• No results found

Common Fixed Point Theorem for Weakly Compatible Maps in Intuitionistic Fuzzy Metric Spaces

N/A
N/A
Protected

Academic year: 2021

Share "Common Fixed Point Theorem for Weakly Compatible Maps in Intuitionistic Fuzzy Metric Spaces"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Common Fixed Point Theorem for Weakly Compatible Maps in

Intuitionistic Fuzzy Metric Spaces

Madhu Shrivastava1 Dr.K.Qureshi2 Dr.A.D.Singh3 1.TIT Group of Instititution,Bhopal

2.Ret.Additional Director,Bhopal 3.Govt.M.V.M.College,Bhopal Abstract

In this paper, we prove some common fixed point theorem for weakly compatible maps in intuitionistic fuzzy metric space for two, four and six self mapping.

1. Introduction

The introduction of the concept of fuzzy sets by Zadeh [1] in1965.Many authors have introduced the concept of fuzzy metric in different ways. Atanassov [2] introduced and studied the concept of intuitionistic fuzzy sets. In 1997 Coker [3 ] introduced the concept of intuitionistic fuzzy topological spaces .Park [20] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm. Alaca et al. [4] using the idea of intuitionistic fuzzy sets, they defined the notion of intuitionistic fuzzy metric space. Turkoglu et al. [34] introduced the cocept of compatible maps and compatible maps of types ሺߙሻ and ሺߚሻ in intuitionistic fuzzy metric space and gave some relations between the concepts of compatible maps and compatible maps of types ሺߙሻܽ݊݀ሺߚሻ. Gregory et al. [12 ], Saadati et al [28],Singalotti et al [27], Sharma and Deshpande [30], Ciric etal [9], Jesic [13], Kutukcu [16] and many others studied the concept of intuitionistic fuzzy metric space and its applications. Sharma and Deshpandey [30] proved common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces. R.P. Pant [23] has initiated work using the concept of R-weakly commuting mappings in 1994.

2. Preliminaries

We begin by briefly recalling some definitions and notions from fixed point theory literature that we will use in the sequel.

Definition 2.1 [Schweizer st. al.1960] - A binary operation כ׷ ሾͲǡͳሿ ൈ ሾͲǡͳሿ ՜ ሾͲǡͳሿ is a continuous t-norms if כsatisfying conditions:

(i) כ is commutative and associative;

(ii) כis continuous;

(iii) ܽ כ ͳ ൌ ݂ܽ݋ݎ݈݈ܽܽ א ሾͲǡͳሿǢ

(iv) ܽ כ ܾ ൑ ܿ כ ݀wherever ܽ ൑ ܿandܾ ൑ ݀ for allܽǡ ܾǡ ܿǡ ݀ א ሾͲǡͳሿǤ

Example of t-norm areܽ כ ܾ ൌ ‹ሼܽǡ ܾሽ and ܽ כ ܾ ൌ ܽǤ ܾǤ

Definition 2.2[Schweizer st. al.1960] A binary operation τ׷ ሾͲǡͳሿ ൈ ሾͲǡͳሿ ՜ ሾͲǡͳሿ is a continuous t-norms if τ satisfying conditions:

(i) τ is commutative and associative;

(ii) τis continuous;

(iii) ܽ τ Ͳ ൌ ܽfor all ܽ א ሾͲǡͳሿǢ

(iv) ܽ τ ܾ ൑ ܿ τ ݀whereverܽ ൑ ܿandܾ ൑ ݀ for allܽǡ ܾǡ ܿǡ ݀ א ሾͲǡͳሿǤ

Example of t-norm areܽ τ ܾ ൌ ƒšሼܽǡ ܾሽ and ܽ τ ܾ ൌ ‹ሼͳǡ ܽ ൅ ܾሽǤ

Definition 2.3 [Alaca, C. et. Al. 2006] A 5-tuple ሺܺǡ ܯǡ ܰǡכǡτሻ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set,כ is a continuous t -norm, ◊ is a continuous

t -norm and ܯǡ ܰ are fuzzy sets on ܺଶൈ ሺͲǡሻ satisfying the following conditions: (i) ܯሺݔǡ ݕǡ ݐሻ ൅ ܰሺݔǡ ݕǡ ݐሻ ൑ ͳfor all ݔǡ ݕ א ܺandݐ ൐ ͲǢ

(ii) ܯሺݔǡ ݕǡ Ͳሻ ൌ Ͳfor allݔǡ ݕ א ܺ ;

(iii) ܯሺݔǡ ݕǡ ݐሻ ൌ ͳfor allݔǡ ݕ א ܺand ݐ ൐ Ͳif and only ifݔ ൌ ݕ; (iv) ܯሺݔǡ ݕǡ ݐሻ ൌ ܯሺݕǡ ݔǡ ݐሻ for allݔǡ ݕ א ܺand ݐ ൐ ͲǢ

(v) ܯሺݔǡ ݕǡ ݐሻ כ ܯሺݕǡ ݖǡ ݏሻ ൑ ܯሺݔǡ ݖǡ ݐ ൅ ݏሻfor all ݔǡ ݕǡ ݖ א ܺandݏǡ ݐ ൐ Ͳ ; (vi) For all ݔǡ ݕ א ܺǡ ܯሺݔǡ ݕǡ Ǥ ሻǣ ሾͲǡ∞ሻ ՜ ሾͲǡͳሿ is left continuous ;

(vii) Ž‹௧՜ܯሺݔǡ ݕǡ ݐሻ ൌ ͳˆ‘”ƒŽŽݔǡ ݕ א ܺƒ†ݐ ൐ ͲǢ (viii) ܰሺݔǡ ݕǡ Ͳሻ ൌ ͳfor allݔǡ ݕ א ܺ;

(ix) ܰሺݔǡ ݕǡ ݐሻ ൌ Ͳ for allݔǡ ݕ א ܺandݐ ൐ ͲǢ if and only if ݔ ൌ ݕǤ (x) ܰሺݔǡ ݕǡ ݐሻ ൌ ܰሺݕǡ ݔǡ ݐሻfor allݔǡ ݕ א ܺandݐ ൐ ͲǢ

(2)

(xii) for allݔǡ ݕ א ܺǡ ܰሺݔǡ ݕǡ Ǥ ሻǣ ሾͲǡ∞ሻ ՜ ሾͲǡͳሿ is right continuous; (xiii) Ž‹௧՜ܰሺݔǡ ݕǡ ݐሻ ൌ Ͳ݂݋ݎ݈݈ܽݔǡ ݕ א ܺǢ

ሺܯǡ ܰሻ is called an intuitionistic fuzzy metric on ܺ. The functions ܯሺݔǡ ݕǡ ݐሻܽ݊݀ܰሺݔǡ ݕǡ ݐሻ denote the degree of nearness and the degree of non-nearness between ݔand ݕ with respect toݐǡ respectively.

Remark 2.4 [Alaca, C. et. Al. 2006 ]. An intuitionistic fuzzy metric spaces with continuous t-norm כ and Continuous t -conorm ◊ defined by ܽ כ ܽ ൒ ܽǡ ܽ א ሾͲǡͳሿandሺͳ െ ܽሻ τ ሺͳ െ ܽሻ ൑ ሺͳ െ ܽሻ for all ܽ א ሾͲǡͳሿ , Then for all ݔǡ ݕ א ܺǡ ܯሺݔǡ ݕǡכሻ is non-decreasing and, ܰሺݔǡ ݕǡτሻ is non-increasing.

