• No results found

Some Properties of (r,s) T0 and (r,s) T1 Spaces

N/A
N/A
Protected

Academic year: 2020

Share "Some Properties of (r,s) T0 and (r,s) T1 Spaces"

Copied!
18
0
0

Loading.... (view fulltext now)

Full text

(1)

Volume 2008, Article ID 424320,18pages doi:10.1155/2008/424320

Research Article

Some Properties of

r, s

-

T

0

and

r, s

-

T

1

Spaces

S. E. Abbas1 and Biljana Krsteska2

1Department of Mathematics, Faculty of Science, Sohag University, Sohag, P.O. Box 82524, Egypt 2Faculty of Mathematics and Natural Science, Ss. Cyril and Methodius University, Gazi Baba b.b.,

P.O. Box 162, 1000 Skopje, Macedonia

Correspondence should be addressed to S. E. Abbas,sabbas73@yahoo.com

Received 5 May 2008; Revised 23 July 2008; Accepted 1 September 2008

Recommended by Petru Jebelean

We define r, s-quasi-T0, r, s-sub-T0, r, s-T0 and r, s-T1 spaces in an intuitionistic fuzzy

topological space and investigate some properties of these spaces and the relationships between them. Moreover, we study properties of subspaces and their products.

Copyrightq2008 S. E. Abbas and B. Krsteska. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction and preliminaries

Kubiak 1 and ˇSostak 2 introduced thefundamental concept of a fuzzytopological structure, as an extension of bothcrisp topology and fuzzy topology3, in the sensethat not only the objectsare fuzzified, but also the axiomatics. In4,5, ˇSostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al.6have redefined the same concept under the name gradation of openness. A general approach to the study of topological-type structures on fuzzy power sets was developed in1,7–10.

As a generalization of fuzzy sets, the notion of intuitionisticfuzzy sets was introduced by Atanassov11. By using intuitionistic fuzzy sets, C¸ oker 12, and C¸ oker and Dimirci

13 defined the topology of intuitionisticfuzzy sets. Recently, Mondal and Samanta 14

introduced the notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subset there is a definite grade of openness and there is a grade of nonopenness. Thus, the concept of intuitionistic gradation of openness is a generalization of the concept of gradation of openness and the topology of intuitionistic fuzzy sets.

In this paper, we definer, s-quasi-T0,r, s-sub-T0,r, s-T0, andr, s-T1spaces in an

(2)

that

xty

t, ifyx,

0, ify /x. 1.1

The set of all fuzzy points inX is denoted byPtX. A fuzzy point xtλ if and only if t < λx. A fuzzy setλis quasi-coincident withμ, denoted byλqμ, if there existsxXsuch thatλx μx>1. Ifλis not quasi-coincident withμ, we denote it by λqμ.

Definition 1.1see14. An intuitionistic gradation of opennessIGO, for shortonXis an ordered pairτ, τ∗of functions fromIXtoIsuch that

IGO1τλ τλ≤1, for allλIX,

IGO2τ0 τ1 1,τ∗0 τ∗1 0,

IGO3τλ1∧λ2≥τλ1∧τλ2andτλ1∧λ2≤τλ1∨τλ2, for eachλ1, λ2∈IX, IGO4τiΔλiiΔτλiandτiΔλiiΔτλi, for eachλiIX, i∈Δ.

The tripletX, τ, τ∗is called an intuitionistic fuzzy topological spaceIFTS, for short.

τ and τ∗ may be interpreted as gradation of openness and gradation of nonopenness, respectively.

An IFTSX, τ, τ∗is called stratified if

Sτα 1 andτα 0 for eachαI.

Let U,U∗ and τ, τ∗be IGOs on X. We say U,U∗ is finer than τ, ττ, τ∗ is coarser thanU,U∗ifτλ≤ Uλandτλ≥ U∗λfor allλIX.

Theorem 1.2see3,15. LetX, τ, τbe an IFTS. For eachrI0, sI1, λIX, an operator C:IX×II1→IXis defined as follows:

Cλ, r, s μ|μλ, τ1−μr, τ∗1−μs . 1.2

Then it satisfies the following properties:

1C0, r, s 0,C1, r, s 1,for allrI0,sI1; 2Cλ, r, sλ;

3Cλ1, r, s≤ Cλ2, r, s, ifλ1≤λ2;

4Cλμ, r, s Cλ, r, s∨ Cμ, r, s,for allrI0,sI1; 5Cλ, r, s≤ Cλ, r, s, ifrr,ss, wherer, rI0,s, sI1; 6CCλ, r, s, r, s Cλ, r, s.

Definition 1.3see14. A functionf :X, τ, τ∗→Y,U,U∗is said to be as follows:

1IF continuous ifτf−1μ≥ Uμandτf−1μ≤ U∗μ, for eachμIY;

2IF open ifτμ≤ Uandτμ≥ U∗, for eachμIX;

(3)

Definition 1.4see16. Let 0/∈ΘXbe a subset ofIX. A pairβ, β∗of functionsβ, β∗:ΘXI is called an IF topological base onXif it satisfies the following conditions:

B1βλ βλ≤1,∀λ∈ΘX,

B2β1 1 andβ∗1 0,

B3βλ1∧λ2≥βλ1∧βλ2andβλ1∧λ2≤βλ1∨βλ2, for eachλ1, λ2∈ΘX.

