• No results found

The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells

N/A
N/A
Protected

Academic year: 2021

Share "The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Journal

of

Biotechnology

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j b i o t e c

The

DNA

methylation

landscape

of

Chinese

hamster

ovary

(CHO)

DP-12

cells

Anna

Wippermann

a,b

,

Oliver

Rupp

c

,

Karina

Brinkrolf

b

,

Raimund

Hoffrogge

a,b

,

Thomas

Noll

a,b,∗

aInstituteofCellCultureTechnology,BielefeldUniversity,Bielefeld,Germany bCenterforBiotechnology,BielefeldUniversity,Bielefeld,Germany

cBioinformaticsandSystemsBiology,Justus-Liebig-University,Giessen,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18December2014

Receivedinrevisedform9February2015 Accepted11February2015

Availableonline19February2015 Keywords:

CHO Epigenetics DNAmethylation

Wholegenomebisulfitesequencing Geneexpression

a

b

s

t

r

a

c

t

Chinesehamsterovary(CHO)cellsrepresentthemostcommonlyusedproductioncelllinefortherapeutic

proteins.Byrecentgenomeandtranscriptomesequencingabasiswascreatedforfutureinvestigationsof

genotype–phenotyperelationshipsandforimprovementofCHOcellproductivityandproductquality.In

thiscontextinformationismissingaboutDNAcytosinemethylationasacrucialepigeneticmodification

andanimportantelementinmammaliangenomeregulationanddevelopment.Here,wepresentthe

firstDNAmethylationmapofaCHOcelllineinsingle-baseresolutionthatwasgeneratedbywhole

genomebisulfitesequencingcombinedwithgeneexpressionanalysisbyCHOmicroarrays.WeshowCHO

DP-12cellstoexhibitglobalhypomethylationcomparedtoamajorityofmammalianmethylomesand

hypermethylationofCpG-denseregionsatgenepromoterscalledCpGislands.Wealsoobservedpartially

methylateddomainsthatcover62%oftheCHODP-12cellgenomeandcontainfunctionalclustersof

genes.Geneexpressionanalysisshowedtheseclusterstobeeitherhighlyorweaklyexpressedwith

regardtoCHO-specificcharacteristicsandhenceprovesDNAmethylationinCHOcellstobeanimportant

linkbetweengenomicsandtranscriptomics.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Chinese hamster ovary (CHO) cells are the major

mam-malian production cell linefor therapeutic proteins. Therefore

improvementofCHO-basedbioprocessperformanceandproduct

characteristicsofbiopharmaceutics,e.g.bymolecularengineering

approaches,isofgreatinteresttoacademiaandindustry(Baikand

Lee,2014).AnessentialbasisforthispurposeistheCHOK1genomic

sequenceandtranscriptomedatathatbecamerecentlyavailable

andwillenableadeeperunderstandingofgenotype–phenotype

relationshipsintermsofproductqualityattributes(BaikandLee,

2014;Lewisetal.,2013;Ruppetal.,2014).Amissinglinkbetween

thesecellularlevelsinCHOcells,however,istheyetunknownCHO

cellepigenome.

The term epigenetics classically describes phenomena that

modify gene expression without altering the DNA sequence.

It comprises posttranslational histonemodifications, chromatin

∗ Correspondingauthorat:BielefeldUniversity,Universitätsstraße25,33615 Bielefeld,Germany.Tel.:+495211068700;fax:+495211066023.

E-mailaddress:thomas.noll@uni-bielefeld.de(T.Noll).

remodelingand DNA methylation (Ndlovuet al.,2011; Tessarz

andKouzarides,2014).Furthermore,miRNAswereshowntobe

involved in epigenetic regulation,e.g. bydouble-negative

feed-backloops(Osellaetal.,2014).DNAmethylationhasbeenknown

sincethe1970s(HollidayandPugh,1975;Riggs,1975)andwas

shown tocontribute toprocesses of irreversiblegene silencing

suchasXchromosomeinactivationorsilencingofretrotransposons

(Bestoretal.,2014;PanningandJaenisch,1996;Walshetal.,1998).

DNAmethylationtakesplaceatcytosinebasesinthecontextof

CpGdinucleotidesandeffectsthemajorityofvertebrategenomes,

whichforthemostpartcontainonlyfewregionsoflow

methyla-tion(Meissneretal.,2008).Theseregionsincludee.g.CpG-dense,

oftenunmethylatedareasatgene promoterscalledCpGislands

(CGIs)thathavebeenextensivelystudiedinlocus-specific

exper-iments(DeatonandBird,2011;IllingworthandBird,2009).The

advent of nextgeneration sequencing technologies enabled an

in-depthmapping of thedistributionof DNA methylation ona

genomescaleforseveralmammaliantissuesandcelltypes.This

led,for instance,tothediscoveryofglobaldifferences between

thegenomesofhumanembryonicstemcellsandfetalfibroblasts

regarding the composition and patterning of DNA methylation

(Listeretal.,2009).Fibroblastcellsturnedouttobecharacterized

http://dx.doi.org/10.1016/j.jbiotec.2015.02.014

(2)

bywidespreadreducedmethylationassociatedwithlessactively

transcribedgenesandrepresentedthefirstcelllineshownto

con-tainso-calledpartiallymethylateddomains(PMDs)asanexception

tothenotionofgenerallyhighlymethylatedmammaliangenomes

(Gaidatzisetal.,2014).

Severalreportshinttowardaninfluenceofepigeneticeffectson

productgeneexpressioninCHO-basedbioprocesses,e.g.regarding

intragenic CpG content of transgenes (Bauer et al., 2010) and

CMVpromotermethylation(Kimetal.,2011;Yangetal.,2010;

Osterlehner et al., 2011).To analyzeDNA methylation in CHO

cells,werecentlydevelopedaCpGislandmicroarrayandshowed

differentialDNAmethylation inresponse tobutyratetreatment

(Wippermann et al., 2013). However, a comprehensive

under-standingofepigeneticeffectsinbiopharmaceuticsproductionas

animportant linkbetweengenotype and phenotyperequires a

globalcharacterizationoftheyetunknownCHOcellepigenome.

In this study theDNA methylation landscapeof IgG-producing

CHODP-12cellswascharacterizedandputativeinfluencesofthe

methylation landscape on gene expression were analyzed. For

this purposewe appliedwhole genomebisulfitesequencing in

combinationwithgeneexpressionanalysesbycustom-designed

CHO-specificmicroarrays(Beckeretal.,2014).Weshowthatthe

globallyhypomethylatedCHODP-12cellgenomecontains

hyper-methylatedCGIsandregionsofpartialmethylationthatcontain

functionalgeneclustersexpressedinadifferentialfashion.

2. Materialsandmethods

2.1. Cellcultureandcultivationprocessanalysis

IgG-producingCHODP-12cells(clone#1934,ATCCCRL-12445)

werecultivatedinCHOMACSCDmedium (MiltenyiBiotec,

Ber-gischGladbach,Germany)supplementedwith6mMl-glutamine

(FagronGmbH&Co.KG,Barsbüttel,Germany),200nM

methotrex-ate (MTX; Wyeth, Madison, NJ) and 0.1mg×L−1 Insulin-like

growthfactor(LongR3IGF-I;Sigma–Aldrich,Munich,Germany).

Cellswerecultivatedin250mLshakerflasks(CorningInc.,Corning,

NY)withaseedingcelldensityof1×106cells×mL−1.Four

repli-catecultures werepreparedfromonepreculture.Cultureflasks

werekeptat37◦C,80%humidityand5%CO2onashakingplatform

at185rpm(50mmdiameterrotation).Twodaysafterinoculation

samplesof6.5×106cellsweretakenforDNAandRNAextractions.

Measurementsofcelldensitiesandviabilitieswereperformedon

aCedexAS20cellcounter(InnovatisAG,Bielefeld,Germany).IgG

concentrationsweremeasuredwithaHPLCmethodonproteinA

columnsaccordingtothemanufacturer’sprotocol(PorosA,Applied

Biosystems,Foster City,CA). Glucoseandlactate concentrations

weremeasuredonanYSI2700SelectAnalyzer(YellowSprings

InstrumentsInc.,YellowSprings,OH).