Remark 2.5[Park, 2004]. Let ሺܺǡ ݀ሻ be a metric space .Define t-norm ܽ כ ܾ ൌ ‹ሼܽǡ ܾሽ and t-conormܽ τ ܾ ൌ ƒšሼܽǡ ܾሽ and for all ,ݔǡ ݕ א ܺand ݐ ൐ Ͳ

ܯௗሺݔǡ ݕǡ ݐሻ ൌݐ ൅ ݀ሺݔǡ ݕሻǡ ܰݐ ௗሺݔǡ ݕǡ ݐሻ ൌݐ ൅ ݀ሺݔǡ ݕሻ݀ሺݔǡ ݕሻ

Then ሺܺǡ ܯǡ ܰǡכǡτሻ is an intuitionistic fuzzy metric space induced by the metric. It is obvious that ܰሺݔǡ ݕǡ ݐሻ ൌ ͳ െ ܯሺݔǡ ݕǡ ݐሻǤ

Alaca, Turkoglu and Yildiz [Alaca, C. et. Al. 2006] introduced the following notions: Definition 2.6. Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an intuitionistic fuzzy metric space. Then

(i) a sequence ሼݔሽ is said to be Cauchy sequence if, for all ݐ ൐ Ͳܽ݊݀݌ ൐ Ͳ

Ž‹

௡՜ஶܯ൫ݔ௡ା௣ǡݔ௡ǡ ݐ൯ ൌ ͳǡ ܰ൫ݔ௡ା௣ǡݔ௡ǡ ݐ൯ ൌ Ͳ

(ii) a sequenceሼݔሽ in X is said to be convergent to a point ݔ א ܺ if ,for allݐ ൐ ͲǤ Ž‹

௡՜ஶܯ൫ݔ௡ǡݔǡ ݐ൯ ൌ ͳǡ ܰ൫ݔ௡ǡݔǡ ݐ൯ ൌ Ͳ

Since כand ◊ are continuous, the limit is uniquely determined from (v) and (xi) of respectively.

Definition 2.7. An intuitionistic fuzzy metric space ሺܺǡ ܯǡ ܰǡכǡτሻ is said to be complete if and only if every Cauchy sequence in ܺ is convergent.

Definition 2.8. A pair of self-mappings ሺ݂ǡ ݃ሻ , of an intuitionistic fuzzy metric space ሺܺǡ ܯǡ ܰǡכǡτሻ is said to be compatible if Ž‹௡՜ܯሺ݂݃ ݔ௡ǡ݂݃ݔ௡ǡ ݐሻ ൌ ͳ and Ž‹௡՜ܰሺ݂݃ ݔ௡ǡ݂݃ݔ௡ǡ ݐሻ ൌ Ͳ for every ݐ ൐ Ͳ,whenever ሼݔ௡ሽ is a sequence in X such that Ž‹௡՜݂ݔ௡ൌ Ž‹௡՜݃ݔ௡ൌ ݖ ݂݋ݎݏ݋݉݁ݖ א ܺǤ

Definition 2.9. A pair of self-mappingsሺ݂ǡ ݃ሻ , of an intuitionistic fuzzy metric space ሺܺǡ ܯǡ ܰǡכǡτሻ is said to be non compatible if Ž‹௡՜ܯሺ݂݃ ݔ௡ǡ݂݃ݔǡ ݐሻ ് ͳor nonexistence and Ž‹௡՜ܰሺ݂݃ ݔ௡ǡ݂݃ݔǡ ݐሻ ് Ͳ or nonexistence for every ݐ ൐ Ͳ,

whenever ሼݔሽ is a sequence in ܺsuch that Ž‹௡՜݂ݔൌ Ž‹௡՜݃ݔൌ ݖfor someݖ א ܺǤ

In 1998, Jungck and Rhoades [Jungck et. al. 1998] introduced the concept of weakly compatible maps as follows:

Definition 2.10. Two self maps ݂ and ݃are said to be weakly compatible if they commute at coincidence points. Definition 2.11 [Alaca, C. et. Al. 2006 ]. Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an intuitionistic fuzzy metric space then ݂ǡ ݃ ׷ ܺ ՜ ܺ are said to be weakly compatible if they commute at coincidence points.

Lemma 2.12[ Alaca, C. et. Al. 2006]. Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an intuitionistic fuzzy metric space and ሼݕሽbe a sequence in X if there exist a number ݇ א ሺͲǡͳሻsuch that,

i) ܯሺݕ௡ାଶǡݕ௡ାଵǡ ݇ݐሻ ൒ ܯሺݕ௡ାଵǡ ݕǡ ݐሻ ii) ܰሺݕ௡ାଶǡݕ௡ାଵǡ ݇ݐሻ ൑ ܰሺݕ௡ାଵǡ ݕǡ ݐሻ

for allݐ ൐ Ͳand݊ ൌ ͳǡʹǡ͵ ǥ ǥ ǥthenሼݕሽis a cauchy sequence inܺǤ

Lemma 2.13 Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an IFM-space and for all ݔǡ ݕ א ܺǡ ݐ ൐ Ͳ and if for a number ݇ א ሺͲǡͳሻǡ ܯሺݔǡ ݕǡ ݇ݐሻ ൒ ܯሺݔǡ ݕǡ ݐሻǡ ܰሺݔǡ ݕǡ ݇ݐሻ ൑ ܰሺݔǡ ݕǡ ݐሻ then ݔ ൌ ݕǤ

3. Main Results -

Theorem 3.1– Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an intuitionstic fuzzy metric space with continuous t-norm כ and continuous t-norm ◊ defined by ݐ כ ݐ ൒ ݐandሺͳ െ ݐሻ τ ሺͳ െ ݐሻ ൑ ሺͳ െ ݐሻǡ࿤ ݐ א ሾͲǡͳሿǤLet ݂ƒ†݃ be weakly compatible self mapping in ܺ s.t.

ܽሻ݃ሺܺሻ ك ݂ሺܺሻ

ܾሻܯሺ݃ݔǡ ݃ݕǡ ݇ݐሻ ൒ ߮ሼܯሺ݂ݔǡ ݂ݕǡ ݐሻ כ ܯሺ݃ݔǡ ݂ݕǡ ݐሻ כ ܯሺ݂ݔǡ ݃ݔǡ ݐሻሽ ܰሺ݃ݔǡ ݃ݕǡ ݇ݐሻ ൑ ߖሼܰሺ݂ݔǡ ݂ݕǡ ݐሻ τ ܰሺ݃ݔǡ ݂ݕǡ ݐሻ τ ܰሺ݂ݔǡ ݃ݔǡ ݐሻሽ

Where , Ͳ ൏ ݇ ൏ ͳ and ׎ǡ ߖǣ ሾͲǡͳሿ ՜ ሾͲǡͳሿ is continuous function s.t. ׎ሺݏሻ ൐ ݏandߖሺݏሻ ൏ ݏ ,for each Ͳ ൏ ݏ ൏ ͳand߮ሺͳሻ ൌ ͳǡ ߖሺͲሻ ൌ Ͳwithܯሺݔǡ ݕǡ ݐሻ ൐ ͲǤ

c) If one of ݃ሺܺሻ݋ݎ݂ሺܺሻ is complete

Then ݂ƒ†݃ have a unique common fixed point.