An IF topological baseβ, β∗always generates an IGO,τβ, τβ∗∗onXin the following

sense.

Theorem 1.5see16. Letβ, βbe an IF topological base forX. Define the functionsτβ, τβ∗∗ : IXIas follows: for eachμIX,

τβμ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

iJ

βμi, if μ

iJ

μi, μi∈ΘX,

1, if μ0,

0, otherwise,

1.3

whereis taken over all families{μi∈ΘX|μiJμi},

τβμ

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

iJ βμ

i, if μ

iJ

μi, μi∈ΘX,

0, if μ0,

1, otherwise,

1.4

whereis taken over all families{μi∈ΘX|μiJμi}. Then

1 X, τβ, τβ∗∗is an IFTS;

2A mapf :Y, τ, τ∗→X, τβ, τβ∗∗is IF continuous if and only ifβλτf−1λand βλτf−1λ, for allλΘ

X.

Lemma 1.6see17. LetX be a product of the family{Xi | i ∈ Γ}of sets, and for eachi ∈ Γ, πi:XXia projection map. For eachλIX,i, j∈Γ, andλiIXi, the following properties hold:

1πiπi−1λiλ λiπiλ;

2ifxiXiλixi αiforiFwith each finite index subsetFofΓ− {j}and putαiFαi,

then

axXiFπi−1λix α;

bπiiFπi−1λi α.

Definition 1.7. LetX, τ, τ∗be an IFTS,μIX,xtPtX,rI0, andsI1. It holds that

Qxt, r, sμIX |xtqμ, τμr, τμs . 1.5

(4)

2. Some properties of product intuitionistic fuzzy topological spaces

Theorem 2.1. Let{Xi, τi, τi∗}iΓbe a family of IFTSs, letXbe a set and for eachi∈Γ,fi:XXi a map. Let

ΘX

0 /μ n

j1

f−1

kj

νkj

|τkj

νkj

>0,kjK

, 2.1

for every finite setK{k1, . . . , kn} ⊂Γ. Define the functionsβ, β∗:ΘXIonXby

βμ

n

j1

τkj

νkj

|μn

j1

f−1

kj

νkj

,

βμ

n

j1

τkj

νkj

|μn

j1

f−1

kj

νkj

,

2.2

whereandare taken over all finite subsetsK{k1, k2, . . . , kn} ⊂Γ. Then,

1 β, βis an IF topological base onX;

2the IGO,τβ, τβ∗∗generated byβ, βis the coarsest IGO onX for which eachi∈Γ,fiis

IF continuous;

3a mapf:Y, τ1, τ1∗→X, τβ, τβ∗∗is IF continuous if and only if for eachi∈Γ,fifis IF

continuous.

Proof. B1It is trivial.

B2Sinceλfi−1λfor eachλ∈ {0,1},β1 β0 1 andβ∗1 β∗0 0.

B3For all finite subsetsK{k1, . . . , kp}andJ {j1, . . . , jq}ofΓsuch that

λp

i1

f−1

ki

λki

, μq

i1

f−1

ji

μji

, 2.3

we have

λμ

p

i1

f−1

ki

λki

q

i1

f−1

ji

μji

. 2.4

Furthermore, we have for eachkKJ,

f−1

k

λkfk−1μkfk−1λkμk. 2.5

PutλμmiKJf−1

miμiρmi,where

ρmi

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

λmi ifmiKKJ,

μmi ifmiJKJ,

λmiμmi ifmiKJ.

(5)

We have

βλμ

jKJ τjρj

p

i1

τki

λki

q

i1

τji

μji

,

βλμ jKJ

τj ρjp

i1

τki

λki

q

i1

τji

μji

.

2.7

Then,βλμβλβμandβλμβλβμ.

2For eachλiIXi, one family{fi−1λi},andi∈Γ, we have

τβfi−1

λiβfi−1

λiτiλi, τ

β

f−1

i

λiβfi−1

λiτi

λi.

2.8

Thus, for eachi ∈ Γ,fi : X, τβ, τβ∗∗ → Xi, τi, τi∗is IF continuous. Let fi : X, τ, τ◦∗ →

Xi, τi, τi∗ be IF continuous, that is, for each i ∈ Γ and λiIXi,τfi−1λiτiλiand τ◦∗f−1

i λiτiλi. For all finite subsetsK{k1, . . . , kp}ofΓsuch thatλ

p

i1fki1λki, we

have

τλp i1

τf−1

ki

λki

p

i1

τki

λki

,

τ◦∗λp i1

τ◦∗f−1

ki

λki

p

i1

τki

λki

.

2.9

It impliesτλβλandτ◦∗λβλfor eachλIX. ByTheorem 1.52,τ◦ ≥τβ andτ◦∗ ≤τβ∗∗.

3 ⇒Letf :Y, τ1, τ1∗→X, τβ, τβ∗∗be an IF continuous. For eachi∈ΓandλiIXi,

we have

τ1

fif−1λiτ1

f−1f−1

i

λiτβfi−1

λiτiλi, τ

1

fif−1λiτ1∗

f−1f−1

i

λiτβ∗∗

f−1

i

λiτi

λi.

2.10

Hence,fif :Y, τ1, τ1∗→Xi, τi, τi∗is IF continuous.