2.2. Libraryconstructionandsequencing

ReplicatesampleswerepooledandgenomicDNAwasextracted

from2.6×107CHODP-12cellsusingaDNeasyBlood&TissueKit

(Qiagen, Venlo,The Netherlands).50ng of extracted DNAwere

spikedwith0.01%(w/w)ofunmethylatedcl857Sam7LambdaDNA

(Promega,Madison,WI)thatservedasanunmethylatedcontrol

andwassubjectedtobisulfitetreatment(ZymoResearch

Methyl-ationLightningKit;ZymoResearch,Irvine,CA).Bisulfiteconverted

DNA was stored at −80◦C until library construction. Library

generationfrombisulfitetreatedDNAand10ngofunconverted

genomic DNA was performed using the EpiGnome Methyl-Seq

Kit (Epicenter, Madison, WI) according to the manufacturer’s

instructions. To allow for multiplexed sequencing of libraries

frombisulfitetreatedand nativeDNA,individuallibrarieswere

barcoded using EpiGnome Index PCR Primers (Epicenter). The

quality of both libraries was checked on High Sensitivity DNA

ChipsontheBioanalyzer(AgilentTechnologies,SantaClara,CA).

Paired-endsequencingwasperformedonanIlluminaHiSeq1500

systemina2×100bprunwith1%PhiXControlv3(Illumina)in

eachlane.Oneentirelanewasusedasacontroltosequencethe

unconverted CHODP-12 genomic DNAlibrary and toallowfor

phasingandpre-phasing.Lanescontainingbisulfitelibrarieswere

additionallyloadedwith10%oftheunconvertedDNAlibrary.

2.3. Bioinformaticsanalysisofsequencingdata

Paired-endreadswerequalitycheckedusingFastQC(Andrews,

2010)andtrimmedusingTrimmomatic(Bolgeretal.,2014).The

referenceCHOK1genome(Xuetal.,2011)wascorrectedforsingle

nucleotidepolymorphisms(SNPs)withintheCHODP-12cellline.

FirstthereadsfromthesequencingofunconvertedCHODP-12DNA

weremappedtotheCHOK1genomewithBowtie2(Langmeadand

Salzberg,2012).SNPswerethencalledusingthesamtoolsmpileup

algorithm(Lietal.,2009)andfilteredusinginhouseperlscripts.

SNPswithaminimalcoverageof4readsandatleast25%ofthe

readscontainingtheSNPwereusedforcelllinecorrectionusing

thevcfutilsvcf2fqmethod.TheSmithlabMethylationData

Analy-sisPipeline(Songetal.,2013)wasusedformappingofreadsfrom

bisulfitetreatedlibrariestotheSNP-correctedreferencegenome,

removalofduplicatereads,calculationofsingle-sitemethylation

levels,estimationofbisulfiteconversionratesandcalculationof

methylationlevelsinuntranslatedregions(UTRs),exons,introns

andCGIs(annotationofCGIsbasedonWippermannetal.,2013).

Methylationdatatrackswereintegratedintothein-houseGenDBE

genomebrowser(Ruppetal.,2014)toinspectselectedregionswith

knownmethylationpatternsforaccordanceofWGBSresults.For

this,branchedchainaminoacidaminotransferasecytosolic-likegene,

Bcat1(GeneID100763658),servedasamethylatedcontrol.The

beta-actingene,Actb(GeneID100689477),servedasan

unmethy-latedcontrol.Partiallymethylateddomains(PMDs)ofmorethan

10kband methylationlevelsbelow70%wereidentifiedusinga

slidingwindowapproachaccordingtoListeretal.(2009).Forthis,

SNP-correctedCHOK1scaffoldscontainingmorethan100CpGs

wereincludedintotheanalysis(5874 scaffoldscomprising96%

of the CHOgenome). For PMDs and hypermethylated domains

(HMDs)with>100CpGs,averagemethylationlevels,sizeand

cov-eragebycodingsequence(CDS)wereanalyzed.AssignmentofCHO

DP-12PMDstotherecentlysequencedChinesehamster(CH)

chro-mosomes(Brinkrolfetal.,2013)wasbasedonreadcoverages.

2.4. Geneexpressionprofilingbymicroarrays

Total RNA was extracted from 6.5×106 cells per replicate

culture usingthe Direct-zolRNA MiniPrepKit (ZymoResearch).

Purified RNA samples were quantified on a NanoPhotometer

(IMPLEN, Munich, Germany). Integrity of RNA was checked on

denaturingagarosegelsstainedwithGelRed(BiotiumInc.,

Hay-ward,CA)and visualizedona FusionXL7(Vilber,Eberhardzell,

Germany). RNA sampleswere pooled and analyzed by4×44K

one-color microarrays (Agilent Technologies). Labeling and

hybridizationoffourreplicatecustomdesignedCHOmicroarrays

wasperformedasdescribedinBeckeretal.(2014).Arrayquality

was estimated based on the resulting QC reports and plots of

raw data. Data analysiswassubsequently performed using the

limmapackageinR(Smyth,2005)afterbackgroundcorrectionand

quantilenormalizationacrossthetechnicalreplicates.Forthe

eval-uationofourwholegenomebisulfitesequencingdataweaimed

tocollectthesubset ofgenes highlyexpressedin oursamples.

Allgeneswithexpressionvaluesabovethe75thpercentilewere

(3)

Viab VCD qp Glc Lac Cultivation time [d] g L - 1 A 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10 11 Viab le cell dens ity [10 6 cells mL -1] Cultivation time [d] Cell spec ific productiv ity [pg cell -1d -1] B 0 1 2 3 4 5 6 7 Glc Lac Sampling Sampling Viab ility [%]

Fig.1. Cellgrowth,IgGproduction,glucoseandlactateconcentrationsofCHODP-12 cellcultures.Errorbarsrepresentstandarddeviationsoffourreplicatecultures.The verticallinemarksthesamplingpointforwholegenomebisulfitesequencingand geneexpressionanalysis.(A)Meanviability(Viab),cellspecificproductivity(qp) andviablecelldensity(VCD).(B)Glucose(Glc)andlactate(Lac)concentrations.

Gene Ontology annotations were performed using the DAVID

software(Huang etal.,2009)withEASEscoresof<0.1andFDR

correctionofpvaluesaccordingtoBenjaminiandHochberg(1995).

3. Results

3.1. Generationofthebase-pair-resolutionCHODP-12DNA

methylationmap

Replicate(n=4)batchculturesweremonitoredregardingviable

celldensity,viability,cellspecificproductivity(Fig.1A),glucose

consumptionandlactateformation(Fig.1B)toaccountforoptimal

growthandproductionbehavior.Theculturesshowednormalcell

growthwithamaximumviablecelldensitysevendayspost

inoc-ulationandhighviabilitiesuntilglucosedepletion.Whenglucose

waslimitedondayeightthecells startedtometabolizelactate.

Samplesweretakeninthemiddleoftheexponentialgrowthphase

whenthecellsexhibitedaviabilityof99%andacellspecific

pro-ductivityof7.4pg/cell×d.

ReplicatesampleswerepooledpriortoextractionofDNAfor

analysisbywholegenomebisulfitesequencing.Isolatedgenomic

DNA was treated with bisulfite, which led to the conversion

ofunmethylated cytosines touracil bases, whereas methylated

cytosinesremainedintact.AstheCHODP-12genomesequenceis

notavailableyet,sequencingreadsfrombisulfitetreatedlibraries

weremappedtotheCHOK1genome.Forthis, asecondlibrary

wasgeneratedfromuntreatedgenomicCHODP-12DNAtoaccount

forSNPspresentbetweenthetwogenomes.Bothlibrarieswere

subjectedtonextgenerationIlluminasequencing.Aftertrimming

ofpaired-endsequencingreadsweobtained66.2Gb(402,802,819

reads)ofsequenceinformationforthebisulfitetreatedCHO

DP-12DNAand95.8Gb(575,986,927reads)fortheunconvertedCHO

DP-12genome.84%ofthelattercouldbemappedtotheCHOK1

referencegenomeand74%wereproperlypaired.SNPdetection

showed4,054,041SNPsintheCHODP-12genomecomparedto

theCHOK1cellline.

