• No results found

Section 6.1 Angle Measure

N/A
N/A
Protected

Academic year: 2021

Share "Section 6.1 Angle Measure"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Section 6.1 Angle Measure

An angle AOB consists of two rays R1 and R2 with a common vertex O (see the Figures

below). We often interpret an angle as a rotation of the ray R1 onto R2. In this case, R1 is

called the initial side, and R2 is called the terminal side of the angle. If the rotation is

counterclockwise, the angle is considered positive, and if the rotation is clockwise, the angle is considered negative.

Angle Measure

The measure of an angle is the amount of rotation about the vertex required to move R1

onto R2. Intuitively, this is how much the angle “opens.” One unit of measurement for angles

is the degree. An angle of measure 1 degree is formed by rotating the initial side 3601 of a complete revolution. In calculus and other branches of mathematics, a more natural method of measuring angles is used — radian measure. The amount an angle opens is measured along the arc of a circle of radius 1 with its center at the vertex of the angle.

The circumference of the circle of radius 1 is 2π and so a complete revolution has measure 2π rad, a straight angle has measure π rad, and a right angle has measure π/2 rad. An angle that is subtended by an arc of length 2 along the unit circle has radian measure 2 (see the Figures below).

Since a complete revolution measured in degrees is 360 and measured in radians is 2π rad, we get the following simple relationship between these two methods of angle measurement.

(2)

1 rad≈ 57.296◦ and 1 ≈ 0.01745 rad EXAMPLE:

(a) Express 60 in radians. (b) Express π

6 rad in degrees. Solution: (a) 60 = 60 ( π 180 ) rad = π 3 rad (b) π 6 rad = (π 6 ) (180 π ) = 30 EXAMPLE:

(a) Express 40 in radians. (b) Express

4 rad in degrees. Solution: (a) 40 = 40 ( π 180 ) rad = 9 rad (b) 4 rad = ( 4 ) ( 180 π ) = 135

Angles in Standard Position

An angle is in standard position if it is drawn in the xy-plane with its vertex at the origin and its initial side on the positive x-axis. The Figures below give examples of angles in standard position.

(a) (b) (c) (d)

Two angles in standard position are coterminal if their sides coincide. The angles in Figures (a) and (c) above are coterminal.

(3)

EXAMPLE:

(a) Find angles that are coterminal with the angle θ = 30◦ in standard position. (b) Find angles that are coterminal with the angle θ = π

3 in standard position. Solution:

(a) To find positive angles that are coterminal with θ, we add any multiple of 360◦ to 30. Thus

30+ 360 = 390◦, 30+ 720 = 750◦, etc.

are coterminal with θ = 30◦. To find negative angles that are coterminal with θ, we subtract any multiple of 360 from 30. Thus

30◦− 360◦ =−330◦, 30◦− 720◦ =−690◦, etc. are coterminal with θ.

(b) To find positive angles that are coterminal with θ, we add any multiple of 2π to π/3. Thus

π 3 + 2π = 3 , π 3 + 4π = 13π 3 , etc.

are coterminal with θ = π/3. To find negative angles that are coterminal with θ, we subtract any multiple of 2π from π/3. Thus

π 3 − 2π = − 3 , π 3 − 4π = − 11π 3 , etc. are coterminal with θ.

EXAMPLE:

(a) Find angles that are coterminal with the angle θ = 62◦ in standard position.

(b) Find angles that are coterminal with the angle θ =

(4)

(a) Find angles that are coterminal with the angle θ = 62◦ in standard position.

(b) Find angles that are coterminal with the angle θ =

6 in standard position. Solution:

(a) To find positive angles that are coterminal with θ, we add any multiple of 360◦ to 62. Thus 62+ 360 = 422◦, 62+ 720 = 782◦, etc.

are coterminal with θ = 62◦. To find negative angles that are coterminal with θ, we subtract any multiple of 360 from 62. Thus

62◦− 360◦ =−298◦, 62◦− 720◦ =−658◦, etc. are coterminal with θ.

(b) To find positive angles that are coterminal with θ, we add any multiple of 2π to 5π/6. Thus 6 + 2π = 17π 6 , 6 + 4π = 29π 6 , etc.

are coterminal with θ = 5π/6. To find negative angles that are coterminal with θ, we subtract any multiple of 2π from 5π/6. Thus

6 − 2π = − 6 , 6 − 4π = − 19π 6 , etc. are coterminal with θ.