⇐For all finite subsetsK{k1, . . . , kp}ofΓsuch thatλpi1fki1λki, sincefkif: Y, τ1, τ1∗→Xki, τki, τkiis IF continuous,

τ1

f−1f−1

ki

λki

τki

λki

, A

τ

1

f−1f−1

ki

λki

τki

λki

(6)

Hence, we have

τ1

f−1λτ 1

f−1

p

i1

f−1

ki

λki

τ1

p

i1

f−1f−1

ki

λki

p

i1

τ1

f−1f−1

ki

λki

p

i1

τki

λki

, byA,

τ

1

f−1λτ

1

f−1

p

i1

f−1

ki

λki

τ

1

p

i1

f−1f−1

ki

λki

p

i1

τ

1

f−1f−1

ki

λki

p

i1

τki

λki

, byB.

2.11

It impliesτ1f−1λ βλandτ

1f−1λβλfor allλIX. ByTheorem 1.52,

f:Y, τ1, τ1∗→X, τβ, τβ∗∗is IF continuous.

Definition 2.2. LetX, τ, τ∗be an IFTS andAX. The triple A, τ|A, τ∗|Ais said to be a subspace ofX, τ, τ∗ifτ|A, τ∗|Ais the coarsest IGO onAfor which the inclusion mapiis IF continuous.

Definition 2.3. LetX be the product iΓXi of the family{Xi, τi, τi∗ | i ∈ Γ}of IFTSs. The coarsest IGO, τ, ττii∗onX for which each the projections πi : XXi is IF continuous, is called the product IGO of{τi, τi∗ |i∈Γ}andX, τ, τ∗is called the product IFTS.

Lemma 2.4. Let Y,U,U∗ be an IFTS and β, β an IF topological base on X. If f :

X, β, βY,U,Uis a function such thatβλ≤ Ufλandβλ≥ Ufλfor allλΘX, thenf :X, τβ, τβ∗∗→Y,U,U∗is IF open.

Proof. Suppose there existsμIXsuch that

τβμ>U or τβ∗∗μ<U∗

fμ, 2.12

then there exists a family{λi∈ΘX|μi∈Γλi}such that

τβμ

i∈Γ

βλi>U or τβ∗∗μ

i∈Γ

βλ

(7)

On the other hand, sinceβλ≤ Uandβλ≥ U∗λ∈ΘX, then we have

i∈Γ

βλi

i∈Γ

Ufλi≤ U i∈Γ

fλiU

f

i∈Γ

λiUfμ,

i∈Γ

βλ i

i∈Γ

U∗fλ

i≥ U∗

i∈Γ

fλiU∗

f

i∈Γ

λiU∗fμ.

2.14

It is a contradiction. Hencefis IF open.

Theorem 2.5. LetX, τβ, τβ∗∗be a product space of a family{Xi, τi, τi∗|i∈Γ}of IFTS’s. Then the following statements are equivalent:

1a projection mapπj:X, τβ, τβ∗∗→Xj, τj, τjis IF open;

2for every μ iΓπi−1λisuch thatxXiλix αi for eachαiI and i ∈ Γ◦ such

that a finite index subset Γ of Γ− {j} and τiλi > 0, theniΓτiλiτjα and

i∈Γ◦τiλiτjα,whereα

i∈Γ◦αi.

Proof. 1⇒2: For everyμiΓπi−1λisuch thatxXiλix αifor eachαiIandi∈Γ◦

such that a finite index subsetΓofΓ− {j}. ByLemma 1.62b, we have, forαiΓαi,

πjμ πj

i∈Γ◦ π−1

i

λiα. 2.15

Sinceμ∈ΘX, byTheorem 2.1, we have

i∈Γ◦

τiλiβμτβμ,

i∈Γ◦ τ

i

λiβμτβ∗∗μ. 2.16

Furthermore, sinceπjis IF open, we have

τβμτjπjμτjα, τβ∗∗μτj

πjμτjα. 2.17

Hence,iΓτiλiτjαandi∈Γ◦τiλiτjα.

2⇒1: FromLemma 2.4, we only show thatβμτjπjλandβμτjπjλ for all λ ∈ ΘX. Suppose that there exists ν ∈ ΘX such that βν > τjπjν or βν < τ

jπjν. Then there exists a finite index subsetΓ◦ofΓ− {j}withνπj−1λji∈Γ◦π

−1

i λi

if necessary, we can takeλj1such that

βντjλj

i∈Γ◦

τiλi> τjπjν,

βντj

λj

i∈Γ◦ τ

i

λi< τj

πjν.

(8)

On the other hand, byLemma 1.62, we have

πjν πj

π−1

j

λj

i∈Γ◦ π−1

i

λi

λjπj i∈Γ◦

π−1

i

λi

λjα,

2.19

wherexXiλix αi andα i∈Γ◦αi. Since

i∈Γ◦τiλiτjαand

i∈Γ◦τiλiτjα, we

have

τjπjντjλjα

τjλjτjα

τjλj

i∈Γ◦

τiλi,

τj

πjντj

λjα

τj

λjτj

α

τj

λj

i∈Γ◦ τ

i

λi.

2.20

It is a contradiction.