In the nextstep, reads frombisulfite treated libraries were

mappedtotheSNP-corrected CHOK1genome.Thisresultedin

anaveragesequencingdepthof 14-foldwith94% ofallknown

CpGsitescovered(15.3millionCpGs).Subsequently,methylation

levelsforeach CpGdinucleotidewithintheCHODP-12genome

weredeterminedbycalculatingtheratioofmappedthymines(as

uracil isamplifiedas thymine)and cytosines atindividual CpG

positions.Toevaluatethequalityofthesequencingdataandthe

correctnessofitsprocessing,CHODP-12cellgenomicregionswith

knownmethylationlevelswerecomparedtopreviousexperiments

tocheckforconsistency(accordingtoWippermannetal.,2013).For

thispurposearegionlocatedwithinthepromoterCpGislandof

thebranchedchainaminoacidaminotransferasecytosolic-likegene

(Bcat1)servedasamethylatedcontrol(SupplementaryFig.S1A).

Partofthe5UTR-associatedCpGislandofthebeta-actingene(Actb)

servedasanunmethylatedcontrol(SupplementaryFig.S1B).Both

regionsexhibitedtheexpectedmethylationlevels.Also,thequality

ofbisulfiteconversionwascontrolledbycalculatingtheconversion

rateofthespike-inLambdaDNA,whichwasabove99%.

3.2. GlobalassessmentoftheCHODP-12DNAmethylation

landscape

CHODP-12cellshadanaveragemethylationlevelof61%.As

globalmethylationlevelsof>70%werereportedforawidevariety

ofcells(e.g.82%methylationforHUES64cellsor78%methylation

forfetalbraincells)(Zilleretal.,2013),thisfindingsuggests

hypo-methylationforthesamplesanalyzed.AglobalanalysisofDNA

methylationonthelevelofsingleCpGdinucleotidesshoweda

gen-erallybimodaldistributionof methylationwith52% ofallCpGs

beinglargelymethylated(>70%ofreadsshowingmethylation)and

30%ofunmethylatedCpGs(≤10%ofreadsshowingmethylation)

(Fig.2A).TheremainderofCpGdinucleotidesshowedpartial

meth-ylation.

TogetaninitialoverviewoftheCHODP-12 cellDNA

meth-ylation landscape, we examined whether the observed overall

hypomethylationwasduetoauniformdistributionofCpGswith

lowandhighmethylationlevelsoriftherewerelocaldifferencesin

averagemethylationbetweengenomicregions.Therefore,the

dis-tributionofaveragemethylationlevelsfornon-overlapping20kb

windowstiledthroughthegenomewasanalyzed (accordingto

Schroederetal.,2011).Windowscontaininglessthan100CpGs

were excluded from the analysis. The purpose of this

calcula-tionwastodiminishtheeffectof putativelyunmethylatedCpG

islands.Thisanalysisshowedaverybroadmethylationspectrum

between20%and80%methylationwithapeakat60%,indicatinga

highdegreeofheterogeneityinlocalCHODP-12DNAmethylation

(Fig.2B).

TofurthercharacterizetheCHODP-12 cellmethylome with

regard tothe methylationof annotated genomic features, DNA

methylationlevelsforCGIs,untranslatedregions (UTRs),coding

sequences(CDSs)andintrons(CDSandintronsalsoreferredtoas

gene-bodies)weredetermined(Fig.2C).45%ofallCGIsintheCHO

DP-12cellgenomeprovedtobeunmethylatedandCGIsshoweda

meanmethylationlevelof45%.UTRsshowedameanmethylation

of56%,with26%ofthembeingunmethylated.CDSsandintronic

regionsexhibitedmeanmethylationlevelsof76%and68%,

respec-tively,alowpercentageofunmethylatedregions(9%and7%)and

ahighfrequencyofhighlymethylatedregions.

In summary, CHODP-12 cells showedhypomethylation and

evidence for local differences in averagemethylation levels. In

(4)

0 5 10 15 20 25 30 35 0 100

C

Freq u ency of CpGs [%] 0 20 40 60 80 0 5 10 15

A

B

Freq u ency of 20 kb wind o ws [%] Freq u ency of regi o n [%]

Methylation level [%] Methylation level [%]

Methylation level [%] partial methylation hyper-methylation hypo-methylation 0 10 20 30 40 50 7 % 0 100 0 100 0 100 0-10 >10-20>20-30>30-40>40-50>50-60 >70-80>80-90>90-1 00 >60-70 mean 45 % mean 56 % 45 % 26 % 9 % mean 76% mean 68 % 20 %

CGIs UTRs CDSs Introns

Fig.2.GlobaldistributionofDNAmethylationlevels.(A)PercentmethylationofCpGdinucleotides.(B)Percentmethylationof20kb,non-overlappingwindowstiledthrough theCHODP-12genome.(C)PercentmethylationofCpGislands(CGIs),untranslatedregions(UTRs),codingsequences(CDSs)andintrons.Lightgreybarsmarkthepercentage ofregionswithmethylationlevelsbelow10%.Alsoindicatedistheaveragemethylationlevelofeachgenomicfeature.

provedtohavethelowestmethylation levels,althougha larger

fractionofthemwasmethylatedase.g.incomparisontoCGIsin

humantissues(9%ofhypermethylatedCGIs)(Eckhardtetal.,2006).

Gene-bodiesinCHODP-12cellsexhibitedahigherlevelofDNA

methylationthanUTRs.

3.3. EvidenceforpartiallymethylateddomainsintheCHODP-12

genome

AswefoundindicationsofheterogeneousDNAmethylation

pat-ternsintheCHODP-12cellgenome,weplottedmethylationlevels

alongtheSNP-correctedCHOK1scaffoldstovisualizetheir

dis-tribution.Inthisanalysisweobservedheterogeneouspatternsof

DNAmethylationwithregionsshowingahighdegreeof

methyla-tionandneighboringregionswithpartialmethylation(exemplarily

shownin Fig.3 andSupplementaryFig.S2).Similarpatternsof

alternating methylation domains were e.g. found in colorectal

cancer,breastcancer,fibroblastcultures,SH-SY5Yneuronalcells

andplacenta.Regionswithpartialmethylationinthesecellsand

tissues were termed partially methylated domains (PMDs)

(Schroederetal.,2011,2013;Gaidatzisetal.,2014;Listeretal., 2009;Honetal.,2012;Bermanetal.,2012).Accordingly,we

classi-fiedregionswithaminimumsizeof10kbandamethylationlevel

below70%asCHODP-12PMDs.CalculationofthePMD-coverageof

allSNP-correctedCHOK1scaffoldswithmorethan100CpGs(4874

scaffoldscomprising96%oftheCHOgenome)showedthat62%of

theanalyzedscaffoldswerepartiallymethylated.Accordingly,38%

oftheCHODP-12cellgenomewerecoveredbyhighlymethylated

domains(HMDs).

AsitwasshownthatXchromosomeinactivationcomplicates

PMDanalyses(Schroederetal.,2011)andduetothefactthatCHO

cellsoriginatefromafemaledonor,wenextaskedwhetherCHO

DP-12PMDsshoweddifferencesintheirdistributiononthe

sin-glechromosomes.Wecheckedforthispossibilitybymappingthe

wholegenomebisulfitesequencingreadstotheChinesehamster

(CH)chromosomes sequencedandannotated byBrinkrolfetal.

