• No results found

On Certain Subclass of Analytic Functions with Respect to 2k-Symmetric Conjugate Points

N/A
N/A
Protected

Academic year: 2020

Share "On Certain Subclass of Analytic Functions with Respect to 2k-Symmetric Conjugate Points"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

ISSN: 2279-087X (P), 2279-0888(online) Published on 17 December 2014

www.researchmathsci.org

131

On Certain Subclass of Analytic Functions with Respect

to 2k-Symmetric Conjugate Points

B.Srutha Keerthi1 and P. Lokesh2 1

Mathematics Division, School of Advanced Sciences VIT University Chennai Campus, Vandallur Kellambakkam Road

Chennai − 600 127, India. E-mail: sruthilaya06@yahoo.co.in 2

Department of Mathematics, Bharathiar University, Coimbatore, Tamilnadu, India. E-mail: lokeshpandurangan@gmail.com

Received 15 October 2014; accepted 21 November 2014

Abstract. In the present paper, we introduce new subclass PSC(k)(ρ,λ,α) of analytic function with respect to 2k-symmetric conjugate points. Such results as integral representations, convolution conditions and coefficient inequalities for this class are provided.

Keywords: Analytic functions, Hadamard product, 2k-symmetric conjugate points AMS Mathematics Subject Classification (2010): 30C45

1. Introduction

Let A denote the class of functions of the form:

, z a z f(z)

2 n

n n

=

+

= (1.1)

which are analytic in the open unit disk.

U := {z : z ∈C and |z| < 1}.

Also let S*(α) and C (α) denote the familiar subclasses of A consisting of functions which are starlike and convex of order α (0 ≤α < 1) in U, respectively.

Let S(k)SC(α)denote the class of functions in A satisfying the following inequality:

), (z

α. (z) f

(z) f z

2k

U R > ∈

  

 

(1.2)

where 0 ≤α < 1, k ≥ 2 is a fixed positive integer and f2k(z) is defined by the following equality:

   

 

∈       = +

=

=

; z U

k i 2π exp ε , ) ) z f(ε ε z) f(ε (ε 2k

1 (z) f

1 k

0

υ

υ υ υ υ

(2)

132

And a function f(z) ∈ A is in the class CSC(k)(α) if and only if zf ′(z) ∈ SSC(k)(α). The class S(k)SC(0) of functions starlike with respect to 2k-symmetric conjugate points was introduced and investigated by Al-Amiri et al. [1].

Let T be the subclass of A consisting of all functions which are of the form: 0).

(a z a z

f(z) n

2 n

n

n ≥

=

=

We denote by S*, K, C and C * the familiar subclass of A consisting of functions which are, respectively, starlike, convex, close-to-convex and quasi-convex in U. Thus, by definition, we have (see, for details [4, 6, 7, 8]).

, ) (z 0, f(z)

(z) f z and f

: f *

  

  

∈ >

     

= A R U

S

and , ) (z 0, (z) f

(z) f z 1 and f

: f

  

  

∈ >

   

 

′ ′′ + ∈

= A R U

K

. ) (z 0, g(z)

(z) f z such that :

g f

: f

  

  

∈ >

     

∈ ∃ ∈

= * R U

S A, C

Definition 1.1. Let T (ρ, λ, α) be the subclass of T consisting of functions f(z) which satisfy the inequality:

) (z

α λ) (1 (z) f z

ρ ρ)f(z) (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ ρ)f(z) (1

(z) f z

ρ

(z) f z

2 2

U

R > ∈

    

 

    

 

− +

   

 

′ + −

′′ + ′

′ + −

′′ + ′

(1.4)

for some α (0 ≤α < 1), λ (0 ≤λ < 1) and ρ (0 ≤ρ≤ 1). If ρ = 0, a function f(z) ∈A is in the class C (λ, α). This class was first introduced and investigated by Altintas and Owa [2], then was studied by Aouf et al. [3].