Theorem 2.6. Let X, τ, τ be a product space of a family {X

i, τi, τi∗ | i ∈ Γ} of IFTSs and

Xj, τj, τjbe stratified. Then, the following properties hold:

1 X, τ, τis stratified;

2a projection mapπj:XXjis IF open.

Proof. 1It is clear from the following: for allαI,

ταβα

i∈Γ◦

τiλi|α

i∈Γ◦ π−1

i

λiτjα1,

ταβα

i∈Γ◦ τ

i

λi|α

i∈Γ◦ π−1

i

λiτj

α0.

2.21

2 Since τjα 1 and τjα 0 for all αI, it satisfies the condition of Theorem 2.52.

Theorem 2.7. LetX, τ, τbe a product space of a family{X

i, τi, τi∗ | i ∈ Γ}of IFTSs and let

Xj, τj, τjbe stratified. Then for everyXjXj×{yi|i /j}inXparallel toXj,πj|Xj :XjXj

(9)

Proof. LetXj Xj ×{yi | i /j}. Since i : XjXj and πj : XjXj are IF continuous, πjiπj|Xjis IF continuous. Moreover,πj|Xjis bijective.

Now we only show thatπj|Xjis IF open. Suppose there existsμIXj such that

τ|Xjμ> τj

πj|Xjμ

or τ∗|Xjμ< τ

j

πj|Xjμ

. 2.22

Then there existsνIXwithμi−1νsuch that

τ|Xjμτν> τj

πj|Xjμ

or τ∗|Xjμτ

ν< τj

πj|Xjμ

. 2.23

From the definition ofτ, τ∗, there exists a family{νk∈ΘX|νkKνk}such that

τν

kK

βνk> τjπj|Xjμ or τν

kK βν

k< τj

πj|Xjμ. C

On the other hand, since each νk ∈ ΘX, there exists a finite index Fk of Γ − {j} with νk πj−1λkj

iFkπ

1

i λi. Since πi−1λix yi for i /j, then for each xXj,

iFkπ− 1

i λix iFkλiyi. Put αk

iFkλiyi. Let μk i− 1ν

k for each kK. Then,

πj|Xjμkxj μkx|xXj, πj|Xjx xj

i−1ν

kx|xXj, πjx xjμki−1νk

νkx|xXj, πjx xj

π−1

j

λkj

x

iFk

π−1

i

λix|xXj, πjx xj

λkj

πjxiFk

λiπix|xXj, πjx xj

λkj

xj iFk

λi

yi

λkj

xjα k

λkjαk

xj.

(10)

Hence,πj|Xjμk λkjαk. Thus,

τjπj|Xjμkτjλkjαk

τjλkj

τjαk

τjλkj

τjλkj

iFk

λi , τj

πj|Xj

μk τj

λkjαk

τj

λkj

τj αk τj

λkj

τj

λkj

iFk

λi

.

2.25

From the definition ofβ, β∗, it implies

τjπj|Xj

μkβνk, τj

πj|Xj

μkβνk. 2.26

Thus,

τjπj|Xjμ

kK τjπj|Xj

μk

kK βνk,

τj

πj|Xjμ

kK τ

j

πj|Xjμk

kK βν

k.

2.27

It is a contradiction forC.

In an IFTS{Xi, τi, τi∗|i∈Γ},Xj Xj×{yi |i /j}need not be homeomorphic to Xfrom the following example.

Example 2.8. LetX {x1, x2, x3},Y {y1, y2}, andZ {z1, z2}be sets andW X×Y×Z

a product set. Letπ1 : WX,π2 : WY, andπ3 : WZbe the projection maps. Define

τ1, τ1∗:IXIby

τ1λ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

1 if λ0,1, 1

2 if λλ1, 0 otherwise,

τ

1λ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

0 ifλ0,1, 1

2 ifλλ1, 1 otherwise,

(11)

whereλ1x1 0.5,λ1x2 0.2,and λ1x3 0.3. Also,X

j {x, y2, z2 : xX},define τ|Xj, τ∗|Xj :IXjIby

τ|Xjμ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

1 ifμ0,1, 1

2 ifμμ1, 2

3 ifμ0.1, 1

4 if μ0.7, 0 otherwise,

τ| Xjμ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

0 ifμ0,1, 1

2 ifμμ1, 1

3 ifμ0.1, 3

4 ifμ0.7, 1 otherwise,

2.29

whereμ1x1, y2, z2 0.5,μ1x2, y2, z2 0.2,and μ1x3, y2, z2 0.3. Then the projection

mapπj|Xj :XjXis bijective IF continuous, butπj|Xj is not IF open, because

2 3 τ|Xj

0.1/τ1

π1|Xj

0.10. 2.30

Hence,XjandXare not homeomorphic.

Theorem 2.9. LetX, τ, τbe a product space of a family{X

i, τi, τi∗|i∈Γ}of IFTSs. Then, the following properties hold:

1Cτ,τiΓλi, r, siΓCτi

iλi, r, s,λiIXi, rI0, sI1; 2ifCτi

iλi, r, s λi,λiIXi, rI0, sI1, thenCτ,τ

i∈Γλi, r, s i∈Γλi.