(2013).Normalizedtochromosomesize,wedetectedonaverage

18.4PMDs/MbandaverysignificantdifferenceinPMDcountper

2500 3000 3500 4000 4500 5000 5500 6000 CGI Exon PMD Meth level >80% >60-80% 0-60%

Color coding of methylation level

[kb]

Partial sequence of scaffold JH000005

Fig.3. Exemplarydisplayof3750kbofSNP-correctedCHOK1scaffoldJH000005.CHODP-12DNAmethylationlevelsfor1kbwindowswereplottedalongthescaffoldand color-codedaccordingtothelegend.AlsoshownareexonsandCpGislands(CGI)inblack.RegionsidentifiedasCHODP-12PMDsaremarkedbybluebars.Completescaffolds JH000001toJH000009areshowninSupplementaryFigureS2.(Forinterpretationofthereferencestocolorinfigurelegend,thereaderisreferredtothewebversionofthe article.)

(5)

Table1

Geneontology(GO)classificationoftotalCHODP-12PMD-genes(4265)withBenjaminipvalues<0.05.

GOterm(category‘biologicalprocess’) % Foldenrichment pValue Benjaminipvalue

Translationalelongation 1.7 3.07 5.59×10−29 2.86×10−25

Translation 3.6 1.96 1.96×10−22 5.01×10−19

Sensoryperceptionofsmell 4.3 1.80 5.95×10−21 1.02×10−17

Sensoryperceptionofchemicalstimulus 4.6 1.71 3.16×10−19 4.05×10−16

Neurologicalsystemprocess 9.1 1.35 1.31×10−13 1.35×10−10

Cognition 7.2 1.41 2.90×10−13 2.48×10−10

Sensoryperception 6.5 1.43 6.29×10−13 4.60×10−10

G-proteincoupledreceptorproteinsignalingpathway 8.1 1.28 8.68×10−9 5.56×10−6

Ribosomebiogenesis 1.3 1.88 9.95×10−8 5.66×10−5

Ribonucleoproteincomplexbiogenesis 1.7 1.64 1.67×10−6 8.54×10−4

ncRNAprocessing 1.7 1.60 4.47×10−6 0.002

rRNAprocessing 1.0 1.87 5.89×10−6 0.003

ncRNAmetabolicprocess 2.0 1.52 8.94×10−6 0.004

rRNAmetabolicprocess 1.0 1.80 2.28×10−5 0.008

RNAsplicing,viatransesterificationreactions 1.4 1.60 3.19×10−5 0.011

RNAsplicing,viatransesterificationreactionswith

bulgedadenosineasnucleophile

1.4 1.60 3.19×10−5 0.011

NuclearmRNAsplicing,viaspliceosome 1.4 1.60 3.19×10−5 0.011

RNAprocessing 3.9 1.27 1.25×10−4 0.039

MbforchromosomeX,whichwasmuchhigherwith26.4PMDs/Mb

(SupplementaryFig.S3).AsimilarfindingwasreportedbyLister

etal.(2009)forIMR90PMDs.Therefore,PMDsontheX

chromo-somewereomittedfromfurtheranalysesofPMDandHMDsize,

methylationlevelandcodingsequence(CDS)coverage.

CHODP-12PMDsexhibited54%methylationonaverage,amean

sizeof64kbandamaximumsizeof2990kb(Fig.4AandB).In

con-trast,HMDsshowedameanmethylationof77%,ameansizeof

34kbandamaximumsizeof450kb.Next,wecalculatedthe

cov-erageofCHODP-12PMDsandHMDsbycodingsequence(Fig.4C).

CHODP-12 PMDs showeda mean CDScoverage of 1.8% and a

maximumcoverageof65%,whereasHMDsexhibitedameanCDS

coverageof3.4%andamaximumcoverageof90%.Inorderto

fur-thermoreobtainthenumberofCHODP-12PMD-localizedgenes,

wecategorizedallannotatedCHOgenesaccordingtotheirgenomic

positionwithinoroutsideofaCHODP-12PMD.Geneswith

par-tialPMDcoveragewereexcluded.4265uniquegenesco-localized

withaCHODP-12PMD,representingonly18%ofthetotalof24,383

genespredictedfortheCHOK1cellline(Xuetal.,2011).In

sum-mary,CHODP-12PMDsprovedtobelargerbutalsoshowedclear

evidenceforcontainingfewergenesthanCHODP-12HMDs.

3.4. FunctionalclassificationofgeneswithinCHODP-12partially

methylateddomains

Inanextstep,weexaminedPMD-geneexpressioninour

sam-plesusing a CHO-specificmicroarray (Beckeret al.,2014), as a

knowncharacteristicofPMDsistranscriptionalrepressionof

co-localizedgenes.Thismicroarray enabled theanalysisof 16,693

uniquegeneclustersandcovered85%oftheidentifiedCHO

DP-12PMD-genes.Theremaining(635)PMD-geneswerenotpresent

onthemicroarrayandwerethereforenotanalyzed(Fig.4D).Aswe

appliedaone-colorlabelingprotocol,anestimationofgene

expres-sionstrengthswaspossiblebythisexperimentandallowedforthe

identificationofthesubsetofgenesthatwerehighlyexpressed.

Bythismeans,3120highlyexpressedgeneswereidentifiedand

40%(1261)ofthemalsobelongedtotheCHODP-12PMD-localized

genes.

Interestingly,Gene Ontology (GO)analysisof thetotal 4265

genesassociatedwithaCHODP-12PMDshowedsignificant

enrich-mentof two different generalcategories. Thesegenes wereon

theonehandrelated togene expression(RNAmetabolism and

translation)and ontheotherhandrelated toneurological

pro-cesses(Table 1).Whenwe performedseparate GOannotations

for thehighly expressed PMD-genes(1261) and theweakly or

notexpressedPMD-genes(2360),respectively,wefoundthatthe

highlyexpressedPMD-genesmainlybelongedtoGOclasseswith

functionsrelatedtogeneexpression(Table2andSupplementary

TableS1).Additionally,genescontributingtoenergymetabolism

and cellcyclecontrolwereenriched. Withintheweakly ornot

expressedPMD-genesthosecontributingtoneurologicalprocesses

wereoverrepresented(Table3andSupplementaryTableS3).Also,

geneswithfunctionsincellularadhesionandcalciumion

homeo-stasisweresignificantlyenrichedinthisgroup.

4. Discussion

4.1. TheCHODP-12cellDNAmethylomeischaracterizedby

globalhypomethylationandhypermethylationofCpGislands

Thisstudy providesthefirst genome-wide, single-baseDNA

methylation map ofa CHO cellgenome in combination witha

functionalassessmentofitsinfluenceongeneexpression.To

exem-plarilyexamineDNAmethylationpatternsandgeneexpressionof

viable,antibody-producingCHOcells,weanalyzedsamplesoffour

replicateCHODP-12cellbatchculturesintheexponentialgrowth

phasebywholegenomebisulfitesequencing.Weshowthatthe

CHODP-12cellgenomeishypomethylated(61%CpGmethylation)

comparedtomostmammaliancelltypeslikeembryonicstem(ES)

cells,theirderivativesandprimarycellsthatexhibitglobal

methyl-ationlevelsof>70%(Zilleretal.,2013).Globalhypomethylationhas

beenreportedforcancerssuchascolontumorsandalsofor

long-termculturedcellslikeIMR90,foreskinfibroblastsandHepG2cells

andprovedtobeeitherrelatedtoauniformoralocally

concen-trateddistributionofhypomethylatedregions(Zilleretal.,2013;

Laurentetal.,2010;Bermanetal.,2012;SchroederandLaSalle, 2013).

