• No results found

μ Ferrio bis­{carbonyl­[μ 2,2′,2′′ nitrilo­tri­ethane­thiol­ato(3 ) N,S,S′,S′′:S,S′]­iron(II)} benzene solvate

N/A
N/A
Protected

Academic year: 2020

Share "μ Ferrio bis­{carbonyl­[μ 2,2′,2′′ nitrilo­tri­ethane­thiol­ato(3 ) N,S,S′,S′′:S,S′]­iron(II)} benzene solvate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m658

Sian C. Davieset al. [Fe3(C6H12NS3)2(CO)2]C6H6 DOI: 10.1107/S1600536802018573 Acta Cryst.(2002). E58, m658±m660 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

l

-Ferrio-bis{carbonyl[

l

-2,2

000

,2

000000

-nitrilo-triethanethiolato(3-)-

N,S,S

000

,

S

000000

:

S,S

000

]iron(II)}

benzene solvate

Sian C. Davies,* Matt C. Smith, David L. Hughes and David J. Evans

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, England

Correspondence e-mail: sianc.davies@bbsrc.ac.uk

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.014 AÊ Disorder in main residue

Rfactor = 0.057

wRfactor = 0.144

Data-to-parameter ratio = 15.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The neutral title complex, [{Fe({SCH2CH2}3N)(CO)-S,S0}2(

-Fe)]C6H6 or [Fe3(C6H12NS3)2(CO)2]C6H6, contains two

trigonal bipyramidally coordinated FeII atoms bridged by a

tetrahedral FeIIatom. There is disorder in one {SCH

2CH2}3N

ligand and in the solvent benzene present in the crystal structure. Dimensions in the complex are comparable to those in other ®ve-coordinate metal±({SCH2CH2}3N) complexes.

Comment

The title compound, (I), was isolated as a minor product from an attempted synthesis of a novel nickel±iron±thiolate complex with features similar to some of those of the active sites of the enzymes NiFe-hydrogenase, nickel carbon monoxide dehydrogenase and acetyl±CoA synthase (Evans, 2001). The same compound, [{Fe({SCH2CH2}3

N)(CO)-S,S0}

2(-Fe)], but unsolvated (Davies et al., 2000), and other

trinuclear compounds [{Fe({SCH2CH2}3N)(CO)±S,S0}2(-M)]

[M= Co, V (Davieset al., 2000);M= Ni (Smithet al., 2001)], have been reported previously.

The X-ray analysis of [{Fe({SCH2CH2}3N)(CO)-S,S0}2(

-Fe)]C6H6 shows two Fe({SCH2CH2}3N)(CO) units linked

through a third Fe atom, resulting in two iron environments, which are con®rmed by MoÈssbauer spectra. In each of the outer units the Fe atom is trigonal bipyramidally coordinated to one CO and by one {SCH2CH2}3N ligand, with the Fe atoms

displaced 0.0702 (13) and 0.0801 (13) AÊ out of the S3

equa-torial planes, towards the CO ligands. The normals to the two S3planes are tilted with respect to each other by 90.3.

The central Fe atom is tetrahedrally coordinated by four S atoms, with angles about the Fe lying in the range 105.37 (11) to 116.63 (11) and an average Fe Fe distance to the outer

Fe atoms of 2.682 (10) AÊ.

The two {SCH2CH2}3N ligands show the typical `trigonal'

arrangement seen in most other metal±({SCH2CH2}3N)

complexes (Davies et al., 2000). There is disorder in one of these ligands, with occupancies of 54 (2) and 46 (2)% for two orientations, rotated by 45 (2). This disorder destroys the

pseudo-twofold rotation axis through the central tetrahedral Fe atom; in the unsolvated crystal structure, the two Fe({SCH2CH2}3N)(CO) units are related by a crystallographic

(2)

twofold symmetry axis, but the dimensions of the two complex molecules are very similar and the structure of the minor disorder component of (I) is essentially identical to that of the symmetrical structure. There is also disorder in the benzene solvent molecule, fully resolved, with occupancies of 61 (3) and 39 (3)% for two planes, rotated by approximately 30and

tilted with respect to each other by 16.4 (10).