Proof. 1SupposeCτ,τiΓλi, r, s/iΓCτi

iλi, r, s. Then there existxXandt∈0,1

such that

Cτ,τi∈Γ

λi, r, s

xt > i∈Γ

Cτi,τi

λi, r, sx. D

Since iΓCτi

iλi, r, s < t, there exists j ∈ Γ such that

i∈ΓCτi,τiλi, r, s

π−1

j Cτi,τiλi, r, s < t. Putπjx xj. It impliesCτj,τjλj, r, sxj < t. From the definition

ofCτj,τj∗, there existsμjIXj withλjμjandτj1−μjr,τj∗1−μjssuch that

Cτj,τj

λj, r, sxjμjxj< t. 2.31

On the other hand, we have

λjμjπj−1λjπj−1μj

i∈Γ

λi

i∈Γ

π−1

j

λiπj−1

μj

⇒ Cτ,τi∈Γ

λi, r, s

π−1

j

μj,

(12)

becauseτ1−πj−1μj τπj−11−μjτj1−μjrandτ∗1−πj−1μj τπj−11−μjτ

j1−μjs. Hence,

Cτ,τi∈Γ

λi, r, s

xπ−1

j

μjx μjxj< t. 2.33

It is a contradiction forD. Hence,

Cτ,τ

i∈Γ

λi, r, s

i∈Γ

Cτi,τi

λi, r, s. 2.34

2It is clear from the following:

i∈Γ

λi≤ Cτ,τi∈Γ

λi, r, s

i∈Γ

Cτi,τi

λi, r, s

i∈Γ

λi. 2.35

3. Some properties ofr, s-T0andr, s-T1spaces

Definition 3.1. An IFTSX, τ, τ∗is said to be as follows.

1 r, s-quasi-T0space if for eachxt, xmPtXandt < m, there existsλ∈ Qxm, r, s such thatxtqλ.

2 r, s-sub-T0 space if for eachx /yX, there existstI0 such that there exists

λ∈ Qxt, r, ssuch thatytqλ, or there existsμ∈ Qyt, r, ssuch thatxtqμ.

3 r, s-T0space if for eachxt, ymPtX, there existsλ∈ Qxt, r, ssuch thatymqλ, or there existsμ∈ Qym, r, ssuch thatxtqμ.

4 r, s-T1space if for eachxt, ymPtXsuch thatxt/ym, there existsλ∈ Qxt, r, s such thatymqλ.

Theorem 3.2. LetX, τ, τbe an IFTS. Then the following statements are equivalent:

1 X, τ, τisr, s-T0space;

2for eachxt, ymPtX,Qxt, r, s/Qym, r, s;

3for eachxt, ymPtX, thenxt/∈ Cτ,τym, r, sorym/∈ Cτ,τxt, r, s.

Proof. 1⇒2: It is trivial.

2⇒3: Letλ∈ Qxt, r, sandλ /∈ Qym, r, s. Sinceλ /∈ Qym, r, s, we have

ym≤1−λ, τλr, τλs. 3.1

(13)

3⇒1: Letxt, ymPtXand xt∈ C/ τ,τym, r, s. Thent > Cτ,τym, r, sximplies xtq1− Cτ,τym, r, s. SinceCτ,τym, r, s {μ|μym, τ1−μr, τ∗1−μs}. Since τ1−μτ1−μandτ∗1−μτ∗1−μ, we haveτ1− Cτ,τym, r, srand τ1− Cτ,τym, r, ss. Hence,1− Cτ,τym, r, s∈ Qxt, r, s. Sinceym∈ Cτ,τym, r, sand

ymq1− Cτ,τym, r, s. Thus,X, τ, τ∗isr, s-T0space.

We can prove the following corollaries as a similar method asTheorem 3.2.

Corollary 3.3. LetX, τ, τbe an IFTS. Then the following statements are equivalent:

1 X, τ, τisr, s-quasi-T0space;

2for eachxt, xmPtX,Qxt, r, s/Qxm, r, s;

3for eachxt, xmPtX, thenxt/∈ Cτ,τxm, r, sorxm/∈ Cτ,τxt, r, s.

Corollary 3.4. LetX, τ, τbe an IFTS. Then the following statements are equivalent:

1 X, τ, τisr, s-sub-T0space;

2for eachx /yX, there existstI0such thatQxt, r, s/Qyt, r, s;

3for eachx /yX, there existstI0such thatxt/∈ Cτ,τyt, r, soryt/∈ Cτ,τxt, r, s.

Example 3.5. LetX{x, y}be a set. We define an IGOτ, τ∗onXas follows:

τλ

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 if λ1 or 0, 1

2 if λx0.7, 0 otherwise,

τλ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

0 ifλ1 or 0, 1

2 ifλx0.7, 1 otherwise.

3.2

For each x /yX, there exists 0.4 ∈ I0 such thatx0.7 ∈ Qx0.4,1/2,1/2 and y0.4qx0.7.

Hence, X, τ, τ∗ is 1/2,1/2-sub-T0 space. On the other hand, since Qy0.5,1/2,1/2 Qy0.6,1/2,1/2 {1}, byCorollary 3.32,X, τ, τ∗is not1/2,1/2-quasi-T0space.

Theorem 3.6. LetX, τ, τbe an IFTS. Then the following statements are equivalent:

1 X, τ, τisr, s-T1space;

2for eachxtPtX,xtCτ,τxt, r, s;

3for eachλIX,λ{μ|λμ, τμr, τμs}.