Proof Let ݔא ܺ be any arbitrary point. Since ݃ሺܺሻ ك ݂ሺܺሻ ,choose ݔא ܺ Such that ݕଶ௡ൌ ݂ݔଶ௡ାଵൌ ݃ݔଶ௡.

(3)

ܯሺ݃ݔଶ௡ǡ ݃ݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ ൜ܯሺ݂ݔଶ௡ǡ ݂ݔכ ܯሺ݂ݔଶ௡ାଵǡ ݐሻ כ ܯሺ݃ݔଶ௡ǡ ݂ݔଶ௡ାଵǡ ݐሻ ଶ௡ǡ ݃ݔଶ௡ǡ ݐሻ ൠ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ ൜ܯሺݕଶ௡ିଵכ ܯሺݕǡ ݕଶ௡ǡ ݐሻ כ ܯሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻ ଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ ൠ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ כ ͳ כ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻሽ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻሽ ൐ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ...(1) As ߮ሺݏሻ ൐ ݏ, for each Ͳ ൏ ݏ ൏ ͳǤ and ܰሺ݃ݔଶ௡ǡ ݃ݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖ ൜ܰሺ݂ݔଶ௡ǡ ݂ݔτ ܰሺ݂ݔଶ௡ାଵǡ ݐሻ τ ܰሺ݃ݔଶ௡ǡ ݂ݔଶ௡ାଵǡ ݐሻ ଶ௡ǡ ݃ݔଶ௡ǡ ݐሻ ൠ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖ ൜ܰሺݕଶ௡ିଵτ ܰሺݕǡ ݕଶ௡ǡ ݐሻ τ ܰሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻ ଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ ൠ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ τ Ͳ τ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻሽ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻሽ ൏ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ As ߖሺݏሻ ൏ ݏˆ‘”‡ƒ…ŠͲ ൏ ݏ ൏ ͳǤ For all ݊ǡ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ and ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ ܯሺݕଶ௡ାଵǡ ݕଶ௡ାଶǡ ݇ݐሻ ൒ ܯሺݕଶ௡ାଵǡ ݕଶ௡ǡ ݐሻ and ܰሺݕଶ௡ାଵǡ ݕଶ௡ାଶǡ ݇ݐሻ ൑ ܰሺݕଶ௡ାଵǡ ݕଶ௡ǡ ݐሻ,

Hence by lemma (2.12) , ሼݕଶ௡ሽ is a Cauchy sequence in X. by completeness of X, ሼݕଶ௡ሽ =ሼ݂ݔଶ௡ሽ is convergent, call ݖ ,

Then Ž‹௡՜݂ݔൌŽ‹௡՜݃ݔൌ ݖ

Now suppose ݂ሺܺሻ is complete, so there exist a point ݌݅݊ܺݏݑ݄ܿݐ݄ܽݐ݂݌ ൌ ݖ

Now from (b), ܯሺ݃݌ǡ ݃ݔ௡ǡ ݇ݐሻ ൒ ߮ሼܯሺ݂݌ǡ ݂ݔ௡ǡ ݐሻ כ ܯሺ݃݌ǡ ݂ݔ௡ǡ ݐሻ כ ܯሺ݂݌ǡ ݃݌ǡ ݐሻሽ As݊ ՜, ܯሺ݃݌ǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺݖǡ ݖǡ ݐሻ כ ܯሺ݃݌ǡ ݖǡ ݐሻ כ ܯሺݖǡ ݃݌ǡ ݐሻሽ ܯሺ݃݌ǡ ݖǡ ݇ݐሻ ൒ ߮ሼͳ כ ܯሺ݃݌ǡ ݖǡ ݐሻ כ ܯሺݖǡ ݃݌ǡ ݐሻሽ ܯሺ݃݌ǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺ݃݌ǡ ݖǡ ݐሻሽ ൐ ܯሺ݃݌ǡ ݖǡ ݐሻ ...(3) And ܰሺ݃݌ǡ ݃ݔ௡ǡ ݇ݐሻ ൑ ߖሼܰሺ݂݌ǡ ݂ݔ௡ǡ ݐሻ τ ܰሺ݃݌ǡ ݂ݔ௡ǡ ݐሻ τ ܰሺ݂݌ǡ ݃݌ǡ ݐሻሽ As݊ ՜, ܰሺ݃݌ǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺݖǡ ݖǡ ݐሻ τ ܰሺ݃݌ǡ ݖǡ ݐሻ τ ܰሺݖǡ ݃݌ǡ ݐሻሽ ܰሺ݃݌ǡ ݖǡ ݇ݐሻ ൑ ߖሼͲ τ ܰሺ݃݌ǡ ݖǡ ݐሻ τ ܰሺݖǡ ݃݌ǡ ݐሻሽ ܰሺ݃݌ǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺ݃݌ǡ ݖǡ ݐሻሽ ൏ ܰሺ݃݌ǡ ݖǡ ݐሻ ...(4) From (3) and (4),we have

݃݌ ൌ ݖ ൌ ݂݌

As ݂ܽ݊݀݃are weakly compatible ,therefore ݂݃݌ ൌ ݂݃݌ǡ ݅Ǥ ݁ǡ ݂ݖ ൌ ݃ݖ Now , we show that ݖis a fixed point of ݂ܽ݊݀݃Ǥ from (b),

ܯሺ݃ݖǡ ݃ݔ௡ǡ ݇ݐሻ ൒ ߮ሼܯሺ݂ݖǡ ݂ݔ௡ǡ ݐሻ כ ܯሺ݃ݖǡ ݂ݔ௡ǡ ݐሻ כ ܯሺ݂ݖǡ ݃ݖǡ ݐሻሽ As݊ ՜, ܯሺ݃ݖǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺ݃ݖǡ ݖǡ ݐሻ כ ܯሺ݃ݖǡ ݖǡ ݐሻ כ ܯሺ݃ݖǡ ݃ݖǡ ݐሻሽ ܯሺ݃ݖǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺ݃ݖǡ ݖǡ ݐሻ כ ܯሺ݃ݖǡ ݖǡ ݐሻ כ ͳሽ ܯሺ݃ݖǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺ݃ݖǡ ݖǡ ݐሻሽ ൐ ܯሺ݃ݖǡ ݖǡ ݐሻ ...(5) and ܰሺ݃ݖǡ ݃ݔ௡ǡ ݇ݐሻ ൑ ߖሼܰሺ݂ݖǡ ݂ݔ௡ǡ ݐሻ τ ܰሺ݃ݖǡ ݂ݔ௡ǡ ݐሻ τ ܰሺ݂ݖǡ ݃ݖǡ ݐሻሽ As݊ ՜, ܰሺ݃ݖǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺ݃ݖǡ ݖǡ ݐሻ τ ܰሺ݃ݖǡ ݖǡ ݐሻ τ ܰሺ݃ݖǡ ݃ݖǡ ݐሻሽ ܰሺ݃ݖǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺ݃ݖǡ ݖǡ ݐሻ τ ܰሺ݃ݖǡ ݖǡ ݐሻ τ Ͳሽ ܰሺ݃ݖǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺ݃ݖǡ ݖǡ ݐሻሽ ൏ ܰሺ݃ݖǡ ݖǡ ݐሻ ...(6) From (5) and (6), ݃ݖ ൌ ݖ ൌ ݂ݖ Hence ݖ is common fixed point of ݂ƒ†݃.