Bond distances within each Fe({SCH2CH2}3N)(CO) unit are

comparable to those in many ®ve-coordinate metal± ({SCH2CH2}3N) complexes that we have reported (Davieset

al., 2000). The average FeÐS bond length is 2.24 (2) AÊ for the trigonal bipyramidal Fe atoms and 2.2877 (5) AÊ for the tetrahedral Fe atoms. SÐC bond lengths are 1.822 (9) AÊ,MÐ SÐC angles are 99.2 (3) and 106.9 (3) for the trigonal

bipyramidal and tetrahedral irons respectively, andMÐNÐC angles are 110.5 (2).

Experimental

To a solution of nickel(II) 2,4-pentanedionate (0.49 g. 1.91 mmol) in benzene (50 ml) was added tris(2-mercaptoethyl)amine (0.40 g, 2.06 mmol) under an atmosphere of dinitrogen. After vigorous stir-ring for 30 min, a brown precipitate was removed by ®ltration. The ®ltrate was allowed to stand for 3 d, during which time dark-purple rosettes of previously reported (Davies et al., 1999) [Ni{(SCH2CH2)2N(CH2CH2SH)}]2 formed. The crystals were

removed by ®ltration; to the ®ltrate was added iron pentacarbonyl (1.49 g, 7.61 mmol) and the mixture left to stand for a further 3 d. The dark crystalline needles which formed were collected by ®ltration, washed repeatedly with diethyl ether and driedin vacuo. Expected for C20H3Fe3N2O2S6: C 34.8, H 4.4, N 4.1, Fe 24.3%; found: C 34.9, H

4.6, N 3.8, Fe 24.0%.(CO) 1952 cmÿ1. MoÈssbauer (solid, 77 K, ref.

iron foil 298 K), two doublets, relative intensity 2:1:1= 0.20,Eq1=

1.15,ÿ1/2= 0.13 mm sÿ1;2= 0.59,Eq2= 1.98,ÿ1/2= 0.13 mmsÿ1.

Crystal data

[Fe3(C6H12NS3)2(CO)2]C6H6

Mr= 690.37

Monoclinic,P21=n

a= 14.1644 (12) AÊ b= 11.0663 (15) AÊ c= 17.820 (2) AÊ

= 97.226 (8)

V= 2771.1 (6) AÊ3

Z= 4

Dx= 1.655 Mg mÿ3

MoKradiation Cell parameters from 24

re¯ections

= 10±11 = 2.02 mmÿ1

T= 293 (2) K

Rectangular prism, orange±brown 0.740.130.10 mm

Data collection

Enraf±Nonius CAD-4 diffractometer

!/2scans

Absorption correction: scan (EMPABS; Sheldricket al., 1977) Tmin= 0.914,Tmax= 0.960

5226 measured re¯ections 4356 independent re¯ections 1873 re¯ections withI> 2(I)

Rint= 0.058

max= 24.0

h=ÿ1!16 k=ÿ1!12 l=ÿ20!20 3 standard re¯ections

every 300 re¯ections frequency: 167 min intensity decay: none

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.057

wR(F2) = 0.144

S= 0.98 4356 re¯ections 291 parameters

H-atom parameters constrained w= 1/[2(F

o2) + (0.036P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.59 e AÊÿ3 min=ÿ0.47 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Fe1ÐC1 1.708 (13)

Fe1ÐN4 2.043 (8)

Fe1ÐS3 2.214 (3)

Fe1ÐS2 2.243 (3)

Fe1ÐS1 2.272 (3)

Fe1ÐFe2 2.6917 (18)

S1ÐFe2 2.281 (3)

S2ÐFe2 2.295 (3)

C1ÐO1 1.150 (12)

Fe2ÐS5 2.276 (3)

Fe2ÐS4 2.298 (3)

Fe2ÐFe3 2.6721 (18)

Fe3ÐC2 1.743 (11)