Theanalysisofmethylationofgenomicfeaturesshowedthat

CGIsand UTRsin CHODP-12 cells are less frequently

methyl-atedthanso-called genebodies (codingsequencesandintrons)

that are predominantly methylated. Thisis in accordance with

previouslydescribedDNAmethylomesthatshowhigherlevelsof

DNAmethylationingene-bodiescomparedtoUTRs.Thiswase.g.

shown inbovine muscletissue (Huang et al.,2014).For

multi-plespeciesagenome-widenegativecorrelationbetweenpromoter

methylationandgene expressionwasdescribed,whereas

gene-body methylationhasbeenreportedtobepositivelycorrelated

(6)

Methylati o n level of do m ain [%] D M P HMD Size of do m ain [kb] 0 CDS cove rage of do m ain [%]

A

B

C

5 10 20 40 60 20 40 60 80 11,213 2,360 635 1,859 1,261 PMD-localized genes (4,265) Highly expressed genes (3,120) Genes analyzed by microarray (16,693)

D

100 80 15 D M P HMD 0 10 0 120 D M P HMD 20 0

Fig.4. CharacterizationofCHODP-12partiallymethylateddomains(PMDs)andhighlymethylateddomains(HMDs).(A–C)Meanvaluesofdataareindicatedbyblack circles.Outliersarenotshown.(A)Percentmethylation.(B)Sizeinkilobasepairs(kb).(C)Codingsequence(CDS)coverage.(D)4265genesco-localizedwithCHODP-12 PMDs.Microarrayanalysisenabledassessmentoftheexpressionlevelsof16,693genes.Ofthese,3120werehighlyexpressed.1261ofthehighlyexpressedgenesalso co-localizedwithCHODP-12PMDs.

Table2

Geneontology(GO)classificationofhighlyexpressedCHODP-12PMD-genes(1261)withBenjaminipvalues<0.05.Displayedarethetop20GOtermsaccordingtopvalues. AcompletelistcanbefoundinSupplementaryTableSI.

GOterm(category‘biologicalprocess’) % Foldenrichment pValue Benjaminipvalue

Translation 11.7 5.78 4.54×10−76 1.41×10−72

Translationalelongation 6.1 9.92 7.25E×10−64 1.13×10−60

RNAprocessing 9.3 2.78 6.47×10−25 6.72×10−22

Ribosomebiogenesis 4.0 5.33 1.14×10−23 8.88×10−21

Ribonucleoproteincomplexbiogenesis 4.8 4.34 6.73×10−23 4.19×10−20

NuclearmRNAsplicing,viaspliceosome 4.0 4.25 9.30×10−19 4.83×10−16

RNAsplicing,viatransesterificationreactions 4.0 4.25 9.30×10−19 4.83×10−16

RNAsplicing,viatransesterificationreactionswith

bulgedadenosineasnucleophile

4.0 4.25 9.30×10−19 4.83×10−16

rRNAprocessing 2.9 5.23 2.61×10−17 1.16×10−14

RNAsplicing 5.4 3.11 2.84×10−17 1.11×10−14

rRNAmetabolicprocess 2.9 5.01 1.31×10−16 3.84×10−14

mRNAprocessing 5.6 2.84 2.09×10−15 6.57×10−13

Oxidativephosphorylation 2.9 4.78 2.32×10−15 6.60×10−13

ncRNAmetabolicprocess 4.4 3.17 1.47×10−14 3.83×10−12

Generationofprecursormetabolitesandenergy 5.2 2.74 7.95×10−14 1.91×10−11

mRNAmetabolicprocess 5.8 2.57 1.12×10−13 2.50×10−11

ncRNAprocessing 3.7 3.27 7.37×10−13 1.53×10−10

Energycoupledprotontransport,down

electrochemicalgradient

1.4 5.85 1.61×10−9 3.14×10−7

ATPsynthesiscoupledprotontransport 1.4 5.85 1.61×10−9 3.14×10−7

Ribosomalsmallsubunitbiogenesis 0.8 11.83 4.30×10−9 7.88×10−7

(7)

Table3

Geneontology(GO)classificationofweaklyornotexpressedCHODP-12PMD-genes(2360)withBenjaminipvalues<0.05.Displayedarethetop20GOtermsaccordingto

pvalues.AcompletelistcanbefoundinSupplementaryTableSII.

GOterm(category‘biologicalprocess’) % Foldenrichment pValue Benjaminipvalue

Celladhesion 6.3 1.63 6.01×10−10 1.23×10−6

Synaptictransmission 3.1 1.85 2.02×10−7 2.77×10−4

Transmissionofnerveimpulse 3.4 1.78 2.25×10−7 2.31×10−4

Behavior 4.2 1.60 1.70×10−6 0.001

Elevationofcytosoliccalciumionconcentration 1.4 2.37 2.23×10−6 0.002

Calciumionhomeostasis 2.1 2.00 2.45×10−6 0.001

Neurologicalsystemprocess 9.0 1.34 2.48×10−6 0.001

Cellularcalciumionhomeostasis 2.0 2.01 2.61×10−6 0.001

Cellulardi-,tri-valentinorganiccationhomeostasis 2.3 1.86 5.97×10−6 0.002

Cellularmetalionhomeostasis 2.1 1.92 8.43×10−6 0.003

Responsetowounding 4.5 1.52 8.63×10−6 0.003

Cytosoliccalciumionhomeostasis 1.4 2.21 1.18×10−5 0.004

Cellularchemicalhomeostasis 3.4 1.62 1.27×10−5 0.004

Cellularionhomeostasis 3.4 1.62 1.28×10−5 0.003

Metalionhomeostasis 2.1 1.87 1.38×10−5 0.004

Di-,tri-valentinorganiccationhomeostasis 2.4 1.80 1.39×10−5 0.003

Cell–cellsignaling 4.8 1.45 3.90×10−5 0.009

Cellularcationhomeostasis 2.4 1.72 4.26×10−5 0.009

Regulationofsystemprocess 2.8 1.64 5.03×10−5 0.010

Positiveregulationofhydrolaseactivity 1.8 1.84 8.70×10−5 0.017

Themeaningofevolutionaryconservedgene-bodymethylationis

notcompletelyunderstoodyet,butstudiesindicatethatintragenic

DNAmethylationmodulatesalternativeRNAsplicing(Maunakea

etal.,2013).CGIsprovedtohavethelowestoverallmethylation

levelsinCHODP-12cells,althoughalargerfractionofthemis

meth-ylatedcomparedtohumantissues,mouseembryomicstemcells

ordifferentiatedmousecells(Eckhardtetal.,2006;Meissneretal.,

2008;Stadleretal.,2011).Thisfindingisincontrasttotheconcept

ofCGIsbeingusuallycharacterizedbytheirlackofDNA

methyla-tion,butinaccordancewiththehypothesisthatagreatnumberof

CGIsbecomemethylatedinpermanentcelllines(Antequeraetal.,

1990).Cancercellsarealsoknowntoexhibitglobal

hypomethyla-tionthataccompaniesaberranthypermethylationofCGIs(Sproul

andMeehan,2013).Inmanyofsuchcaseshypermethylationof

pro-moterCGIscanberelatedtosilencingoftumorsuppressorgenes

regulatingcell growth,differentiation and apoptosis (Yang and

Zheng,2014;Liuetal.,2014).Huetal.(2015),e.g.identifiednovel

candidatetumorsuppressorgenesinnaturalkillercelllymphoma

(NKCL)bypromotermethylationanalysisandgeneexpression

pro-filing,includingbcl-2-likeprotein11(BCL2L11).EctopicBCL2L11

expressionledtoincreasedapoptosisinnaturalkillercelllines.A

similarapproachcouldbeappliedtofindkeyregulatorsofgrowth

andapoptosisinCHOcellsusefulforcelllineengineering.

4.2. TheCHODP-12cellDNAmethylomeshowsevidenceof

partiallymethylateddomains

Theglobal characterization of DNA methylation in theCHO

DP-12 cell genome indicated a heterogeneous arrangement of

hypomethylatedregionsinsteadofanevendistribution.Whenwe

plottedmethylationlevelsalongtheSNP-correctedCHOK1

scaf-folds,weobservedlargegenomicregionswithpartialmethylation.

Methylationlevelsof54%onaveragecouldbeassignedtothese

regionswhichclearlyseparatedthemfromtheneighboringregions

withameanmethylationof77%.WetermedthemCHODP-12PMDs

accordingtothePMDsfoundincolorectalcancer,breastcancer,

fibroblastcultures,SH-SY5Yneuronalcellsandplacenta(Schroeder

etal.,2011,2013;Gaidatzisetal.,2014;SchroederandLaSalle, 2013;Listeretal.,2009;Honetal.,2012;Bermanetal.,2012).