Uniqueness– Let ݓ be another fixed point of ݂ƒ†݃ ,then by (b) ,

(4)

ܯሺݖǡ ݓǡ ݇ݐሻ ൒ ߮ሼܯሺݖǡ ݓǡ ݐሻ כ ܯሺݖǡ ݓǡ ݐሻ כ ܯሺݖǡ ݖǡ ݐሻሽ ܯሺݖǡ ݓǡ ݇ݐሻ ൒ ߮ሼܯሺݖǡ ݓǡ ݐሻ כ ܯሺݖǡ ݓǡ ݐሻ כ ͳሽ ܯሺݖǡ ݓǡ ݇ݐሻ ൒ ߮ሼܯሺݖǡ ݓǡ ݐሻሽ ൐ ܯሺݖǡ ݓǡ ݐሻ ...(7) and ܰሺ݃ݖǡ ݃ݓǡ ݇ݐሻ ൑ ߖሼܰሺ݂ݖǡ ݂ݓǡ ݐሻ τ ܰሺ݃ݖǡ ݂ݓǡ ݐሻ τ ܰሺ݂ݖǡ ݃ݖǡ ݐሻሽ ܰሺݖǡ ݓǡ ݇ݐሻ ൑ ߖሼܰሺݖǡ ݓǡ ݐሻ τ ܰሺݖǡ ݓǡ ݐሻ τ ܰሺݖǡ ݖǡ ݐሻሽ ܰሺݖǡ ݓǡ ݇ݐሻ ൑ ߖሼܰሺݖǡ ݓǡ ݐሻ τ ܰሺݖǡ ݓǡ ݐሻ τ Ͳሽ ܰሺݖǡ ݓǡ ݇ݐሻ ൑ ߖሼܰሺݖǡ ݓǡ ݐሻሽ ൏ ܰሺݖǡ ݓǡ ݐሻ ...(8) From (7) and (8), ݖ ൌ ݓ Therefore ݖ is unique common fixed point of ݂ƒ†݃.

Theorem 3.2 Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an intuitionstic fuzzy metric space with continuous t-norm כ and continuous t-norm ◊ defined by ݐ כ ݐ ൒ ݐܽ݊݀ሺͳ െ ݐሻ τ ሺͳ െ ݐሻ ൑ ሺͳ െ ݐሻǡ࿤ ݐ א ሾͲǡͳሿǤLet A, B, S and T be self mappings in X s.t.

a) ܣሺܺሻ ك ܵሺܺሻܽ݊݀ܤሺܺሻ ك ܶሺܺሻǤ b) There exist a constant ݇ א ሺͲǡͳሻǡ ݏǤ ݐǤ

ܯሺܣݔǡ ܤݕǡ ݇ݐሻ ൒ ߮ሼܯሺܶݔǡ ܵݕǡ ݐሻ כ ܯሺܶݔǡ ܣݔǡ ݐሻ כ ܯሺܣݔǡ ܵݕǡ ݐሻሽ ܰሺܣݔǡ ܤݕǡ ݇ݐሻ ൑ ߖሼܰሺܶݔǡ ܵݕǡ ݐሻ τ ܰሺܶݔǡ ܣݔǡ ݐሻ τ ܰሺܣݔǡ ܵݕǡ ݐሻሽ

࿤ ݔǡ ݕ א ܺܽ݊݀ݐ ൐ ͲǡͲ ൏ ݇ ൏ ͳǤ ݓ݄݁ݎ݁߮ǡ ߖǣ ሾͲǡͳሿ ՜ ሾͲǡͳሿ is continuous function s.t. ߮ሺݏሻ ൐ ݏܽ݊݀ߖሺݏሻ ൏ ݏ, for each Ͳ ൏ ݏ ൏ ͳand ߮ሺͳሻ ൌ ͳǡ

ߖሺͲሻ ൌ Ͳwithܯሺݔǡ ݕǡ ݐሻ ൐ ͲǤ

c) If one of the ܣሺܺሻǡ ܤሺܺሻǡ ܵሺܺሻܽ݊݀ܶሺܺሻ is complete subspace of X,

Then ሼܣǡ ܶሽandሼܤǡ ܵሽ have a coincidence point

More over ,if the pair ሼܣǡ ܶሽandሼܤǡ ܵሽ are weakly compatible ,then A, B, S and T have a unique common fixed point.

Proof –Let ݔ be any arbitrary point ݏ݅݊ܿ݁ܣሺܺሻ ك ܵሺܺሻǡthere is a pointݔא ܺݏǤ ݐǤ

ܣݔ଴ൌ ܵݔଵǤ Again since ܤሺܺሻ ك ܶሺܺሻ for this ݔଶא ܺݏǤ ݐǤ ܤݔଵൌ ܶݔଶand so on. Then we get a sequence ሼݕ௡ሽ s.t. ݕଶ௡ൌ ܣݔଶ௡ൌ ܵݔଶ௡ିଵand ݕଶ௡ାଵൌ ܤݔଶ௡ାଵൌ ܶݔଶ௡ାଶǡ ݊ ൌ Ͳǡͳǡʹ ǥ ǥ ǤǤ Putting ݔ ൌ ݔଶ௡ǡ ݕ ൌ ݔଶ௡ାଵ in (b) we have, ܯሺܣݔଶ௡ǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺܶݔଶ௡ǡ ܵݔଶ௡ାଵǡ ݐሻ כ ܯሺܶݔଶ௡ǡ ܣݔଶ௡ǡ ݐሻ כ ܯሺܣݔଶ௡ǡ ܵݔଶ௡ାଵǡ ݐሻሽ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ כ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ כ ܯሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻሽ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ כ ͳሽ ൒ ߮ሼܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻሽ ൐ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ As߮ሺݏሻ ൐ ݏ for eachͲ ൏ ݏ ൏ ͳǤ and ܰሺܣݔଶ௡ǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺܶݔଶ௡ǡ ܵݔଶ௡ାଵǡ ݐሻ τ ܰሺܶݔଶ௡ǡ ܣݔଶ௡ǡ ݐሻ τ ܰሺܣݔଶ௡ǡ ܵݔଶ௡ାଵǡ ݐሻሽ ܰሺܣݔଶ௡ǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ τ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ τ ܰሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻሽ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ τ Ͳሽ ൑ ߖሼܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻሽ ൏ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ Asߖሺݏሻ ൏ ݏ݂݋ݎ݄݁ܽܿͲ ൏ ݏ ൏ ͳǤ For all ݊ǡ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻandܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ ܯሺݕଶ௡ାଵǡ ݕଶ௡ାଶǡ ݇ݐሻ ൒ ܯሺݕଶ௡ାଵǡ ݕଶ௡ǡ ݐሻ and ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ܰሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ Hence by lemma (2.12) , ሼݕሽ is a Cauchy sequence in ܺǤ