We now introduce the following subclass of A with respect to 2k-symmetric conjugate points and obtain some interesting results.

A function f(z) ∈ A is in the class (k)(ρ,λ,α) SC

P if it satisfies the following inequality:

α (z ),

λ) (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

2k 2k

2

2k 2k

2

U

R > ∈

    

 

    

 

− +

   

 

′ + −

′′ + ′

′ + −

′′ + ′

(1.5)

where 0 ≤α < 1, 0 ≤λ < 1, 0 ≤ρ≤ 1 and f2k(z) is defined the equality (1.3). If ρ = 0, a function f(z) ∈A is in the class PSC(k)(

λ

,α) which was studied by Luo and Wang [5].

For λ = 0 in PSC(k)(ρ,λ,α) we get S (ρ,α) (k)

(3)

133

Lemma 1.1. Let γ≥ 0 and f ∈C, then

. dt f(t)t z

γ

1 F(z)

z

0 1

γ

γ ∈C

+

=

This lemma is a special case of Theorem 4 in [9].

Lemma 1.2. [6] Let 0 < ρ≤ 1 and f ∈C *, then

. dt

f(t)t z

ρ

1

F(z) *

z

0 2 1 ρ1

ρ

1

C C

= −

Lemma 1.3. Let 0 ≤ρ≤ 1 and 0 ≤α < 1, then we have (k)

(

ρ

,

α

)

SC

P

CS.

Proof: Let F(z) = (1 −ρ)f(z) + ρ z f ′(z), F2k(z) = (1 −ρ)f2k(z) + ρ z f ′2k(z) with f(z) ∈ (k)

(

ρ

,

α

)

SC

P

, substituting z by εµ z (µ = 0, 1, 2, ..., k−1) in (1.5), we get

α,

λ) (1 z) (ε

f z)

ρ(ε

z) (ε ρ)f (1

z) (ε

f z)

ρ(ε

z) (ε

f z

ε λ

z) (ε

f z)

ρ(ε

z) (ε ρ)f (1

z) (ε

f z)

ρ(ε

z) (ε

f z

ε

µ

2k

µ µ

2k

µ

2

µ µ

µ

µ

2k

µ µ

2k

µ

2

µ µ

µ

>

    

 

    

 

− +

   

 

′ +

′′ +

′ +

′′ +

R (1.6)

From inequality (1.6) we have

α,

λ) (1 ) z (ε

f ) z

ε ρ( ) z (ε

f

ρ) (1

) z (ε

f ) z

ε ρ( ) z (ε

f z

ε λ

) z (ε

f ) z

ε ρ( ) z (ε

f

ρ) (1

) z (ε

f ) z

ε ρ( ) z (ε

f z

ε

µ

2k

µ µ

2k

µ

2

µ µ

µ

µ

2k

µ µ

2k

µ

2

µ µ

µ

>

      

 

      

 

− +

 

 

 

 

′ +

′′ +

′ +

′′ +

R

(1.7)

Note that f2k(εµ z) = εµ f2k(z), f (ε z) f2k(z)

µ

2k′ = ′ , f (ε z) ε f2k(z)

µ µ

2k

= and

(z) f ) z (ε

f2k′ µ = 2k′ , thus, inequalities (1.6) and (1.7) can be written as

α,

λ) (1 (z) f z

ρ

(z)

ρ)f (1

z) (ε

f

ε

z

ρ

z) (ε

f z

λ

(z) f z

ρ

(z)

ρ)f (1

z) (ε

f

ε

z

ρ

z) (ε

f z

2k 2k

µ µ

2

µ

2k 2k

µ µ

2

µ

>

    

 

    

 

− +

   

 

′ + −

′′ +

′ + −

′′ +

R (1.8)

(4)

134 α λ) (1 (z) f z ρ (z) ρ)f (1 ) z (ε f ε z ρ ) z (ε f z λ (z) f z ρ (z) ρ)f (1 ) z (ε f ε z ρ ) z (ε f z 2k 2k µ µ 2 µ 2k 2k µ µ 2 µ >               − +         ′ + − ′′ + ′ ′ + − ′′ + ′ − −

R (1.9)

Summing inequalities (1.8) and (1.9), we can obtain

[

] [

]

[

] [

]

2α.