PMDscorrespondtogenomicdomainsofanaveragesizeof135kb

thatcoverapproximately40%of theabove-mentionedgenomes

andhavelowerlevelsofDNAmethylationthantheneighboring

genomic regions (Gaidatzis et al., 2014; Schroederand LaSalle,

2013).For CHODP-12PMDswe detectedameansizeof 64kb,

whichisprobablyduetothecurrentdraftstatusoftheCHOK1

genome.Weobserved acoverage ofallanalyzedSNP-corrected

CHOK1scaffoldsbyCHODP-12PMDsof62%.

AnothercharacteristicofPMDsistranscriptionalrepressionof

geneslocalizedwithintheseregionsthataregenerallygene-poor

(Schroederetal.,2013).Accordingly,only18%(4265)ofallgenes

werelocatedwithinCHODP-12PMDs.However,geneexpression

analysisshowedthat30%(1261)oftheCHODP-12PMD-geneswere

highlyexpressed,contradictingthenotionofgenerallyrepressed

expressionofPMD-localizedgenes.Inagreementwiththe

differ-encesinexpression,GOanalysisofallgeneslocatedwithinCHO

DP-12PMDsshowedasignificantenrichmentintwodifferent

func-tional groups that wererelated to gene expressionon theone

handandtoneurologicalprocessesontheotherhand.Whenwe

performedaseparateGOanalysisforthehighlyexpressed

PMD-genes,wefounda significantoverrepresentationofthosegenes

with functions in gene expression and, additionally,in energy

metabolismand cellcycle,thus representingfunctionsvital for

CHOcell growth and productivity.Several reports have shown

strongexpression of genesrelated to transcription, translation,

chromatinmodificationandenergymetabolisminCHOcell

cul-tures,too(Carlageetal.,2009;Meleadyetal.,2011;Nissometal.,

2006).

WeaklyornotexpressedCHODP-12PMDgeneswere

signifi-cantlyenrichedforthefunctionsrelatedtoneurologicalprocesses

suchassynaptictransmissionandalsotocelladhesionandcalcium

ionhomeostasis.ItisknownthatPMDsoftencontainrepressed

geneswithtissue-specificfunctionsunrelatedtothetissueoforigin

(SchroederandLaSalle,2013).Neurologicalprocessesclearlyare

unnecessaryfunctionsinCHOcells.Theseprocessesarestrongly

relatedtothecellularcalciumhomeostasis,as intracellular

cal-ciumplaysacriticalroleinneurondevelopment(GomezandZheng,

2006).Itisstrikingthatreducedcapacityofcellularadhesionis

rele-vantforadaptionofCHOcellstosuspensionculture,whichisaCHO

cellpropertynecessaryforscalabilityofindustrialprocesses.Itis

alsostronglyrelatedtotheconversionofbenigntumorsto

aggres-sivecancers(Tokudaetal.,2014).Interestingly,PMDsinplacenta

tissue,SH-SY5YandIMR90cellsaremostsignificantlyenriched

in genescontributing to neurological processes,too (Schroeder

etal.,2013).Thisfindingissupportedbythefactthatmethylation

patternsin PMDswereshowntobeconservedacrosscelltypes

(8)

5. Conclusions

Thisstudyprovidesthefirstglobalanalysisof theCHODNA

methylationlandscape.WeshowthattheCHODP-12cell

methy-lomeexhibitsgeneralpropertiesthataretypicalformammalian

cells, althoughit also turns outtobe heterogeneousand

char-acterized by global hypomethylation and hypermethylation of

CpG islands.It furthermore shows strong evidence of partially

methylateddomains.Similarepigenomicfeaturesareobservedfor

manycancertypesandalsoforplacenta(SchroederandLaSalle,

2013).In fact,placentaltrophoblastic andmalignantcells share

features such as highproliferation or their lack of cell-contact

inhibitionanditwasshownthatasubsetofmalignanttumors

acti-vateectopicexpressionofgermlineandplacentalgenes(Ferretti

etal., 2006;Rousseauxet al.,2013).CHOcellsare, similarlyto

cancerandplacentaltrophoblastcells,characterizedbytheir

pro-liferative properties and deregulatedapoptotic pathways. Here,

we additionally report that CHO DP-12 cells not only exhibit

epigenomicfeaturessimilartocancerandplacentacells,butthat

thereisevidenceofthesefeaturesbeinginvolvedinthe

repres-sionoftissue-specificgenes,asitwasshownforplacentaPMDs,

too.Interestingly,therepressiveeffectofCHODP-12PMDsdoes

notaffectgenesrelevanttoCHOcellproperties.Tofully

under-standthisrelationship,itstillneedstobeelucidatedhowPMDs

evolved,if theyare generated in a dynamic manner and what

theylooklikeonthecellularlevel.AcomparisonofdifferentCHO

celllines withrespecttothepresence andlocation ofPMDs is

also required. However, our findings show that DNA

methyla-tionmightsignificantlycontributetoCHOphenotypesandallow

for a deeperunderstandingofCHOcell properties.As a

conse-quence,futureexperimentstoidentifytargetsforrationaldesign

ofCHOcelllineswithimprovedproductioncharacteristicsshould

notonlyaddressgeneexpressionchanges,butalsothe

underly-ingepigeneticpatterns.ThepresenceofPMDsintheCHODP-12

cellgenomeforexampleunderlinesthenecessityofsite-specific

integration of recombinant genes in order toavoid potentially

unfavorable epigeneticenvironments leadingtolow expression

levels.

Acknowledgements

AWacknowledgesascholarshipfromtheCLIBGraduateCluster

IndustrialBiotechnology.WethankAndreasAlbersmeierandAnika

WinklerforexpertperformanceofIlluminasequencing.

AppendixA. Supplementarydata

Supplementary data associated with this article can be

found,intheonlineversion,athttp://dx.doi.org/10.1016/j.jbiotec.

2015.02.014.

References

Andrews,S.,2010.FastQC:AQualityControltoolforHighThroughputSequence Data.http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Antequera,F.,Boyes,J.,Bird,A.,1990.Highlevelsofdenovomethylationandaltered chromatinstructureatCpGislandsincelllines.Cell62,503–514.

Baik,J.Y.,Lee,K.H.,2014.Towardproductattributecontrol:developmentsfrom genomesequencing.Curr.Opin.Biotechnol.30C,40–44.

Bauer,A.P.,Leikam,D.,Krinner,S.,Notka,F.,Ludwig,C.,Längst,G.,Wagner,R.,2010. TheimpactofintragenicCpGcontentongeneexpression.NucleicAcidsRes.38, 3891–3908.

Becker,J.,Timmermann,C.,Rupp,O.,Albaum,S.P.,Brinkrolf,K.,Goesmann,A., Püh-ler,A.,Tauch,A.,Noll,T.,2014.TranscriptomeanalysesofCHOcellswiththe next-generationmicroarrayCHO41K:developmentandvalidationbyanalysing theinfluenceofthegrowthstimulatingsubstanceIGF-1substituteLongR3.J. Biotechnol.178,23–31.

Benjamini,Y.,Hochberg,Y.,1995.Controllingthefalsediscoveryrate:apractical andpowerfulapproachtomultipletesting.J.R.Stat.Soc.Ser.B:Stat.Methodol. 57,289–300.

Berman,B.P.,Weisenberger,D.J.,Aman,J.F.,Hinoue,T.,Ramjan,Z.,Liu,Y., Noush-mehr,H.,Lange,C.P.E.,vanDijk,C.M.,Tollenaar,R.A.E.M.,VanDenBerg,D.,Laird, P.W.,2012.RegionsoffocalDNAhypermethylationandlong-range hypometh-ylationincolorectalcancercoincidewithnuclearlamina-associateddomains. Nat.Genet.44,40–46.

Bestor,T.H.,Edwards,J.R.,Boulard,M.,2014.NotesontheroleofdynamicDNA methylationinmammaliandevelopment.Proc.Natl.Acad.Sci.U.S.A.,pii: 201415301.