Proof. 1⇒2: We only show thatCτ,τxt, r, sxt. Let ym ∈ Cτ,τxt, r, s. Suppose that ym/xt. SinceX, τ, τ∗isr, s-T1space, there existsλ∈ Qym, r, ssuch thatxtqλ. It implies xt≤1−λwithτλr andτλs. Hence,Cτ,τxt, r, s≤1−λ. Sinceym∈ Cτ,τxt, r, s

1−λ, we haveλ /∈ Qym, r, s. It is a contradiction. Hence,ymxt. Sinceym ∈ Cτ,τxt, r, s

impliesymxt, thenCτ,τxt, r, sxt.

2⇒3: Letρ{μ|λμ, τμr, τμs}. We only show thatρλ. Suppose there existxXandt∈0,1such that

(14)

Then,λ≤1−xt. SincextCτ,τxt, r, s,

τ1−xtτ1− Cτ,τxt, r, sr, τ∗1− Cτ,τxt, r, ss. 3.4

Hence,ρ≤1−xt. It is a contradiction.

3⇒1: For eachxt, ymPtX such that xt/ym, 1−xt/≥1 −ym. From 3, since 1−ym{μ|1−ymμ, τμr, τμs}, there existsμ1−ymIXsuch that

τ1−ymr, τ∗1−yms. 3.5

Moreover, since 1−xt/≥1−ym, we have xtq1−ym. Thus 1−ym ∈ Qxt, r, s such that

ymq1−ym. Hence,X, τ, τ∗isr, s-T1space.

Theorem 3.7. LetX, τ, τbe a stratified IFTS. ThenX, τ, τisr, s-quasi-T

0 space for allr

I0, sI1.

Proof. Letxt, xmPtXsuch thatt < m. Then there existsαI0such that

t≤1−α < m. 3.6

SinceX, τ, τ∗is stratified IFTS, we haveτα 1 andτα 0. Hence,α∈ Qxm, r, ssuch thatxtqα.

Theorem 3.8. 1Everyr, s-T0space is bothr, s-quasi-T0andr, s-sub-T0. 2Everyr, s-T1space isr, s-T0.

Proof. 1For eachxt, xmPtXsuch thatt < m. Byr, s-T0space, there existsλ∈ Qxt, r, s such thatxm. Sincet < m, we havext. So,Xisr, s-quasi-T0.

2For eachxt, ymPtX, ifxt/ym, byr, s-T1space, there existsλ∈ Qxt, r, ssuch thatymqλ. Also, ifym/xt, byr, s-T1space, there existsμ∈ Qym, r, ssuch thatxtqμ. Hence, Xisr, s-T0.

The converse ofTheorem 3.8is not true from the following examples.

Example 3.9. LetX{x, y}be a set. We define an IGOτ, τ∗onXas follows:

τλ

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 ifλαforαI, 1

3 ifλμpq, 0 otherwise,

τλ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

0 ifλαforαI, 2

3 ifλμpq, 1 otherwise,

3.7

where for each 0< p≤0.4,μpqx pandμpqy q, 0≤q < p. SinceX, τ, τ∗is a stratified IFTS, byTheorem 3.7,X, τ, τ∗isr, s-quasi-T0space for eachrI0andsI1.

Ifr >1/3,s <2/3, andtI0, then for eachxt, ytPtX, we have

(15)

ByTheorem 3.22andCorollary 3.42,X, τ, τ∗is neitherr, s-sub-T0norr, s-T0 forr >

1/3 ands <2/3.

If 0< r ≤1/3, 2/3 ≤s < 1,andx /yX, there exists 0.7 ∈I0such that there exists

μ2/50 ∈ Qx0.7, r, swith y0.72/50. Hence, X, τ, τ∗isr, s-sub-T0 for 0 < r ≤ 1/3 and

2/3≤s <1.

Forx0.3, y0.3 ∈PtX, 0< r≤1/3, and 2/3≤s <1, we haveQx0.3, r, s Qy0.3, r, s {α|0.7< α}. Hence, it is notr, s-T0for 0< r ≤ 1/3 and 2/3 ≤ s <1. For 0 < r ≤1/3 and

2/3≤s <1,X, τ, τ∗is bothr, s-quasi-T0andr, s-sub-T0, but notr, s-T0.

Example 3.10. LetX{x, y}be a set. We define an IGOτ, τ∗onXas follows:

τλ

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 ifλαforαI, 1

2 ifλμpq, 0 otherwise,

τλ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

0 ifλαforαI, 1

2 ifλμpq, 1 otherwise,

3.9

where for each 0< p <1,μpqx pandμpqy q, 0≤q < p. Letzt, zmPtXwitht /m forzxory. We have

Q

zt,12,12

/

Q

zm,12,12

. 3.10

Forxt, ymPtX, forp >1−t, we haveμp0∈ Qxt,1/2,1/2withymqμp0. Hence,X, τ, τ

is1/2,1/2-T0space. On the other hand, lety0.5/x0.5. For eachμpq∈ Qy0.5,1/2,1/2, since

q0.5 > 1 andp > q, we havex0.5qμpq, that is,Qy0.5,1/2,1/2 ⊂ Qx0.5,1/2,1/2. Thus X, τ, τis notr, s-T

1space.