Fe3ÐN7 2.054 (7)

Fe3ÐS6 2.209 (3)

Fe3ÐS5 2.256 (3)

Fe3ÐS4 2.260 (3)

C2ÐO2 1.148 (11)

C1ÐFe1ÐN4 174.7 (4)

C1ÐFe1ÐS3 87.0 (3)

N4ÐFe1ÐS3 88.1 (2)

C1ÐFe1ÐS2 93.6 (4)

N4ÐFe1ÐS2 87.8 (2)

S3ÐFe1ÐS2 127.13 (11)

C1ÐFe1ÐS1 95.7 (4)

N4ÐFe1ÐS1 88.7 (2)

S3ÐFe1ÐS1 125.14 (11)

S2ÐFe1ÐS1 107.43 (10)

O1ÐC1ÐFe1 176.6 (10)

S5ÐFe2ÐS1 116.63 (11)

S5ÐFe2ÐS2 107.48 (10)

S1ÐFe2ÐS2 105.37 (10)

S5ÐFe2ÐS4 105.88 (11)

S1ÐFe2ÐS4 108.38 (11)

S2ÐFe2ÐS4 113.33 (10)

Fe3ÐFe2ÐFe1 164.28 (7)

C2ÐFe3ÐN7 176.5 (4)

C2ÐFe3ÐS6 88.5 (3)

N7ÐFe3ÐS6 88.0 (2)

C2ÐFe3ÐS5 94.5 (4)

N7ÐFe3ÐS5 87.5 (2)

S6ÐFe3ÐS5 125.40 (13)

C2ÐFe3ÐS4 93.8 (4)

N7ÐFe3ÐS4 88.3 (2)

S6ÐFe3ÐS4 126.39 (14)

S5ÐFe3ÐS4 107.83 (11)

O2ÐC2ÐFe3 177.7 (10)

Fe1ÐS1ÐFe2 72.48 (8)

Fe1ÐS2ÐFe2 72.75 (8)

Fe3ÐS4ÐFe2 71.79 (9)

Fe3ÐS5ÐFe2 72.26 (9)

S1ÐC14ÐC41ÐN4 49.3 (10)

S2ÐC24ÐC42ÐN4 44.8 (11)

S3ÐC34ÐC43ÐN4 49.8 (11)

S4ÐC47ÐC74AÐN7 ÿ47.3 (15) S4ÐC47ÐC74BÐN7 41.9 (19)

S5ÐC57ÐC75AÐN7 ÿ48.4 (14) S5ÐC57ÐC75BÐN7 50.6 (15) S6ÐC67ÐC76AÐN7 ÿ49.2 (18) S6ÐC67ÐC76BÐN7 45.4 (19)

Intensity data were collected tomaxof 25, giving maximumhkl

indices of 16, 13 and 21, and 4865 unique re¯ections, of which 1899 were observed; those greater than 24were found to be rather weak

and unreliable and were not used in the ®nal re®nement. Negative intensities were eliminated usingBAYES(French & Wilson, 1978), before structure solution and re®nement.

The structure analysis indicated regions of disorder in the solvent benzene molecule and in the N-bonded C atoms of one of the {SCH2CH2}3N ligands in the complex. All atomic sites in the

disor-dered regions of the structure were unambiguously located from electron-density maps and were well resolved. However, the limita-tions of the data (maximum of 24, collection at room temperature,

etc.) yield less-than-perfect results with a wide range of bond lengths

Acta Cryst.(2002). E58, m658±m660 Sian C. Davieset al. [Fe3(C6H12NS3)2(CO)2]C6H6

m659

metal-organic papers

Figure 1

A view of (I). Displacement ellipsoids are drawn at the 50% probability level. The C atoms in the disordered {SCH2CH2}3N ligand on Fe3, which

(3)

metal-organic papers

m660

Sian C. Davieset al. [Fe3(C6H12NS3)2(CO)2]C6H6 Acta Cryst.(2002). E58, m658±m660

and angles in the disordered regions. During the re®nement process, geometrical restraints were applied to the disordered regions [viz. NÐC = 1.49 (1) AÊ and CÐC = 1.50 (1) AÊ in the anion, and CÐC = 1.39 (1) AÊ in the benzene molecule], but theRfactors were higher, with no signi®cant changes to the rest of the structure. Finally, all atoms were allowed to re®ne freely in order to give a more reliable indication of the accuracy and quality of the model based on the crystallographic data.