Bolger,A.M.,Lohse,M.,Usadel,B.,2014.Trimmomatic:aflexibletrimmerfor Illu-minasequencedata.Bioinformatics30,2114–2120.

Brinkrolf,K.,Rupp,O.,Laux,H.,Kollin,F.,Ernst,W.,Linke,B.,Kofler,R.,Romand, S.,Hesse,F.,Budach,W.E.,Galosy,S.,Müller,D.,Noll,T.,Wienberg,J.,Jostock, T.,Leonard,M.,Grillari,J.,Tauch,A.,Goesmann,A.,Helk,B.,Mott,J.E.,Pühler,A., Borth,N.,2013.Chinesehamstergenomesequencedfromsortedchromosomes. Nat.Biotechnol.31,694–695.

Carlage,T.,Hincapie,M.,Zang,L.,Lyubarskaya,Y.,Madden,H.,Mhatre,R.,Hancock, W.S.,2009.Proteomicprofilingofahigh-producingChinesehamsterovarycell culture.Anal.Chem.81,7357–7362.

Deaton,A.M.,Bird,A.,2011.CpGislandsandtheregulationoftranscription.Genes Dev.25,1010–1022.

Eckhardt,F.,Lewin,J.,Cortese,R.,Rakyan,V.K.,Attwood,J.,Burger,M.,Burton,J., Cox,T.V.,Davies,R.,Down,T.A.,Haefliger,C.,Horton,R.,Howe,K.,Jackson, D.K.,Kunde,J.,Koenig,C.,Liddle,J.,Niblett,D.,Otto,T.,Pettett,R.,Seemann,S., Thompson,C.,West,T.,Rogers,J.,Olek,A.,Berlin,K.,Beck,S.,2006.DNA meth-ylationprofilingofhumanchromosomes6,20and22.Nat.Genet.38,1378– 1385.

Ferretti,C.,Bruni,L.,Dangles-Marie,V.,Pecking,A.P.,Bellet,D.,2006.Molecular circuitssharedbyplacentalandcancercells,andtheirimplicationsinthe proli-ferative,invasiveandmigratorycapacitiesoftrophoblasts.Hum.Reprod.Update 13,121–141.

Gaidatzis,D.,Burger,L.,Murr,R.,Lerch,A.,Dessus-Babus,S.,Schübeler,D.,Stadler, M.B.,2014. DNAsequenceexplainsseeminglydisordered methylation lev-elsinpartiallymethylateddomainsofMammaliangenomes.PLoSGenet.10, e1004143.

Gomez,T.M.,Zheng,J.Q.,2006.Themolecularbasisforcalcium-dependentaxon pathfinding.Nat.Rev.Neurosci.7,115–125.

Holliday,R.,Pugh,J.E.,1975.DNAmodificationmechanismsandgeneactivityduring development.Science187,226–232.

Hon,G.C.,Hawkins,R.D.,Caballero,O.L.,Lo,C.,Lister,R.,Pelizzola,M.,Valsesia,A., Ye,Z.,Kuan,S.,Edsall,L.E.,Camargo,A.A.,Stevenson,B.J.,Ecker,J.R.,Bafna,V., Strausberg,R.L.,Simpson,A.J.,Ren,B.,2012.GlobalDNAhypomethylation cou-pledtorepressivechromatindomainformationandgenesilencinginbreast cancer.GenomeRes.22,246–258.

Hu,X.,Kucuk,C.,Jiang,B.,Klinkebiel,D.,Geng,H.,Gong,Q.,Bouska,A.,Iqbal,J., Gaulard,P.,McKeithan,T.W.,Chan,W.C.,2015.Globalpromotermethylation analysisrevealsnovelcandidatetumorsuppressorgenesinnaturalkillercell lymphoma.Clin.CancerRes.,pii:clincanres.1216.2014.

Huang,D.W.,Sherman,B.T.,Zheng,X.,Yang,J.,Imamichi,T.,Stephens,R.,Lempicki, R.A.,2009.ExtractingbiologicalmeaningfromlargegenelistswithDAVID.Curr. Protoc.Bioinform.,Chapter13,Unit13.11.

Huang,Y.-Z.,Sun,J.-J.,Zhang,L.-Z.,Li,C.-J.,Womack,J.E.,Li,Z.-J.,Lan,X.-Y.,Lei,C.-Z., Zhang,C.-L.,Zhao,X.,Chen,H.,2014.Genome-wideDNAmethylationprofiles andtheirrelationshipswithmRNAandthemicroRNAtranscriptomeinbovine muscletissue(Bostaurine).Sci.Rep.4,6546.

Illingworth,R.S.,Bird,A.P.,2009.CpGislands–‘aroughguide’.FEBSLett.583, 1713–1720.

Jjingo,D.,Conley,A.B.,Yi,S.V.,Lunyak,V.V.,Jordan,I.K.,2012.Onthepresenceand roleofhumangene-bodyDNAmethylation.Oncotarget3,462–474. Kim,M.,O’Callaghan,P.M.,Droms,K.A.,James,D.C.,2011.Amechanistic

under-standingofproductioninstabilityinCHOcelllinesexpressingrecombinant monoclonalantibodies.Biotechnol.Bioeng.108,2434–2446.

Langmead,B.,Salzberg,S.L.,2012.Fastgapped-readalignmentwithBowtie2.Nat. Methods9,357–359,http://dx.doi.org/10.1038/nmeth.1923.

Laurent,L.,Wong,E.,Li,G.,Huynh,T.,Tsirigos,A.,Ong,C.T.,Low,H.M.,KinSung, K.W.,Rigoutsos,I.,Loring,J.,Wei,C.-L.,2010.Dynamicchangesinthehuman methylomeduringdifferentiation.GenomeRes.20,320–331.

Lewis,N.E.,Liu,X.,Li,Y.,Nagarajan,H.,Yerganian,G.,O’Brien,E.,Bordbar,A., Roth,A.M.,Rosenbloom,J.,Bian,C.,Xie,M.,Chen,W.,Li,N.,Baycin-Hizal, D.,Latif, H., Forster,J.,Betenbaugh,M.J., Famili,I.,Xu, X.,Wang, J., Pals-son,B.O.,2013.GenomiclandscapesofChinesehamsterovarycelllinesas revealedby theCricetulusgriseusdraft genome.Nat.Biotechnol.31,759– 765.

Li,H.,Handsaker,B.,Wysoker,A.,Fennell,T.,Ruan,J.,Homer,N.,Marth,G., Abeca-sis,G.,Durbin,R.,2009.Thesequencealignment/mapformatandSAMtools. Bioinformatics25,2078–2079.

Lister,R.,Pelizzola,M.,Dowen,R.H.,Hawkins,R.D.,Hon,G.,Tonti-Filippini,J.,Nery, J.R.,Lee,L.,Ye,Z.,Ngo,Q.-M.,Edsall,L.,Antosiewicz-Bourget,J.,Stewart,R.,Ruotti, V.,Millar,A.H.,Thomson,J.A.,Ren,B.,Ecker,J.R.,2009.HumanDNA methy-lomesatbaseresolutionshowwidespreadepigenomicdifferences.Nature462, 315–322.

Liu,G.,Liu,Y.-J.,Lian,W.-J.,Zhao,Z.-W.,Yi,T.,Zhou,H.-Y.,2014.ReducedBMP6 expressionbyDNAmethylationcontributestoEMTanddrugresistanceinbreast cancercells.Oncol.Rep.32,581–588.

(9)

Maunakea,A.K.,Chepelev,I.,Cui,K.,Zhao,K.,2013.IntragenicDNAmethylation mod-ulatesalternativesplicingbyrecruitingMeCP2topromoteexonrecognition.Cell Res.23,1256–1269.

Meissner,A.,Mikkelsen,T.S.,Gu,H.,Wernig,M.,Hanna,J.,Sivachenko,A.,Zhang, X.,Bernstein,B.E.,Nusbaum,C.,Jaffe,D.B.,Gnirke,A.,Jaenisch,R.,Lander,E.S., 2008.Genome-scaleDNAmethylationmapsofpluripotentanddifferentiated cells.Nature454,766–770.