λ) (1 (z) f z ρ (z) ρ)f (1 ) z (ε f ε z) (ε f ε z ρ ) z (ε f z) (ε f z λ (z) f z ρ (z) ρ)f (1 ) z (ε f ε z) (ε f ε z ρ ) z (ε f z) (ε f z 2k 2k µ µ µ µ 2 µ µ 2k 2k µ µ µ µ 2 µ µ >               − +         ′ + − ′′ + ′′ + ′ + ′ ′ + − ′′ + ′′ + ′ + ′ − −

R (1.10)

Let µ = 0, 1, 2, ..., k−1 in (1.10), respectively, and summing them we can get

[

]

[

]

[

]

[

]

α, λ) (1 (z) f z ρ (z) ρ)f (1 ) z (ε f ε z) (ε f ε 2k 1 z ρ ) z (ε f z) (ε f 2k 1 z λ (z) f z ρ (z) ρ)f (1 ) z (ε f ε z) (ε f ε 2k 1 z ρ ) z (ε f z) (ε f 2k 1 z 2k 2k 1 k 0 µ µ µ µ µ 2 1 k 0 µ µ µ 2k 2k 1 k 0 µ µ µ µ µ 2 1 k 0 µ µ µ >                       − +             ′ + − ′′ + ′′ + ′ + ′ ′ + − ′′ + ′′ + ′ + ′

− = − − = − = − − = R or equivalently, α, λ) (1 (z) F (z) F z λ (z) F (z) F z λ) (1 (z) f z ρ (z) ρ)f (1 (z) f z ρ (z) f z λ (z) f z ρ (z) ρ)f (1 (z) f z ρ (z) f z 2k 2k 2k 2k 2k 2k 2k 2 2k 2k 2k 2k 2 2k >               − +       ′ =               − +       ′ + − ′′ + ′ ′ + − ′′ + ′ R R

that is for λ=0 F2k(z) ∈ S*(α), which is the class of starlike functions of order α in U. Note that S*(0) = S*, this implies that F(z) = (1 −ρ) f(z) + ρ z f ′(z) ∈C. We now split it into two cases to prove

Case (i) When ρ = 0, λ=0, it is obvious that f(z) = F(z) ∈C .

(5)

135 Since = 1 −1≥0

ρ

γ

, by Lemma 1.1, we obtain that f(z) ∈ C ⊂ S. Hence

α

)

,

(

ρ

(k) SC

P

C ⊂ S, and the proof is complete. □

2. Integral representations

We first give some integral representations of functions in the class PSC(k)(ρ,λ,α).

Theorem 2.1. Let f(z) PSC(k)(ρ,λ,α) with 0 < ρ ≤ 1. Then

du, u dζ

)

ζ ω(ε αλ) 2

λ

(1

λ

1

)

ζ ω(ε ζ)

αλ)ω(ε

2

λ

(1

λ

1

ζ)

ω(ε

ζ α) 2(1 2k

1 exp z

ρ

1 (z) f

1

µ µ

µ µ

z

0

1 k

0

µ

u

0 1

2k

ρ

1

ρ

1

− −

= −

        

  

− + − − + −

+ − −

  

=

∑∫

(2.1) where f2k(z) is defined by equality (1.3), ω(z) is analytic in U and ω(0) = 0, |w(z)| < 1.