EXAMPLE: Find an angle with measure between 0 and 360 that is coterminal with the angle of measure 1290 in standard position.

Solution: We can subtract 360 as many times as we wish from 1290, and the resulting angle will be coterminal with 1290. Thus, 1290 − 360◦ = 930 is coterminal with 1290, and so is the angle 1290 − 2(360)◦ = 570◦.

To find the angle we want between 0 and 360, we subtract 360 from 1290 as many times as necessary. An efficient way to do this is to determine how many times 360 goes into 1290, that is, divide 1290 by 360, and the remainder will be the angle we are looking for. We see that 360 goes into 1290 three times with a remainder of 210. Thus, 210 is the desired angle (see the Figures below).

EXAMPLE:

(a) Find an angle between 0 and 2π that is coterminal with 100.

(5)

EXAMPLE:

(a) Find an angle between 0 and 2π that is coterminal with 100.

(b) Find an angle between 0 and 360 that is coterminal with −3624◦. Solution:

(a) We have

100− 30π ≈ 5.7522 (b) We have

−3624◦+ 11· 360 =−3624+ 3960 = 336 EXAMPLE: Find an angle between 0 and 2π that is coterminal with 88π

3 . Solution: We have 88π 3 − 28π = 3

EXAMPLE: Find an angle with measure between 0 and 360 that is coterminal with the angle of measure 1635 in standard position.

Solution: We have

1635◦− 4 · 360◦ = 1635+ 1440 = 195

Length of a Circular Arc

An angle whose radian measure is θ is subtended by an arc that is the fraction θ/(2π) of the circumference of a circle. Thus, in a circle of radius

r, the length s of an arc that subtends the angle θ (see the Figure on the

right) is

s = θ

× circumference of circle =

θ

2π(2πr) = θr

Solving for θ, we get the important formula

θ = s r

(6)

measure of an angle θ is s/r, where s is the length of the circular arc that subtends θ in a circle of radius r (see the Figures below).

EXAMPLE:

(a) Find the length of an arc of a circle with radius 10 m that subtends a central angle of 30. (b) A central angle θ in a circle of radius 4 m is subtended by an arc of length 6 m. Find the measure of θ in radians.

Solution:

(a) We know that 30 = π

6. So the length of the arc is

s = rθ = (10)π

6 =

3 m

(b) By the formula θ = s/r, we have

θ = s r = 6 4 = 3 2 rad EXAMPLE:

(a) Find the length of an arc of a circle with radius 21 m that subtends a central angle of 15. (b) A central angle θ in a circle of radius 9 m is subtended by an arc of length 12 m. Find the measure of θ in radians.

Solution:

(a) We know that 15 = π

12. So the length of the arc is

s = rθ = (21)π

12 =

4 m

(b) By the formula θ = s/r, we have

θ = s r = 12 9 = 4 3 rad

(7)

Area of a Circular Sector

The area of a circle of radius r is A = πr2. A sector of this circle with central

angle θ has an area that is the fraction θ/(2π) of the area of the entire circle (see the Figure on the right). So the area of this sector is

A = θ × area of circle = θ 2π(πr 2) = 1 2r 2θ

EXAMPLE: Find the area of a sector of a circle with central angle 60 if the radius of the circle is 3 m.

Solution: To use the formula for the area of a circular sector, we must find the central angle of the sector in radians:

60 = 60 ( π 180 ) rad = π 3 rad Thus, the area of the sector is

A = 1 2r 2θ = 1 2(3) 2(π 3 ) = 2 m 2

EXAMPLE: Find the area of a sector of a circle with central angle 4 if the radius of the circle is 45 m.

Solution: To use the formula for the area of a circular sector, we must find the central angle of the sector in radians:

4 = 4 ( π 180 ) rad = π 45 rad Thus, the area of the sector is

A = 1 2r 2θ = 1 2(45) 2(π 45 ) = 45π 2 m 2

EXAMPLE: A sprinkler on a golf course fairway is set to spray water over a distance of 70 feet and rotates through an angle of 120 (see the Figure on the right). Find the area of the fairway watered by the sprinkler.

Solution: First convert 120 to radian measure as follows.

θ = 120◦ = 120 ( π 180 ) rad = 3 rad Therefore A = 1 2r 2θ = 1 2(70) 2 ( 3 ) = 4900π 3 ≈ 5131 ft 2

(8)

Circular Motion

Suppose a point moves along a circle as shown in the Figure on the right. There are two ways to describe the motion of the point — linear speed and angular speed. Linear speed is the rate at which the distance traveled is changing, so linear speed is the distance traveled divided by the time elapsed. Angular speed is the rate at which the central angle θ is changing, so angular speed is the number of radians this angle changes divided by the time elapsed.