Now suppose ܵሺܺሻ is a complete subspace of X.note that the sequence ሼݕଶ௡ሽ is contained inܵሺܺሻ and has a limit in ܵሺܺሻ say ݑǤ so we get ܵݓ ൌ ݑǤ we shall use the fact that subsequence ሼݕଶ௡ାଵሽ also convergence to ݑ. now putting ݔ ൌ ݔଶ௡ ,ݕ ൌ ݓ in (b) and taking ݊ ՜ ܯሺܣݔଶ௡ǡ ܤݓǡ ݇ݐሻ ൒ ߮ሼܯሺܶݔଶ௡ǡ ܵݓǡ ݐሻ כ ܯሺܶݔଶ௡ǡ ܣݔଶ௡ǡ ݐሻ כ ܯሺܣݔଶ௡ǡ ܵݓǡ ݐሻሽ ܯሺݑǡ ܤݓǡ ݇ݐሻ ൒ ߮ሼܯሺݑǡ ݑǡ ݐሻ כ ܯሺݑǡ ݑǡ ݐሻ כ ܯሺݑǡ ݑǡ ݐሻሽ ൌ ߮ሺͳሻ ൌ ͳ ݅Ǥ ݁ܯሺݑǡ ܤݓǡ ݇ݐሻ ൒ ͳ ...(3) Also, ܰሺܣݔଶ௡ǡ ܤݓǡ ݇ݐሻ ൑ ߖሼܰሺܶݔଶ௡ǡ ܵݓǡ ݐሻ τ ܰሺܶݔଶ௡ǡ ܣݔଶ௡ǡ ݐሻ τ ܰሺܣݔଶ௡ǡ ܵݓǡ ݐሻሽ ܰሺݑǡ ܤݓǡ ݇ݐሻ ൑ ߖሼܰሺݑǡ ݑǡ ݐሻ τ ܰሺݑǡ ݑǡ ݐሻ τ ܰሺݑǡ ݑǡ ݐሻሽ ൌ ߖሺͲሻ ൌ Ͳ i.e,ܰሺݑǡ ܤݓǡ ݇ݐሻ ൑ Ͳ ...(4) from (3) and (4),ݑ ൌ ܤݓǤ

(5)

Since ܵݓ ൌ ܤݓ ൌ ݑǡ ݅Ǥ ݁ݓ is the coincidence point of ܤܽ݊݀ܵǤ As ܤሺܺሻ ك ܶሺܺሻǡ ݑ ൌ ܤݓ ֜ ݑ א ܶሺܺሻǤletݒ א ܶିଵݑthenܶݒ ൌ ݑ By putting ݔ ൌ ݒǡ ݕ ൌ ݔଶ௡ାଵ in (b),we get,

ܯሺܣݒǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺܶݒǡ ܵݔଶ௡ାଵǡ ݐሻ כ ܯሺܶݒǡ ܣݒǡ ݐሻ כ ܯሺܣݒǡ ܵݔଶ௡ାଵǡ ݐሻሽ As ݊ ՜ ܯሺܣݒǡ ݑǡ ݇ݐሻ ൒ ߮ሼܯሺݑǡ ݑǡ ݐሻ כ ܯሺݑǡ ܣݒǡ ݐሻ כ ܯሺܣݒǡ ݑǡ ݐሻሽ ܯሺܣݒǡ ݑǡ ݇ݐሻ ൒ ߮ሼܯሺݑǡ ܣݒǡ ݐሻ כ1ሽ ൌ ߮ሼܯሺݑǡ ܣݒǡ ݐሻሽ ൐ ሼܯሺݑǡ ܣݒǡ ݐሻሽ ...(5) and ܰሺܣݒǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺܶݒǡ ܵݔଶ௡ାଵǡ ݐሻ τ ܰሺܶݒǡ ܣݒǡ ݐሻ τ ܰሺܣݒǡ ܵݔଶ௡ାଵǡ ݐሻሽ As ݊ ՜ ܰሺܣݒǡ ݑǡ ݇ݐሻ ൑ ߖሼܰሺݑǡ ݑǡ ݐሻ τ ܰሺݑǡ ܣݒǡ ݐሻ τ ܰሺܣݒǡ ݑǡ ݐሻሽ ܰሺܣݒǡ ݑǡ ݇ݐሻ ൑ ߖሼܰሺݑǡ ܣݒǡ ݐሻ τ Ͳሽ=ߖሼܰሺݑǡ ܣݒǡ ݐሻሽ ൏ ܰሺݑǡ ܣݒǡ ݐሻ ...(6) From (5) and (6),we get,

ܣݒ ൌ ݑ

Since ܶݒ ൌ ݑǡwe haveܣݒ ൌ ܶݒ ൌ ݑǤthus ݒis the coincidence point of ܣand ܶǤIf one assume ܶሺܺሻ to be complete ,then an analogous argument establish this claim.

The remaining two cases pertain essentially to the previous cases. Indeed if ܤሺܺሻ is complete then ݑ א ܤሺܺሻ ؿ ܶሺܺሻandif ܣሺܺሻ is complete then ݑ א ܣሺܺሻ ؿ ܵሺܺሻǤThus (c) is completely established. Since the pair ሼܣǡ ܶሽܽ݊݀ሼܤǡ ܵሽ are weakly compatible ,i.e.

ܤሺܵݓሻ ൌ ܵሺܤݓሻ ֜ ܤݑ ൌ ܵݑand ܣሺܶݒሻ ൌ ܶሺܣݒሻ ֜ ܣݑ ൌ ܶݑǤ Putting ݔ ൌ ݑǡ ݕ ൌ ݔଶ௡ାଵin (b),we get

ܯሺܣݑǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺܶݑǡ ܵݔଶ௡ାଵǡ ݐሻ כ ܯሺܶݑǡ ܣݑǡ ݐሻ כ ܯሺܣݑǡ ܵݔଶ௡ାଵǡ ݐሻሽ As ݊ ՜ ܯሺܣݑǡ ݑǡ ݇ݐሻ ൒ ߮ሼܯሺܣݑǡ ݑǡ ݐሻ כ ܯሺܣݑǡ ܣݑǡ ݐሻ כ ܯሺܣݑǡ ݑǡ ݐሻሽ ܯሺܣݑǡ ݑǡ ݇ݐሻ ൒ ߮ሼܯሺܣݑǡ ݑǡ ݐሻሽ ൐ ܯሺܣݑǡ ݑǡ ݐሻ ...(7) and ܰሺܣݑǡ ܤݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺܶݑǡ ܵݔଶ௡ାଵǡ ݐሻ τ ܰሺܶݑǡ ܣݑǡ ݐሻ τ ܰሺܣݑǡ ܵݔଶ௡ାଵǡ ݐሻሽ As ݊ ՜ ܰሺܣݑǡ ݑǡ ݇ݐሻ ൑ ߖሼܰሺܣݑǡ ݑǡ ݐሻ τ ܰሺܣݑǡ ܣݑǡ ݐሻ τ ܰሺܣݑǡ ݑǡ ݐሻሽ ܰሺܣݑǡ ݑǡ ݇ݐሻ ൑ ߖሼܰሺܣݑǡ ݑǡ ݐሻሽ ൏ ܰሺܣݑǡ ݑǡ ݐሻ ...(8)