Proof: Suppose that f(z) ∈ (k)(ρ,λ,α) SC

P , we know that the condition (1.5) can be written as follows:

, z 1

α)z 2 (1 1

λ) (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

2k 2k

2

2k 2k

2

− − + −

+

   

 

′ + −

′′ + ′

′ + −

′′ + ′

where ≺ stands for the subordination. It follows that

,

ω(z) 1

α)ω(z) 2 (1 1

λ) (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

2k 2k

2

2k 2k

2

− − + −

+

   

 

′ + −

′′ + ′

′ + −

′′ + ′

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1. This yields ,

αλ)ω(z) 2

λ

(1

λ

1

α)ω(z)] 2 (1

λ)[1 (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

2k 2k

2

− + − −

− + − = ′ + −

′′ + ′

(2.2) Substituting z by εµ z (µ = 0, 1, 2, ..., k−1) in (2.2), respectively, we get

. z)

αλ)ω(ε

2

λ

(1

λ

1

z)]

α)ω(ε

2 (1

λ)[1 (1 z) (ε

f z

ρε

z) (ε ρ)f (1

z) (ε

f z)

ρ(ε

z) (ε

f z

ε

µ µ

µ

2k

µ µ

2k

µ

2

µ µ

µ

− + − −

− + − = ′

+ −

′′ +

(2.3) From (2.3), we have

. ) z

ω(ε αλ) 2

λ

(1

λ

1

] ) z

ω(ε α) 2 (1

λ)[1 (1 ) z (ε

f z

ε ρ

) z (ε

f

ρ) (1

) z (ε

f ) z (ε ρ

) z (ε

f ) z (ε

µ µ

µ

2k

µ µ

2k

µ

2

µ µ

µ

− + − −

− + − = ′

+ −

′′ +

(6)

136

Note that f2k(εµ z) = εµ f2k(z) and f (ε z) ε f2k(z)

µ µ

2k

= , summing equalities (2.3) and (2.4), we can obtain

. ) z

ω(ε αλ) 2

λ

(1

λ

1

] ) z

ω(ε α) 2 (1

λ)[1 (1 z)

αλ)ω(ε

2

λ

(1

λ

1

z)]

α)ω(ε

2 (1

λ)[1 (1

(z) f z

ρ

(z)

ρ)f (1

) ) z (ε

f

ε

z) (ε

f (ε

z

ρ

) ) z (ε

f z) (ε

f z(

µ µ

µ µ

2k 2k

µ µ µ

µ

2

µ µ

− + − −

− + − + −

+ − −

− + − =

′ + −

′′ + ′′ +

′ +

′ −

(2.5)

Let µ = 0, 1, 2, ..., k−1 in (2.5), respectively, and summing them we can get

. ) z

ω(

αλ) 2

λ

(1

λ

1

] ) z

ω(

α) 2 (1

λ)[1 (1 z)

αλ)ω( 2

λ

(1

λ

1

z)]

α)ω( 2 (1

λ)[1 (1 2

1

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

1

0 2k 2k

2k 2 2k

= − − + −

− + − + −

+ − −

− + − =

′ + −

′′ + ′

k

kµ µ

µ

µ µ

ε

ε

ε

ε

(2.6)

From (2.6), we can get

. 2 ) z

ω(ε αλ) 2

λ

(1

λ

1

] ) z

ω(ε α) 2 (1

λ)[1 (1 z)

αλ)ω(ε

2

λ

(1

λ

1

z)]

α)ω(ε

2 (1

λ)[1 (1 z 1 2k

1

z 1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f

1 k

0

µ µ

µ

µ µ

2k 2k

2k 2k

= 

   

  

− −

+ − −

− + − + −

+ − −

− + − =

− ′ + −

′′ + ′

Integrating (2.7), we have

ζ. d )

ζ ω(ε αλ) 2

λ

(1

λ

1

)

ζ ω(ε ζ)

αλ)ω(ε

2

λ

(1

λ

1

ζ)

ω(ε

ζ α) 2(1 2k

1 z

(z) f z

ρ

(z)

ρ)f (1 log

_

µ

_

µ

µ µ

1 k

0

µ

z

0 2k

2k

  