EXAMPLE: A boy rotates a stone in a 3-ft-long sling at the rate of 15 revolutions every 10 seconds. Find the angular and linear velocities of the stone.

Solution: In 10 s, the angle θ changes by 15· 2π = 30π radians. So the angular speed of the stone is

ω = θ t =

30π rad

10 s = 3π rad/s

The distance traveled by the stone in 10 s is s = 15· 2πr = 15 · 2π · 3 = 90π ft. So the linear

speed of the stone is

v = s t =

90π ft

10 s = 9π ft/s

EXAMPLE: A disk with a 12-inch diameter spins at the rate of 45 revolutions per minute. Find the angular and linear velocities of a point at the edge of the disk in radians per second and inches per second, respectively.

(9)

EXAMPLE: A disk with a 12-inch diameter spins at the rate of 45 revolutions per minute. Find the angular and linear velocities of a point at the edge of the disk in radians per second and inches per second, respectively.

Solution: In 60 s, the angle θ changes by 45· 2π = 90π radians. So the angular velocity is

ω = θ t = 90π rad 60 s = 3 2π rad/s

The distance traveled by the point in 60 s is s = 45· πd = 45 · π · 12 = 540π in. So the linear

speed of the point is

v = s t =

540π in

60 s = 9π in/s

EXAMPLE: The second hand of a clock is 10.2 centimeters long, as shown in the Figure on the right. Find the linear speed of the tip of this second hand as it passes around the clock face.

Solution: In one revolution, the arc length traveled is

s = 2πr = 2π(10.2) = 20.4π cm

The time required for the second hand to travel this distance is 60 seconds. So, the linear speed of the tip of the second hand is

v = s t =

20.4π cm

60 s ≈ 1.068 cm/s

EXAMPLE: A Ferris wheel with a 50-foot radius (see the Figure on the right) makes 1.5 revolutions per minute.

(a) Find the angular speed of the Ferris wheel in radians per minute. (b) Find the linear speed of the Ferris wheel.

Solution:

(a) Because each revolution generates 2π radians, it follows that the wheel turns (1.5)(2π) = 3π radians per minute. In other words, the angular speed is

ω = θ t =

3π rad

1 min = 3π rad/min

(b) The linear speed is

v = s t = t = 50(3π) ft 1 min ≈ 471.2 ft/min

REMARK: Notice that angular speed does not depend on the radius of the circle, but only on the angle θ. However, if we know the angular speed ω and the radius r, we can find linear speed as follows: v = s t = t = r ( θ t ) = rω

(10)

rotate at 125 revolutions per minute (rpm), find the speed at which she is traveling, in mi/h. Solution: The angular speed of the wheels is 2π· 125 = 250π rad/min. Since the wheels have radius 13 in. (half the diameter), the linear speed is

v = rω = 13· 250π ≈ 10, 210.2 in./min

Since there are 12 inches per foot, 5280 feet per mile, and 60 minutes per hour, her speed in miles per hour is

10, 210.2 in./min × 60 min/h 12 in./ft × 5280 ft/mi =

612, 612 in./h

References

Related documents

Customer relationship has been regarded as the most important issue of the firms, so that an attempt is made to develop customer relationships and their comments on quality and

This thesis focuses on the methods of environmental protection cooling (cold air jet atomization, cold air, high pressure water jet and coolant) were studied, simulating the

Water spots and stains were observed on ceilings, walls, tables, and carpets. These observations point to likely issues within the ceiling

19% serve a county. Fourteen per cent of the centers provide service for adjoining states in addition to the states in which they are located; usually these adjoining states have

This essay asserts that to effectively degrade and ultimately destroy the Islamic State of Iraq and Syria (ISIS), and to topple the Bashar al-Assad’s regime, the international

Test-suite minimization or reduction techniques attempt to reduce the time of test suite execution by eliminating redundant test cases from test suites[1][2]..

innovation in payment systems, in particular the infrastructure used to operate payment systems, in the interests of service-users 3.. to ensure that payment systems

❏ Inspect axle shaft boots ❏ Inspect ball joints and dust covers ❏ Inspect engine air filter ❏ Inspect steering linkage and boots ❏ Re-torque nuts and bolts of drive