorizationandrepresentationofphysicsproblemsbyexpertsandnovices.CognitiveScience,5(2), 121–152.

Chi,M.T.(2011).Theoreticalperspectives,methodologicalapproaches,andtrendsinthestudyofexpertise.InExpertiseinmathematicsinstruction.pp. 17–39.US:Springer.

Confrey,J.,&Smith,E.(1995).Splitting,covariation,andtheirroleinthedevelopmentofexponentialfunctions.JournalforResearchinMathematics Education,66–86.

Crowley,L.,&Tall,D.O.(1999).Therolesofcognitiveunits,connectionsandproceduresinachievinggoalsincollegealgebra.InO.Zaslavsky(Ed.),

Proceedingsofthe23rdconferenceofPME(Vol.2)(pp.225–232).

DeCorte,E.(2010).Historicaldevelopmentsintheunderstandingoflearning.InH.Dumont,D.Instance,&F.Benavides(Eds.),Educationalresearchand innovationthenatureoflearningusingresearchtoinspirepractice:Usingresearchtoinspirepractice(pp.35–67).OECDPublishing.

deJong,T.,&Ferguson-Hessler,M.G.(1986).Cognitivestructuresofgoodandpoornoviceproblemsolversinphysics.JournalofEducationalPsychology,

78(4),2.

Duval,R.(2006).Acognitiveanalysisofproblemsofcomprehensioninalearningofmathematics.EducationalStudiesinMathematics,61(1–2),103–131.

Eisenberg,T.,&Dreyfus,T.(1994).Onunderstandinghowstudentslearntovisualizefunctiontransformations.InE.Dubinsky,A.Schoenfeld,&J.Kaput (Eds.),Researchincollegiatemathematicseducation(Vol.1)(pp.45–68).Providence,RI:AmericanMathematicalSociety.

Ericsson,K.A.(2006).Protocolanalysisandexpertthought:Concurrentverbalizationsofthinkingduringexperts’performanceonrepresentativetasks.In K.A.Ericsson,N.Charness,P.J.Feltovich,&R.R.Hoffman(Eds.),TheCambridgehandbookofexpertiseandexpertperformance(pp.223–241). Cambridge:CambridgeUniversityPress.

Even,R.(1998).Factorsinvolvedinlinkingrepresentationsoffunctions.TheJournalofMathematicalBehavior,17(1),105–121.

Eysenck,M.W.,&Keane,M.T.(2000).Cognitivepsychology:astudent’shandbook.Taylor&Francis.

Goldenberg,P.,&Mason,J.(2008).Sheddinglightonandwithexamplespaces.EducationalStudiesinMathematics,69(2),183–194.

Gray,E.M.,&Tall,D.O.(1994).Duality,ambiguity:andflexibility:Aproceptualviewofsimplearithmetic.JournalforResearchinMathematicsEducation,

(16)

Heid,M.K.,Thomas,M.O.,&Zbiek,R.M.(2012).Howmightcomputeralgebrasystemschangetheroleofalgebraintheschoolcurriculum?InThird internationalhandbookofmathematicseducation.pp.597–641.NewYork:Springer.

Jonassen,D.H.,Beissner,K.,&Yacci,M.(1993).Structuralknowledge:Techniquesforrepresenting,conveying,andacquiringstructuralknowledge.

PsychologyPress.

R,K.(2008).Theinfluenceofsymbolsonpre-calculusstudents’problemsolvinggoalsandactivities(Doctoraldissertation).AvailablefromDissertationsand Thesesdatabase.(UMINo.3329205).

Kieran,C.(2006).Researchonthelearningandteachingofalgebra.InA.Gutiérrez,&P.Boero(Eds.),Handbookofresearchonthepsychologyofmathematics education(pp.11–49).Rotterdam:Sense.

Kilpatrick,J.,&Izsak,A.(2008).Ahistoryofalgebraintheschoolcurriculum.InC.E.Greens,&R.Rubenstein(Eds.),AlgebraandalgebraicThinkinginschool mathematics,seventiethyearbook(pp.3–18).NCTM.

Kop,P.,Janssen,F.,Drijvers,P.,Veenman,M.,&VanDriel,J.(2015).Identifyingaframeworkforgraphingformulasfromexpertstrategies.TheJournalof MathematicalBehavior,39,121–134.

Leinhardt,G.,Zaslavsky,O.,&Stein,M.K.(1990).Functions,graphs,andgraphing:Tasks,learning,andteaching.ReviewofEducationalResearch,60(1), 1–64.

Moschkovich,J.,Schoenfeld,A.H.,&Arcavi,A.(1993).Aspectsofunderstanding:Onmultipleperspectivesandrepresentationsoflinearrelationsand connectionsamongthem.InT.A.Romberg,E.Fennema,&T.P.Carpenter(Eds.),Integratingresearchonthegraphicalrepresentationoffunctions(pp. 69–100).Hillsdale,NJ:LawrenceErlbaumAssociates.

NCTM.(2000).Principlesandstandardsforschoolmathematics.(Accessed14october2014).http://www.nctm.org/standards

Oehrtman,M.,Carlson,M.,&Thompson,P.W.(2008).Foundationalreasoningabilitiesthatpromotecoherenceinstudents’functionunderstanding.InM. P.Carlson,&C.Rasmussen(Eds.),Makingtheconnection:researchandteachinginundergraduatemathematicseducation(pp.27–42).Washington,D.C: MathematicalAssociationofAmerica.