 

  

 

− + − − + −

+ − −

− =

   

 − + ′

∑∫

− =

That is

ζ. d )

ζ ω(ε αλ) 2

λ

(1

λ

1

)

ζ ω(ε ζ)

αλ)ω(ε

2

λ

(1

λ

1

ζ)]

ω(ε

ζ α) 2(1 2k

1 exp z (z) f z

ρ

(z)

ρ)f (1

_

µ

_

µ

µ µ

1 k

0

µ

z

0 2k

2k

  

 

  

 

− + − − + −

+ − −

− =

′ +

∑∫

=

(2.8)

The assertion (2.1) in Theorem 2.1 can now easily be derived from (2.8). □

(7)

137

(2.9) du. u dξ αλ)ω(ξ) 2

λ

(1

λ

1

α)ω(ξ)] 2 (1

λ)[1 (1

ζ

d )

ζ ω(ε αλ) 2

λ

(1

λ

1

)

ζ ω(ε ζ)

αλ)ω(ε

2

λ

(1

λ

1

ζ)

ω(ε ζ

α) 2(1 2k

1 exp z

ρ

1 f(z)

2

µ µ

µ µ

z

0 u

0

1 k

0

µ ξ

0 1

ρ

1

ρ

1

− −

= −

− + − −

− + −

 

      

  

− + − − + −

+ − −

  

=

∫ ∫

∑∫

where ω(z) is analytic in U and ω(0) = 0, |ω(z)| < 1.

Proof: Suppose that f(z) ∈ (k)(ρ,λ,α) SC

P , from equalities (2.1) and (2.2), we can get

.

αλ)ω(z) 2

λ

(1

λ

1

α)ω(z)] 2 (1

λ)[1 (1

ζ

d )

ζ ω(ε αλ) 2

λ

(1

λ

1

)

ζ ω(ε ζ)

αλ)ω(ε

2

λ

(1

λ

1

ζ)

ω(ε ζ

α) 2(1 2k

1 exp

αλ)ω(z) 2

λ

(1

λ

1

α)ω(z)] 2 (1

λ)[1 (1 (z)) f z

ρ

(z)

ρ)f ((1 (z) f z

ρ

(z) f z

µ µ

µ µ

1 k

0

µ

z

0

2k 2k

2

− + − −

− + −

    

  

− + − − + −

+ − −

− =

− + − −

− + − ′

+ −

= ′′ + ′

∑ ∫

− =

Integrating the equality, we can easily get (2.9). □

3. Convolution conditions

In this section, we provide some convolution conditions for the class (k)(ρ,λ,α) SC

P . Let f, g ∈A, where f(z) is given by (1.1) and g(z) is defined by

. z c z g(z)

2 n

n n

=

+ =

Then the Hadamard product (or convolution) f * g is defined (as usual) by f)(z).

* (g z c a z g)(z) * (f

2 n

n n

n =

+

=

=

Theorem 3.1. A function f(z) PSC(k)(ρ,λ,α) if and only if

(

)



− + −

− −

+ − − −

h

2

) iθ α)e 2 (1

λ)(1

ρ)(1 -(1

) iθ α)e 2 (1

λ(1 ) iθ

e (1 2 z) (1

z

* f

(8)

138

(

)

h (z)

2

)

α)e 2 (1

λ)(1 (1 )

α)e 2 (1

λ(1 ) e (1 z) (1

z z

ρ

2

 

   

+

− −

+ − − −

+

0 ) z ( h z 2

ρ

h 2

ρ

1 * f

α)e 2 (1

λ)(1

(1 iθ ≠

       

+ − −

+ −

− (3.1)

for all z ∈U and 0 ≤θ < 2π, where

. z

ε

1 z k

1 h(z)

1 k

0

ν

ν

− = −

= (3.2)

Proof: Suppose that f(z) PSC(k)(ρ,λ,α), since the condition (1.5) is equivalent to

, e 1

α)e 2 (1 1

λ) (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

2k 2k

2

2k 2k

2

− − + ≠ − +

   

 

′ + −

′′ + ′

′ + −

′′ + ′

for all z ∈U and 0 ≤θ < 2π. And the condition (3.2) can be written as follows:

{

}

0.