From (7) and (8), implies that ܣݑ ൌ ݑ ֜ ܣݑ ൌ ܶݑ ൌ ݑ

Similarly by putting ݔ ൌ ݔଶ௡ǡ ݕ ൌ ݑ in (b) and as ݊ ՜

We have ݑ ൌ ܤݑ ൌ ܵݑǤ ݐ݄ݑݏܣݑ ൌ ܵݑ ൌ ܶݑ ൌ ݑǤ

i.e ݑ is a common fixed point of ܣǡ ܤǡ ܵandܶǤ

Uniqueness- let ݓሺݓ ് ݑሻ be another common fixed point of ܣǡ ܤǡ ܵandܶǤ

Then by putting ݔ ൌ ݑǡ ݕ ൌ ݓ݅݊ሺܾሻ ܯሺܣݑǡ ܤݓǡ ݇ݐሻ ൒ ߮ሼܯሺܶݑǡ ܵݓǡ ݐሻ כ ܯሺܶݑǡ ܣݑǡ ݐሻ כ ܯሺܣݑǡ ܵݓǡ ݐሻሽ ܯሺݑǡ ݓǡ ݇ݐሻ ൒ ߮ሼܯሺݑǡ ݓǡ ݐሻ כ ܯሺݑǡ ݑǡ ݐሻ כ ܯሺݑǡ ݓǡ ݐሻሽ ܯሺݑǡ ݓǡ ݇ݐሻ ൒ ߮ሼܯሺݑǡ ݓǡ ݐሻ כ ͳሽ ൐ ܯሺݑǡ ݓǡ ݐሻ ...(9) and ܰሺܣݑǡ ܤݓǡ ݇ݐሻ ൑ ߖሼܰሺܶݑǡ ܵݓǡ ݐሻ τ ܰሺܶݑǡ ܣݑǡ ݐሻ τ ܰሺܣݑǡ ܵݓǡ ݐሻሽ ܰሺݑǡ ݓǡ ݇ݐሻ ൑ ߖሼܰሺݑǡ ݓǡ ݐሻ τ ܰሺݑǡ ݑǡ ݐሻ τ ܰሺݑǡ ݓǡ ݐሻሽ ܰሺݑǡ ݓǡ ݇ݐሻ ൑ ߖሼܰሺݑǡ ݓǡ ݐሻ τ Ͳሽ ൏ ܰሺݑǡ ݓǡ ݐሻ . ...(10) From (9) and (10)

ݑ ൌ ݓ for all ݔǡ ݕ א ܺandݐ ൐ ͲǤ

Therefore ݑ is the unique common fixed point of ܣǡ ܤǡ ܵandܶǤ

Theorem 3.3 Let ሺܺǡ ܯǡ ܰǡכǡτሻ be an intuitionstic fuzzy metric space with continuous t-norm כ and continuous t-norm ◊ defined by ݐ כ ݐ ൒ ݐܽ݊݀ሺͳ െ ݐሻ τ ሺͳ െ ݐሻ ൑ ሺͳ െ ݐሻǡ

࿤ ݐ א ሾͲǡͳሿǤ Let ܣǡ ܤǡ ܵand ܶ be self mappings inܺ s.t. a) ܲሺܺሻ ك ܵܶሺܺሻܽ݊݀ܳሺܺሻ ك ܣܤሺܺሻ

b) There exist a constant ݇ א ሺͲǡͳሻݏǤ ݐǤ

ܯሺܲݔǡ ܳݕǡ ݇ݐሻ ൒ ߮ሼܯሺܲݔǡ ܣܤݔǡ ݐሻ כ ܯሺܵܶݕǡ ܣܤݔǡ ݐሻ כ ሺܲݔǡ ܵܶݕǡ ݐሻሽ ܽ݊݀

ܰሺܲݔǡ ܳݕǡ ݇ݐሻ ൑ ߖሼܰሺܲݔǡ ܣܤݔǡ ݐሻ τ ܰሺܵܶݕǡ ܣܤݔǡ ݐሻ τ ܰሺܲݔǡ ܵܶݕǡ ݐሻሽ ࿤ ݔǡ ݕ א ܺܽ݊݀ݐ ൐ Ͳݓ݄݁ݎ݁߮ǡ ߖǣ ሾͲǡͳሿ ՜ ሾͲǡͳሿ is continuous function s.t.

(6)

߮ሺݏሻ ൐ ݏܽ݊݀ߖሺݏሻ ൏ ݏ, for each Ͳ ൏ ݏ ൏ ͳand ߮ሺͳሻ ൌ ͳǡ ߖሺͲሻ ൌ Ͳwithܯሺݔǡ ݕǡ ݐሻ ൐ ͲǤ

(c) If one of the ܲሺܺሻǡ ܳሺܺሻǡ ܵܶሺܺሻǡ ܽ݊݀ܣܤሺܺሻ is a complete subspace of ܺthen

ሼܣܤǡ ܲሽܽ݊݀ሼܳǡ ܵܶሽ have a coincidence point. (d) ܣܤ ൌ ܤܣǡ ܵܶ ൌ ܶܵǡ ܲܤ ൌ ܤܲܽ݊݀ܳܶ ൌ ܶܳ

Moreover if the pair ሼܣܤǡ ܲሽܽ݊݀ሼܳǡ ܵܶሽ are weakly compatible ,then ܣǡ ܤǡ ܵǡ ܶǡ ܲǡ ܽ݊݀ܳhave a

unique common fixed point.

Proof Let ݔא ܺ be an arbitrary point. since ܲሺܺሻ ك ܵܶሺܺሻǡ there exist ݔא ܺ s.t. ܲݔൌ ܵܶݔൌ ݕǤ again since ܳሺܺሻ ك ܣܤሺܺሻ for this ݔ there is ݔא ܺ s.t.

ܳݔଵൌ ܣܤݔଶൌ ݕଵ and so on. Inductively we get a sequence ሼݔ௡ሽ and ሼݕ௡ሽ inܺ s.t.

ݕଶ௡ൌ ܲݔଶ௡ൌ ܵܶݔଶ௡ାଵܽ݊݀ݕଶ௡ାଵൌ ܳݔଶ௡ାଵൌ ܣܤݔଶ௡ାଶǡ ݊ ൌ Ͳǡͳǡʹ ǥ ǥǤ Putting ݔ ൌ ݔଶ௡ǡ ݕ ൌ ݔଶ௡ାଵin (b) we have, ܯሺܲݔଶ௡ǡ ܳݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺܲݔଶ௡ǡ ܣܤݔଶ௡ǡ ݐሻ כ ܯሺܵܶݔଶ௡ାଵǡ ܣܤݔଶ௡ǡ ݐሻכ ሺܲݔଶ௡ǡ ܵܶݔଶ௡ାଵݐሻሽ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ כ ܯሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ כ ܯሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻሽ ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ כ ͳሽ ൐ ܯሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ ...(1) ܽ݊݀ ܰሺܲݔଶ௡ǡ ܳݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺܲݔଶ௡ǡ ܣܤݔଶ௡ǡ ݐሻ τ ܰሺܵܶݔଶ௡ାଵǡ ܣܤݔଶ௡ǡ ݐሻ τ ܰሺܲݔଶ௡ǡ ܵܶݔଶ௡ାଵǡ ݐሻሽ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ τ ܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ τ ܰሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻሽ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ τ ܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ τ ܰሺݕଶ௡ǡ ݕଶ௡ǡ ݐሻሽ ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ τ Ͳሽ ൏ ܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ ...(2) Hence we have from (1) and (2)

ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ܯሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ and ܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ܰሺݕଶ௡ǡ ݕଶ௡ିଵǡ ݐሻ. Similarly we also have

ܯሺݕଶ௡ାଵǡ ݕଶ௡ାଶǡ ݇ݐሻ ൒ ܯሺݕଶ௡ାଵǡ ݕଶ௡ǡ ݐሻ and ܰሺݕଶ௡ାଵǡ ݕଶ௡ାଶǡ ݇ݐሻ ൑ ܰሺݕଶ௡ାଵǡ ݕଶ௡ǡ ݐሻ.

ܯሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൒ ܯሺݕଶ௡ିଵǡ ݕଶ௡ǡ ݐሻ andܰሺݕଶ௡ǡ ݕଶ௡ାଵǡ ݇ݐሻ ൑ ܰሺݕଶ௡ାଵǡ ݕଶ௡ǡ ݐሻ, Hence by lemma (2.12) ,ሼݕሽ is a Cauchy sequence in ܺǤ

Now suppose ܣܤሺܺሻ is a complete subspace of ܺ.note that the sequence ሼݕଶ௡ାଵሽ is contained inܣܤሺܺሻ and has a limit in ܣܤሺܺሻ say ݖǤ so we get ܣܤݓ ൌ ݖǤ we shall use the fact that subsequence ሼݕଶ௡ሽ also convergence to ݖ. now putting ݔ ൌ ݓ ,ݕ ൌ ݔଶ௡ାଵ in (b)

and taking ݊ ՜ , we have

ܯሺܲݓǡ ܳݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺܲݓǡ ܣܤݓǡ ݐሻ כ ܯሺܵܶݔଶ௡ାଵǡ ܣܤݓǡ ݐሻ כሺܲݓǡ ܵܶݔଶ௡ାଵǡ ݐሻሽ As ݊ ՜ ܯሺܲݓǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺܲݓǡ ݖǡ ݐሻ כ ܯሺݖǡ ݖǡ ݐሻ כ ሺܲݓǡ ݖǡ ݐሻሽ ܯሺܲݓǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺܲݓǡ ݖǡ ݐሻ כ ͳሽ ൐ ܯሺܲݓǡ ݖǡ ݐሻ...(3) ܽ݊݀ ܰሺܲݓǡ ܳݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺܲݓǡ ܣܤݓǡ ݐሻ τ ܰሺܵܶݔଶ௡ାଵǡ ܣܤݓǡ ݐሻ τ ܰሺܲݓǡ ܵܶݔଶ௡ାଵǡ ݐሻሽ As ݊ ՜ ܰሺܲݓǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺܲݓǡ ݖǡ ݐሻ τ ܰሺݖǡ ݖǡ ݐሻ τ ܰሺܲݓǡ ݖǡ ݐሻሽ ܰሺܲݓǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺܲݓǡ ݖǡ ݐሻ τ Ͳሽ ൏ ܰሺܲݓǡ ݖǡ ݐሻ ...(4)

From (3) and (4) , ܲݓ ൌ ݖ. Since ܣܤݓ ൌ ݖthus we haveܲݓ ൌ ݖ ൌ ܣܤݓ that is ݓ is coincidence point of ܲ

andܣܤ. Since ܲሺܺሻ ؿ ܵܶሺܺሻǡ ܲݓ ൌ ݖ implies thatݖ א ܵܶሺܺሻǤ

letݒ א ܵܶିଵݖǤthenܵܶݒ ൌ ݖǤ

Putting ݔ ൌ ݔଶ௡andݕ ൌ ݒin (b), we have

ܯሺܲݔଶ௡ǡ ܳݒǡ ݇ݐሻ ൒ ߮ሼܯሺܲݔଶ௡ǡ ܣܤݔଶ௡ǡ ݐሻ כ ܯሺܵܶݒǡ ܣܤݔଶ௡ǡ ݐሻ כ ሺܲݔଶ௡ǡ ܵܶݒǡ ݐሻሽ As ݊ ՜ ܯሺݖǡ ܳݒǡ ݇ݐሻ ൒ ߮ሼܯሺݖǡ ݖǡ ݐሻ כ ܯሺݖǡ ݖǡ ݐሻ כ ሺݖǡ ݖǡ ݐሻሽ ܯሺݖǡ ܳݒǡ ݇ݐሻ ൒ ߮ሼͳሽ ൌ ͳ ܯሺݖǡ ܳݒǡ ݇ݐሻ ൒ ͳ ...(5) ܽ݊݀ ܰሺܲݔଶ௡ǡ ܳݒǡ ݇ݐሻ ൑ ߖሼܰሺܲݔଶ௡ǡ ܣܤݔଶ௡ǡ ݐሻ τ ܰሺܵܶݒǡ ܣܤݔଶ௡ǡ ݐሻ τܰሺܲݔଶ௡ǡ ܵܶݒǡ ݐሻሽ ܰሺݖǡ ܳݒǡ ݇ݐሻ ൑ ߖሼܰሺݖǡ ݖǡ ݐሻ τ ܰሺݖǡ ݖǡ ݐሻ τ ܰሺݖǡ ݖǡ ݐሻሽ ܰሺݖǡ ܳݒǡ ݇ݐሻ ൑ ߖሼͲሽ ൌ Ͳ ܰሺݖǡ ܳݒǡ ݇ݐሻ ൑ Ͳ ...(6)

From (5) and (6),we have ݖ ൌ ܳݒ.

Again Putting ݔ ൌ ݖandݕ ൌ ݔଶ௡ାଵin (b) and as݊ ՜

ܯሺܲݖǡ ܳݔଶ௡ାଵǡ ݇ݐሻ ൒ ߮ሼܯሺܲݖǡ ܣܤݖǡ ݐሻ כ ܯሺܵܶݔଶ௡ାଵǡ ܣܤݖǡ ݐሻ כ ሺܲݖǡ ܵܶݔଶ௡ାଵǡ ݐሻሽ

ܯሺܲݖǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺܲݖǡ ܲݖǡ ݐሻ כ ܯሺݖǡ ܲݖǡ ݐሻ כ ሺܲݖǡ ݖǡ ݐሻሽ ܯሺܲݖǡ ݖǡ ݇ݐሻ ൒ ߮ሼܯሺܲݖǡ ݖǡ ݐሻ כ ͳሽ ൐ ܯሺܲݖǡ ݖǡ ݐሻ ...(7)

(7)

ܽ݊݀

ܰሺܲݖǡ ܳݔଶ௡ାଵǡ ݇ݐሻ ൑ ߖሼܰሺܲݖǡ ܣܤݖǡ ݐሻ τ ܰሺܵܶݔଶ௡ାଵǡ ܣܤݖǡ ݐሻ τ ܰሺܲݖǡ ܵܶݔଶ௡ାଵǡ ݐሻሽ

ܰሺܲݖǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺܲݖǡ ܲݖǡ ݐሻ τ ܰሺݖǡ ܲݖǡ ݐሻ τܰሺܲݖǡ ݖǡ ݐሻሽ

ܰሺܲݖǡ ݖǡ ݇ݐሻ ൑ ߖሼܰሺܲݖǡ ݖǡ ݐሻ τ Ͳሽ ൏ ܰሺܲݖǡ ݖǡ ݐሻ ...(8) From (7) and (8), ܲݖ ൌ ݖǤ So ܲݖ ൌ ܣܤݖ ൌ ݖǤ

By putting ݔ ൌ ݔଶ௡ǡ ݕ ൌ ݖ in (b) and taking ݊ ՜ ,ܳݖ ൌ ݖǤ hence ܳݖ ൌ ܵܶݖ ൌ ݖ. Now putting ݔ ൌ ݖǡ ݕ ൌ ܶݖ in (b) and using (d) ,we have