Pierce,R.,&Stacey,K.(2001).Observationsonstudents’responsestolearninginaCASenvironment.MathematicsEducationResearchJournal,13(1),28–46.

Pierce,R.,&Stacey,K.(2004).Aframeworkformonitoringprogressandplanningteachingtowardstheeffectiveuseofcomputeralgebrasystems.

InternationalJournalofComputersforMathematicalLearning,9(1),59–93.

Polya,G.(1945).Howtosolveit.Princeton,NJ:PrincetonUniversityPress.

Presmeg,N.C.(1998).Metaphoricandmetonymicsignificationinmathematics.TheJournalofMathematicalBehavior,17(1),25–32.

Ruiz-Primo,M.A.,&Shavelson,R.J.(1996).Problemsandissuesintheuseofconceptmapsinscienceassessment.JournalofResearchinScienceTeaching,

33(6),569–600.

Ruthven,K.,Deaney,R.,&Hennessy,S.(2009).Usinggraphingsoftwaretoteachaboutalgebraicforms:Astudyoftechnology-supportedpracticein secondary-schoolmathematics.EducationalStudiesinMathematics,71(3),279–297.

Sandefur,J.,Mason,J.,Stylianides,G.J.,&Watson,A.(2013).Generatingandusingexamplesintheprovingprocess.EducationalStudiesinMathematics,

83(3),323–340.

Schwarz,B.B.,&Hershkowitz,R.(1999).Prototypes:Brakesorleversinlearningthefunctionconcept?Theroleofcomputertools.JournalforResearchin MathematicsEducation,362–389.

Sfard,A.,&Linchevski,L.(1994).Thegainsandthepitfallsofreification:Thecaseofalgebra.EducationalStudiesinMathematics,26,191–228.

Sfard,A.(1991).Onthedualnatureofmathematicalconceptions:Reflectionsonprocessesandobjectsasdifferentsidesofthesamecoin.Educational StudiesinMathematics,22(1),1–36.

Slavit,D.(1997).Analternateroutetothereificationoffunction.EducationalStudiesinMathematics,33(3),259–281.

Stylianou,D.A.,&Silver,E.A.(2004).Theroleofvisualrepresentationsinadvancedmathematicalproblemsolving:Anexaminationofexpert-novice similaritiesanddifferences.MathematicalThinkingandLearning,6(4),353–387.

Stylianou,D.A.(2011).Anexaminationofmiddleschoolstudents’representationpracticesinmathematicalproblemsolvingthroughthelensofexpert work:Towardsanorganizingscheme.EducationalStudiesinMathematics,76(3),265–280.

Sweller,J.(1994).Cognitiveloadtheory,learningdifficulty,andinstructionaldesign.LearningandInstruction,4(4),295–312.

Thomas,M.O.,Wilson,A.J.,Corballis,M.C.,Lim,V.K.,&Yoon,C.(2010).Evidencefromcognitiveneurosciencefortheroleofgraphicalandalgebraic representationsinunderstandingfunction.ZDM,42(6),607–619.

Vinner,S.,&Dreyfus,T.(1989).Imagesanddefinitionsfortheconceptoffunction.JournalforResearchinMathematicsEducation,356–366.

Watson,A.,&Mason,J.(2005).Mathematicsasaconstructiveactivity:learnersgeneratingexamples.Mahwah,NJ:LawrenceErlbaum.

Zandieh,M.J.,&Knapp,J.(2006).Exploringtheroleofmetonymyinmathematicalunderstandingandreasoning:Theconceptofderivativeasan example.TheJournalofMathematicalBehavior,25(1),1–17.

Figure

Fig. 2. IGFs in the form of a Barsalou model based on Schwarz and Hershkowitz (1999).
Fig. 3. A number of the cards used in task 1.
Fig. 4. Some alternatives of task 2.
Fig. 5. Some examples of task 3: task 3A-4, 3A-6, 3B-3.
+4

References

Related documents

On the other hand, except from the peel percentage (visually equivalent for both plantains and dessert bananas), all the mineral contents (K, Ca, Mg and Na on dry weight basis)

In-depth study and applications of quadratic, polynomial, rational, radical, exponential and logarithmic functions, and systems of equations using matrices and matrices

• Identify  the  basic  graphs  and  properties  of  polynomial,  rational,  exponential,  and  logarithmic  functions.  Apply  the  knowledge  of  functions 

D DRIVING SPRING ROD ASSEMBLY – Provides energy for returning bolt and operating rod assembly to firing position.. E TRIGGER HOUSING ASSEMBLY – Controls the firing of the

College Algebra (3-3-0) This course is an in-depth study and application of polynomial, rational, radical, exponential and logarithmic functions, and systems of equations

For 1968 Head Start spending per child, the point estimates based on both methods are similar but statistically insignificant although MMSE produces a smaller standard error

Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer

Behar and Clifford’s peak detectors were used to detect the R-peak of the MIT-BIH arrhythmia database as shown in Figure 5.. The result showed that when 60 s ECG