Theorem 3.11. Every subspace ofr, s-quasi-T0(resp.,r, s-sub-T0,r, s-T0, andr, s-T1) space

isr, s-quasi-T0(resp.,r, s-sub-T0,r, s-T0, andr, s-T1) space.

Proof. LetX, τ, τ∗ber, s-T1space. Letat, bmPtAsuch thatat/bm. Then,at, bmPtX

such thatat/bm. SinceX, τ, τ∗isr, s-T1, there existsλ ∈ Qat, r, ssuch thatbmqλ. Since τAi−1λτλrandτAi−1λτλs, we havei−1λ∈ Qτ|A,τ∗|Aat, r, ssuch that

bmqi−1λ. The others are similarly proved.

We can prove the following theorem as a similar method asTheorem 3.11.

Theorem 3.12. Every IF homeomorphic space ofr, s-quasi-T0 (resp.,r, s-sub-T0,r, s-T0, and r, s-T1) space isr, s-quasi-T0(resp.,r, s-sub-T0,r, s-T0, andr, s-T1) space.

Theorem 3.13. Let{Xi, τi, τi∗|i∈Γ}be a family ofr, s-quasiT0(resp.,r, s-sub-T0,r, s-T0,

andr, s-T1) space. Letτ, τbe the product IGO onX

i∈ΓXi. ThenX, τ, τisr, s-quasi-T0

(resp.,r, s-sub-T0,r, s-T0, andr, s-T1) space.

Proof. Letxt, ymPtXsuch thatxt/ym. Then there existsi∈Γsuch thatπixt/πiym. SinceXi, τi, τi∗isr, s-T1space, there existsλIXi such that

λ∈ Qτi,τi

(16)

Sinceπixt πixtqλif and only ifxtqπi−1λ, we have

π−1

i λ∈ Q

xt, r, s, ymqπi−1λ. 3.12

Therefore,X, τ, τ∗isr, s-T1space. The others are similarly proved.

Theorem 3.14. Let {Xi, τi, τi∗ | i ∈ Γ}be a family of IFTSs. Letτ, τbe the product IGO on XiΓXi. IfX, τ, τisr, s-sub-T0space, thenXi, τi, τiisr , s -sub-T0space for each

>0 and for eachi∈Γ.

Proof. Letxj, yjXjsuch thatxj /yj. Then there existsxiXifor alli∈Γ− {j}such that

x /yXand

πix

xi if iΓ− {j},

xj if ij, πiy

xi ifiΓ− {j},

yj ifij.

3.13

SinceX, τ, τ∗isr, s-sub-T0space, there existst∈0,1such that

ρ∈ Qxt, r, s, ytqρ. 3.14

Letβ, β∗be a base forτ, τ∗. Sinceτρrandτρs, byTheorem 1.5, for >0, there exists a family{ρk|ρkΔρk}such that

τρ

k∈Δ

βρk> r , τρ

k∈Δ

βρ

k< s . 3.15

Sincextqρ k∈Δρk, there exists k ∈ Γsuch thatxtqρk,βρk > r− andβρk < s . Then, there exists a family{λi|ρkiFπi−1λi}whichFis a finite subset ofΓsuch that

βρk

iF

τiλi> r , βρk

iF τ

i

λi< s . E

Without loss of generality, we may assumejFbecause we can takeF1F∪ {j}such that

λj 1,τj1 1,andτj∗1 0, if necessary. Sincextqρkandytqρk,

t > iF−{j}

1−λiπix∨1−λjxj, F

t

iF−{j}

1−λiπix∨1−λjyj. G

IfiF−{j}1−λiπixt, it is a contradiction forFandG. Thus

iF−{j}

(17)

It implies

t >1−λjxj, t≤1−λjyj. 3.17

Furthermore, byE, we haveτjλj> r− andτjλj< s . Hence,

λj∈ Qτj,τj

xj

t, r , s

, yj

tqλj. 3.18

Thus,Xj, τj, τj∗isr , s -sub-T0space.

In the above theorem, ifX, τ, τ∗isr, s-T1 resp.,r, s-quasi-T0 andr, s-T0, it is

not true from the following example.

Example 3.15. LetX{x}andY {y}be sets. Define IGOτ1, τ1∗onXas follows:

τ1λ

1 ifλαforαI, 0 otherwise, τ

1λ

0 ifλαforαI,

1 otherwise, 3.19

and IGOτ2, τ2∗onYas follows:

τ2λ

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

1 ifλ0 or 1, 1

2 ifλy0.2, 0 otherwise,

τ

2λ

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

0 ifλ0 or 1, 1

2 ifλy0.2, 1 otherwise.

3.20

LetX×Y {x, y}be a productset andτ1τ2, τ1τ2∗the product IGO onX×Y. Since x, y0.2π−1

1 0.2 π2−1y0.2, byTheorem 1.5, we have

τ1

τ2

0.2τ1

0.2∨τ2

y0.2

1, τ1τ2∗0.2τ2

0.2∧τ2y0.2

0. 3.21

We can obtain the product IGO,τ1

τ2, τ1∗

τ

2as follows:

τ1

τ2λ

1 ifλαforαI, 0 otherwise,

τ

1

τ

2λ

0 ifλαforαI, 1 otherwise.