ܯሺݖǡ ܶݖǡ ݇ݐሻ ൒ ͳ andܰሺݖǡ ܶݖǡ ݇ݐሻ ൑ ͲǤthusݖ ൌ ܶݖǤ Sinceܵܶݖ ൌ ݖǡthereforeܵݖ ൌ ݖǤ

To prove ,ܤݖ ൌ ݖ, we put ݔ ൌ ܤݖǡ ݕ ൌ ݖin (b) and using (d), We have ܯሺݖǡ ܤݖǡ ݇ݐሻ ൒ ͳ and ܯሺݖǡ ܤݖǡ ݇ݐሻ ൑ ͲǤThus ݖ ൌ ܤݖǤ Since ܣܤݖ ൌ ݖtherefore ܣݖ ൌ ݖǤ

By combining the above result we have ܣݖ ൌ ܤݖ ൌ ܵݖ ൌ ܶݖ ൌ ܲݖ ൌ ܳݖ ൌ ݖǤ that is ݖ is a common fixed point of ܣǡ ܤǡ ܵǡ ܶǡ ܲܽ݊݀ܳǤ

Uniqueness – Let ݓሺݓ ് ݖሻ be another common fixed point of ܣǡ ܤǡ ܵǡ ܶǡ ܲandܳ then ܣݓ ൌ ܤݓ ൌ ܵݓ ൌ ܶݓ ൌ ܲݓ ൌ ܳݓ ൌ ݓǤ

By putting ݔ ൌ ݖǡ ݕ ൌ ݓǡwe haveܯሺݖǡ ݓǡ ݇ݐሻ ൒ ͳandܰሺݖǡ ݓǡ ݇ݐሻ ൑ ͲǤ Henceݖ ൌ ݓfor allݔǡ ݕ א ܺand ݐ ൐ ͲǤ

Thereforeݖis the unique common fixed point of ܣǡ ܤǡ ܵǡ ܶǡ ܲandܳǤ

References -

[1] Zadeh, L. A (1965), Fuzzy sets, Inform. and Control, 8, 338–353.

[2] Atanassov K.(1986), Intuitionistic fuzzy sets, Fuzzy Sets and System, 20, 87- 96.

[3]Coker, D.(1997), An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and System, 88, 81–89.

[4] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 29 (2006), 1073–1078.

[5] C. Alaca, I. Altun and D. Turkoglu, On compatible mappings of type (I) and (II) in intuitionistic fuzzy metric

spaces, Commun. Korean Math. Soc., 23(2008), 427–446.

[6] C. Alaca, D. Turkoglu and C. Yildiz, Common fixed points of compatible maps in intuitionistic fuzzy metric

spaces, Southeast Asian Bull. Math., 32(2008), 21–33.

[7] M. Aamri and D. EI Moutawakil, Some new common fixed point theorems under strict contractive conditions, J.Math. Anal. Appl., 270(2002), 181–188.

[8] S. Banach, Theoriles operations Linearies Manograie Mathematyezne, Warsaw, Poland, 1932.

[9] L. Ciric, S. Jesic and J. Ume, The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 37(2008), 781–791.

[10] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37(1962), 74– 79.

[11] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385–389.

[12] V. Gregory, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 28 (2006), 902–905.

[13] S. Jesic, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals, 41(2009), 292–301.

[14] O. Karmosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326–334. [15] E. P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer Academic Pub. Trends in Logic 8, Dordrecht 2000.

[16] S. Kutukcu, Weak Compatibility and common coincidence points in intuitionistic fuzzy metric spaces,

Southeast Asian Bulletin of Mathematics, 32(2008), 1081–1089.

[17] S. Kutukcu, C. Yildiz and D. Turkoglu, Fixed points of contractive mappings in intuitionistic fuzzy metric spaces, J. Comput. Anal. Appl., 9(2007), 181–193.

[18] K. Menger, Statistical metrices, Proc. Nat. Acad. Sci., 28(1942), 535–537.

[19] S. N. Mishra, N. Sharma and S. L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J.

Math. Math. Sci., 17(1994), 253–258.

[20] J. H. Park, Intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 22(2004), 1039–1046. [21] R. P. Pant, Common fixed points of contractive maps, J. Math. Anal. Appl., 226(1998), 251–258. [22] R. P. Pant, Noncompatible mappings and common fixed points, Soochow J. Math., 26(2000), 29–35. [23] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188(1994), 436–440.

[24] R. P. Pant, Common fixed points of Lipschitz type mapping Pairs, J. Math. Anal. Appl., 240(1999), 280–

(8)

[25] V. Pant, Some fixed point theorems in fuzzy metric space, Tamkang J. Math., 40(2009), 59–66.

[26] H. K. Pathak, Y. J. Cho and S. M. Kang, Remarks on R-weakly commuting mappings and common fixed

point theorems, Bull. Korean Math. Soc., 34(1997), 247–257.

[27] LDJ Sigalottiand A. Mejias, OnEl Naschie’sconjugate complex time, fractalE(∞) space-timeand faster-thanlight particles, Int. J. Nonlinear Sci. Number Simul., 7, (2006), 467–472.

[28] R. Saadati, S. Sedghi and N. Shobe, Modified intuitionistic fuzzy metric spaces and some fixed point theorems, Chaos, Solitons & Fractals, 38(2008), 36–47.

[29] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific Journal Math., 10(1960), 314–334.

[30] Sushil Sharma and B. Deshpande, Commonfixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces, Choas, Solitons & Fractals, 40(2009), 2242– 2256.

[31] Sushil Sharma and B. Deshpande, Compatible mappings of type (I) and (II) on intuitionistic in consideration of common fixed point, Comm. Korean Math. Soc., 24(2009), 197–214.

[32] Sushil Sharmaand B. Deshpande,Discontinuity and weak compatibility in fixed point consideration on non-complete fuzzy metric spaces, J. Fuzzy Math., 11(2003), 671–686.

[33] Sushil Sharma, S. Kutukcu and A. Pathak, Common fixed point theorems for weakly compatible mappings in intuitionistic fuzzy metric spaces, J. Fuzzy Math., 17(2009), 225–240.

[34] D. Turkoglu, C. Alaca and C. Yildiz, Compatible maps and compatible maps of types (α) and (β) in intuitionistic fuzzy metric spaces, Demonstratio Math., 39 (2006), 671–684.

[35] D. Turkoglu, C. Alaca, Y. J. Cho and C. Yildiz, Common fixed point theorems in intuitionistic fuzzy metric

spaces, J. Appl. Math. and Computing, 22 (2006), 411–424.

[36] R. Vasuki, Common fixed point for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math., 30(1999), 419–423.

References

Related documents

than 0.45 m compared with total low-rise households Star: Levee- break point (136 km upstream on the right levee), Dark Gray: Other municipalities in Saitama; Shaded polygon:

In combination with the results presented in Table 3 this shows a new model is needed for saliency when there are olfactory stimuli present in VEs because both saliency and

the first true commercial attempt at a global, fully electronic system for maritime documentation, and the commitment being shown by the investing organisations and the users

Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang

  Undang‐Undang  Republik  Indonesia  Nomor  12 

Maliputo ( Caranx ignobilis Foorskal) Fish Cage Farming Practices Among Selected Operators in Taal Lake, Batangas, Philippines.. DNA Barcoding of the Ichthyofauna

a paired Filter Paper Strip or a Dacron-tipped swab with desiccant for delayed culture on each of 1,519 children.. The children were from closed populatioll groups : those attending

A U-shape moisture sensor is proposed based on MPA (microstrip patch antenna) for detecting the moisture content of rice.. The MC range varies from 10.71% to 21.87% at operated