)

α)e 2 (1 (z)](1 f

z

ρ

(z)

ρ)f

λ)[(1 (1

))

α)e 2 (1

λ(1 ) e (z))((1 f

z

ρ

(z) f (z z 1

2k 2k

2

≠ −

+ ′

+ −

− −

− + − − ′′

+ ′

(3.4)

On the other hand, it is well known that

. z) (1

z * f(z) (z) f

z 2

− =

′ (3.5)

And from the definition of f2k(z), we know

), h)(z) * (f h)(z) * ((f 2 1 z c 2

a a z (z) f

2 n

n n n n

2k = +

+ +

=

=

(3.6) where h(z) is given by (3.6). Substituting (3.5) and (3.6) into (3.4), we can easily get (3.1). This completes the proof of Theorem 3.1. □

4. Coefficient inequalities

In this section, we provide the sufficient conditions for functions belonging to the class

α)

λ, , (ρ

(k) SC

P .

Theorem 4.1. Let 0 ≤α < 1, 0 ≤λ < 1 and 0 ≤ρ < 1. If

α

1 | a |

ρn]

ρ)

λ)n[(1 (1

|] ) R(a |

λ) (1 1)a

α)(λ(nk (1

| ) R(a 1)a

(nk |

λ) 1)][(1

ρ(nk

ρ) [(1

1 k n

2 n

n

1 nk 1

nk 1

n

1 nk 1

nk

− ≤ +

− −

+

− + +

− +

− +

− +

+ −

+ ≠ =

+ +

= + +

l

(9)

139 Then f(z) ∈PSC(k)(ρ,λ,α).

Proof: It suffices to show that

α, 1 1

λ) (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

2k 2k

2

2k 2k

2

− < − − +

   

 

′ + −

′′ + ′

′ + −

′′ + ′

Note that for |z| = r < 1, we have

[

]

[

]

∞ = ∞

= ∞ =

− ∞

=

− ∞

=

− ∞

=

− + +

− −

− +

− − ≤

− + +

− −

− +

− − ≤

− + +

− +

− +

− − =

− − +

   

 

′ + −

′′ + ′

′ + −

′′ + ′

2

n n n n

2

n n n n

2 n

1 n n n n

2 n

1 n n n n

2 n

1 n n n n

2 n

1 n n n n

2k 2k

2

2k 2k

2

) (a

λ)b (1 na

λ

n]

ρ ρ) [(1 1

)b (a na

n]

ρ ρ)

λ)[(1 (1

z ) (a

λ)b (1 na

λ

n]

ρ ρ) [(1 1

z )b (a na

n]

ρ ρ)

λ)[(1 (1

)z )b (a

λ) (1 na n](λ ρ ρ) [(1 1

)z )b (a n](na

ρ ρ)

λ)[(1 (1

1

λ) (1 (z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

λ

(z) f z

ρ

(z)

ρ)f (1

(z) f z

ρ

(z) f z

R R

R R

R R

where

  

+

≠ +

= =

=

= −

1. k n 0,

1, k n 1,

ε

k 1 b

1 k

0

ν

1)ν

(n

n l

l (4.2)

This last expression is bounded above by 1 −α if

α, 1 ] ) (a

λ)b (1

α)(λna (1

)b (a na

λ)

ρn][(1

ρ

[(1 2 n

n n n

n n

n− + − + − ≤ −

− +

∞ =

R R

(4.3) Since inequality (4.3) can be written as inequality (4.1), hence f(z) satisfies the condition (1.5). This completes the proof of Theorem 4.1. □