3.22

Then,X×Y, τ1τ2, τ1τ2∗arer, s-T1,r, s-T0, andr, s-quasi-T0for allrI0, sI1.

ButY, τ2, τ2∗is notr, s-quasi-T0for allrI0, sI1. Hence, it is neitherr, s-T0norr, s-T1

for allrI0, sI1.

Theorem 3.16. Let{Xi, τi, τi∗|i∈Γ}be a family of IFTSs andτ, τbe the product IGO onX

(18)

Proof. Let X, τ, τ∗ and Xj Xj ×{yi | i / j}of X parallel toXj. Since Xj, τ|Xj, τ

| Xj

is a subspace of X, τ, τ∗, by Theorem 3.11, Xj, τ|Xj, τ∗|Xj is r, s-quasi-T0 resp., r, s

-sub-T0, r, s-T0, and r, s-T1. Since Xj, τj, τj∗ is stratified, by Theorem 2.7, πj|Xj :

Xj, τ|Xj, τ∗|XjXj, τj, τj∗ is IF homeomorphism. FromTheorem 3.12,Xj, τj, τj∗isr, s -quasi-T0resp.,r, s-sub-T0,r, s-T0, andr, s-T1.

Acknowledgment

The authors are very grateful to the referees for their valuable suggestions in rewriting the paper in the present form.

References

1 T. Kubiak, On fuzzy topologies, Ph.D. thesis, Adam Mickiewicz University, Poznan, Poland, 1985. 2 A. P. ˇSostak, “On a fuzzy topological structure,” Supplemento ai Rendiconti del Circolo Matematico di

Palermo, no. 11, pp. 89–103, 1985.

3 C. L. Chang, “Fuzzy topological spaces,” Journal of Mathematical Analysis and Applications, vol. 24, no. 1, pp. 182–190, 1968.

4 A. P. ˇSostak, “Two decades of fuzzy topology: the main ideas, concepts and results,” Russian Mathematical Surveys, vol. 44, no. 6, pp. 125–186, 1989.

5 A. P. ˇSostak, “Basic structures of fuzzy topology,” Journal of Mathematical Sciences, vol. 78, no. 6, pp. 662–701, 1996.

6 K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, “Gradation of openness: fuzzy topology,” Fuzzy Sets and Systems, vol. 49, no. 2, pp. 237–242, 1992.

7 U. H ¨ohle, “Upper semicontinuous fuzzy sets and applications,” Journal of Mathematical Analysis and Applications, vol. 78, no. 2, pp. 659–673, 1980.

8 U. H ¨ohle and A. ˇSostak, “A general theory of fuzzy topological spaces,” Fuzzy Sets and Systems, vol. 73, no. 1, pp. 131–149, 1995.

9 U. H ¨ohle and A. P. ˇSostak, “Axiomatic foundations of fixed-basis fuzzy topology,” in Mathematics of Fuzzy Sets, vol. 3 of The Handbooks of Fuzzy Sets Series, pp. 123–272, Kluwer Academic Publishers, Boston, Mass, USA, 1999.

10 T. Kubiak and A. P. ˇSostak, “Lower set-valued fuzzy topologies,” Quaestiones Mathematicae, vol. 20, no. 3, pp. 423–429, 1997.

11 K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986. 12 D. C¸ oker, “An introduction to intuitionistic fuzzy topological spaces,” Fuzzy Sets and Systems, vol. 88,

no. 1, pp. 81–89, 1997.

13 D. C¸ oker and M. Dimirci, “An introduction to intuitionistic fuzzy topological spaces in ˇSostak sense,” BUSEFAL, vol. 67, pp. 67–76, 1996.

14 T. K. Mondal and S. K. Samanta, “On intuitionistic gradation of openness,” Fuzzy Sets and Systems, vol. 131, no. 3, pp. 323–336, 2002.

15 S. E. Abbas, “R, S-generalized intuitionistic fuzzy closed sets,” Journal of the Egyptian Mathematical Society, vol. 14, no. 2, pp. 283–297, 2006.

16 S. E. Abbas and H. Ayg ¨un, “Intuitionistic fuzzy semiregularization spaces,” Information Sciences, vol. 176, no. 6, pp. 745–757, 2006.

References

Related documents

In this paper, we investigate the new degenerate Daehee polyno- mials and numbers which are called the degenerate Daehee polynomials of the second kind, and derive some new

The addition of these plastic wastes to the soil is beneficial as it acts as an effective soil stabilizer and simultaneously facilitates the safe disposal of the

Supervised machine learning algorithm (Adaboost) is implemented along with the Artificial Neural Network. In deep learning, the architecture of convolutional neural

We discuss how these data may be ana- lyzed with spatial statistics used in ecology to reveal patterns and advance our understanding of ecological interactions occurring among

Following centuries of progressive evolution of accounting and the accountancy profession, this paper sought to boldly underline the identity of the Accountant by

The taekwondo exercise reached the same heart rate peak and blood lactate concentration that the rates presented during the taekwondo match, therefore, can replicate

This study aims at identifying the touch points that are relevant to the satisfaction of commercial banks’ customers in Nigeria and above all evaluating the

Papillary intralymphatic angioendothelioma (PILA) or Dabska tumor is a locally aggressive, rarely metastasizing vascular lesion characterized by lymphatic- or vascular- like