Meleady,P.,Doolan,P.,Henry,M.,Barron,N.,Keenan,J.,O’Sullivan,F.,Clarke,C., Gammell,P.,Melville,M.W.,Leonard,M.,Clynes,M.,2011.Sustained productiv-ityinrecombinantChinesehamsterovary(CHO)celllines:proteomeanalysis ofthemolecularbasisforaprocess-relatedphenotype.BMCBiotechnol.11,78. Ndlovu,M.N.,Denis,H.,Fuks,F.,2011.ExposingtheDNAmethylomeiceberg.Trends

Biochem.Sci.36,381–387.

Nissom,P.M.,Sanny,A.,Kok,Y.J.,Hiang,Y.T.,Chuah,S.H.,Shing,T.K.,Lee,Y.Y.,Wong, K.T.K.,Hu,W.-S.,Sim,M.Y.G.,Philp,R.,2006.Transcriptomeandproteome profil-ingtounderstandingthebiologyofhighproductivityCHOcells.Mol.Biotechnol. 34,125–140.

Osella,M.,Riba,A.,Testori,A.,Corà,D.,Caselle,M.,2014.InterplayofmicroRNAand epigeneticregulationinthehumanregulatorynetwork.Front.Genet.5,345. Osterlehner,A.,Simmeth,S.,Göpfert,U.,2011.Promotermethylationand

trans-genecopynumberspredictunstableproteinproductioninrecombinantChinese hamsterovarycelllines.Biotechnol.Bioeng.108,2670–2681.

Panning,B.,Jaenisch,R.,1996.DNAhypomethylationcanactivateXistexpression andsilenceX-linkedgenes.GenesDev.10,1991–2002.

Riggs,A.D.,1975.Xinactivation,differentiation,andDNAmethylation.Cytogenet. GenomeRes.14,9–25.

Rousseaux,S.,Debernardi,A.,Jacquiau,B.,Vitte,A.-L.,Vesin,A.,Nagy-Mignotte, H.,Moro-Sibilot,D.,Brichon,P.-Y.,Lantuejoul,S.,Hainaut,P.,Laffaire,J.,de Reyniès,A.,Beer,D.G.,Timsit,J.-F.,Brambilla,C.,Brambilla,E.,Khochbin,S., 2013.Ectopicactivationofgermlineandplacentalgenesidentifiesaggressive metastasis-pronelungcancers.Sci.Transl.Med.5,186ra66.

Rupp,O.,Becker,J.,Brinkrolf,K.,Timmermann,C.,Borth,N.,Pühler,A.,Noll,T., Goes-mann,A.,2014.ConstructionofapublicCHOcelllinetranscriptdatabaseusing versatilebioinformaticsanalysispipelines.PLOSONE9,e85568.

Schroeder,D.I.,Blair,J.D.,Lott,P.,Yu,H.O.K.,Hong,D.,Crary,F.,Ashwood,P.,Walker, C.,Korf,I.,Robinson,W.P.,LaSalle,J.M.,2013.Thehumanplacentamethylome. Proc.Natl.Acad.Sci.U.S.A.110,6037–6042.

Schroeder, D.I., LaSalle, J.M., 2013. How has the study of the human pla-centaaidedourunderstandingofpartiallymethylatedgenes?Epigenomics5, 645–654.

Schroeder,D.I.,Lott,P.,Korf,I.,LaSalle,J.M.,2011.Large-scalemethylationdomains markafunctionalsubsetofneuronallyexpressedgenes.GenomeRes.21, 1583–1591.

Smyth,G.K.,2005.BioinformaticsandComputationalBiologySolutionsUsingRand Bioconductor,StatisticsforBiologyandHealth.Springer-Verlag,NewYork. Song,Q.,Decato,B.,Hong,E.E.,Zhou,M.,Fang,F.,Qu,J.,Garvin,T.,Kessler,M.,Zhou,

J.,Smith,A.D.,2013.Areferencemethylomedatabaseandanalysispipelineto facilitateintegrativeandcomparativeepigenomics.PLOSONE8,e81148. Sproul,D.,Meehan,R.R.,2013.Genomicinsightsintocancer-associatedaberrant

CpGislandhypermethylation.Brief.Funct.Genomics12,174–190.

Stadler,M.B.,Murr,R.,Burger,L.,Ivanek,R.,Lienert,F.,Schöler,A.,vanNimwegen, E.,Wirbelauer,C.,Oakeley,E.J.,Gaidatzis,D.,Tiwari,V.K.,Schübeler,D.,2011. DNA-bindingfactorsshapethemousemethylomeatdistalregulatoryregions. Nature480,490–495.

Tessarz,P.,Kouzarides,T.,2014.Histonecoremodificationsregulatingnucleosome structureanddynamics.Nat.Rev.Mol.CellBiol.15,703–708.

Tokuda,E.,Itoh,T.,Hasegawa,J.,Ijuin,T.,Takeuchi,Y.,Irino,Y.,Fukumoto,M., Takenawa,T.,2014.Phosphatidylinositol4-phosphateintheGolgiapparatus regulatescell–celladhesionandinvasivecellmigrationinhumanbreastcancer. CancerRes.74,3054–3066.

Walsh,C.P.,Chaillet,J.R.,Bestor,T.H.,1998.TranscriptionofIAPendogenous retro-virusesisconstrainedbycytosinemethylation.Nat.Genet.20,116–117. Wippermann,A.,Klausing,S.,Rupp,O.,Albaum,S.P.,Büntemeyer,H.,Noll,T.,

Hof-frogge,R.,2013.EstablishmentofaCpGisland microarrayforanalysesof genome-wideDNAmethylationinChinesehamsterovarycells.Appl.Microbiol. Biotechnol.98,579–589.

Xu,X.,Nagarajan,H.,Lewis,N.E.,Pan,S.,Cai,Z.,Liu,X.,Chen,W.,Xie,M.,Wang,W., Hammond,S.,Andersen,M.R.,Neff,N.,Passarelli,B.,Koh,W.,Fan,H.C.,Wang,J., Gui,Y.,Lee,K.H.,Betenbaugh,M.J.,Quake,S.R.,Famili,I.,Palsson,B.O.,Wang,J., 2011.ThegenomicsequenceoftheChinesehamsterovary(CHO)-K1cellline. Nat.Biotechnol.29,735–741.

Yang,W.-T.,Zheng,P.-S.,2014.PromoterhypermethylationofKLF4inactivatesits tumorsuppressorfunctionincervicalcarcinogenesis.PLOSONE9,e88827. Yang,Y.,Chusainow,J.,Yap,M.G.S.,2010.DNAmethylationcontributestolossin

productivityofmonoclonalantibody-producingCHOcelllines.J.Biotechnol. 147,180–185.

Ziller,M.J.,Gu,H.,Müller,F.,Donaghey,J.,Tsai,L.T.-Y.,Kohlbacher,O.,DeJager, P.L.,Rosen,E.D.,Bennett,D.A.,Bernstein,B.E.,Gnirke,A.,Meissner,A.,2013. ChartingadynamicDNAmethylationlandscapeofthehumangenome.Nature 500,477–481.

References

Related documents

The  activities of the catalysts are expressed as kg  PE/ (mol Fe.hr), which were determined after 30  min  of  polymerization  for  each  run;  the  polymerizations 

Three general rules of evidence are relevant to a discussion of adverse witness statutes: first, that the cross-examination should be limited to the scope of the

For discussion of the rights of noncitizens and citizens in Germany and the United States, see William Rogers Brubaker, Membership Without Citizenship: The Economic and Social

Soils at Choba and its environs are thus considered suitable for use as sub-grade/filling materials, while the soil at some sites are unsuitable for use

The hypothesis further asserts that by reforming the agricultural sector, access to agricultural inputs (fertilizer and hybrid seeds), important factors of production, constrained

1. Drago DA, Dannenberg AL. Infant mechanical suffocation deaths in the United States, 1980 –1997. Bass M, Bravath RE, Glass L. Harlow HF, Harlow MK. Effects of various