Theorem 4.2. Let 0 ≤ α < 1, 0 ≤ λ < 1 and 0 ≤ ρ ≤ 1 and f(z) ∈ T . Then f(z) ∈

α)

λ, , (ρ

(k) SC

(10)

140

α. 1

ρn]a

ρ) n[(1

)]

λ)]a (1 1) (nk

α([λ

1) 1)][(nk

ρ(nk

ρ) [(1

1 lk n

2 n

n 1

n

1 nk

− ≤ +

− +

− + + −

+ +

+ −

+ ≠= ∞

= +

(4.4)

Proof: In view of Theorem 4.1, we need only to prove the necessity. Suppose that

f(z) ∈ TPSC(k)(ρ,λ,α), then from (1.5), we can get

α, ]}z

b

ρn)a

ρ)

λ)[((1 (1

]

ρn)a

ρ) [n((1 {λ

1

z

ρn]a

ρ) n[(1 1

2 n

1 n n n n

2 n

1 n n

>

 

  

 

+ − −

+ +

− −

+ − −

=

− ∞

=

R (4.5)

where bn is given by 4.2. By letting z → 1− through real values in (4.5), we can get

α, ]} b

ρn)a

ρ)

λ)[((1 (1

]

ρn)a

ρ) [n((1 {λ

1

ρn]a

ρ) n[(1 1

2

n n n n

2

n n ≥

+ − −

+ +

− −

+ − −

=

∞ =

or equivalently,

α, 1 ) b

λ))a (1

α(λn (n

ρn]

ρ) [(1 2 n

n n ≤ −

− + − + + −

∞ =

(4.6) substituting (4.2) into inequality (4.6), we can get inequality (4.4) easily. This completes

the proof of Theorem 4.2. □

Acknowledgement. The first author thanks the support provided by Science and

Engineering Research Board (DST), New Delhi. Project No: SR/S4/MS:716/10 with titled “On Certain Subclass of Analytic Functions with respect to 2k-Symmetric Conjugate Points”.

REFERENCES

1. H.Al-Amiri, D.Coman and P.T.Mocanu, Some properties of starlike functions with respect to symmetric conjugate points, Internat. J. Math. Math. Sci., 18 (1995) 469−474.

2. O.Altintas and S.Owa, On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math. J., 4 (1988) 41−56.

3. M.K.Aouf, H.M.Hossen and A.Y.Lashin, Convex subclass of starlike functions, Kyungpook Math. J., 40 (2000) 287−297.

4. P.L.Duren, Univalent Functions, Springer-Verlag, New York, 1983.

5. Hong.-C.Luo and Z.-G.Wang, Some subclasses of analytic functions with respect to 2k-symmetric conjugate points, Research Group in Mathematical Inequalities and Applications, 11(3) (2008) 1−7.

6. K.I.Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10 (1987) 241−258.

(11)

141

8. H.M.Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992.

9. Z.-R.Wu, The integral operator of starlikeness and the family of Bazilevic functions, Acta Math. Sinica, 27 (1984) 394−409.

References

Related documents

They discover the flow pattern of the valve using Computational Fluid Dynamics software by changing the flow rate and constant pressure drops valve in valve

Twelve studies were selected, in which they were divided into the following categories: Inclusion of autism in the teacher's perception; The autistic student in the

CONCLUSION: Our study gives an insight into the current practice pattern of anaesthetists for pre medication in various surgical specialities in a tertiary care

plant built by the Drainage Board was proposed to provide the required electrical power for. multi-phase motor

In the present paper we study the effect of Mass and Heat transfer under the existence of transverse magnetic field for an oscillating two dimensional

In this article, a possible role of agerelated mitochondrial dysfunction in the ageing oocytes and/or the uterus has been proposed to be the cause of

The scope of this paper does not permit an exhaustive examination of in-country processing in Russia and Vietnam and an analysis of whether or not it compro- mised the right to