Data collection: CAD-4 EXPRESS (Enraf±Nonius, 1992); cell re®nement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976); program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Biotechnology and Biological Sciences Research Council for ®nancial support.

References

Davies, S. C., Evans, D. J., Hughes, D. L. & Longhurst, S. (1999).Acta Cryst. C55, 1436±1438.

Davies, S. C., Durrant, M. C., Hughes, D. L., Richards, R. L. & Sanders, J. R. (2000).J. Chem. Soc. Dalton Trans.pp.4694±4701.

Enraf±Nonius (1992).CAD-4EXPRESS. Enraf±Nonius, Delft, The Nether-lands.

Evans, D. J. (2001).J. Chem. Res. S, pp. 297±303. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

French, S. & Wilson, K. (1978).Acta Cryst.A34, 517±525.

Hursthouse, M. B. (1976).CAD-4Processing Program. Queen Mary College, London.

Sheldrick, G. M. (1986).SHELXS86. University of GoÈttingen, Germany. Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). 4th

European Crystallographic Meeting, Oxford, Abstracts, p. 147.

(4)

supporting information

sup-1 Acta Cryst. (2002). E58, m658–m660

supporting information

Acta Cryst. (2002). E58, m658–m660 [https://doi.org/10.1107/S1600536802018573]

µ

-Ferrio-bis{carbonyl[

µ

-2,2

,2

′′

-nitrilotriethanethiolato(3-)-N,S,S

,

S

′′

:

S,S

]iron(II)} benzene solvate

Sian C. Davies, Matt C. Smith, David L. Hughes and David J. Evans

µ-Ferrio-bis{carbonyl[µ-2,2′,2′′-nitrilotriethanethiolato(3-)- N,S,S′,S′′:S,S′]iron(II)} benzene solvate

Crystal data

[Fe3(C6H12NS3)2(CO)2]·C6H6 Mr = 690.37

Monoclinic, P21/n Hall symbol: -P 2yn

a = 14.1644 (12) Å

b = 11.0663 (15) Å

c = 17.820 (2) Å

β = 97.226 (8)°

V = 2771.1 (6) Å3 Z = 4

F(000) = 1416

Dx = 1.655 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 24 reflections

θ = 10–11°

µ = 2.02 mm−1 T = 293 K

Rectangular prism, orange–brown 0.74 × 0.13 × 0.10 mm

Data collection

Enraf-Nonius CAD-4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

scintillation counter; ω/2θ scans Absorption correction: ψ scan

(EMPABS; Sheldrick et al., 1977)

Tmin = 0.914, Tmax = 0.960 5226 measured reflections

4356 independent reflections 1873 reflections with I > 2σ(I)

Rint = 0.058

θmax = 24.0°, θmin = 1.5° h = −1→16

k = −1→12

l = −20→20

3 standard reflections every 300 reflections intensity decay: none

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057 wR(F2) = 0.144 S = 0.98 4356 reflections 291 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.036P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

(5)

supporting information

sup-2 Acta Cryst. (2002). E58, m658–m660

Special details

Experimental. Data were collected to θmax of 25° giving maximum h k l indices of 16, 13 and 21, and 4865 unique reflections, but those with θ greater than 24° were found to be unreliable and were not used in the final refinement, leaving data to maximum indices of 16, 12 and 20 and 4356 unique reflections with 1899 observed.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were corrected for Lorentz-polarization effects, (Hursthouse, 1976), absorption using EMPABS, (Sheldrick et al., 1977), and negative intensities were eliminated using BAYES, (French et al., 1978), before structure solution and refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1) Fe1 0.40244 (10) 0.91111 (11) 0.63558 (7) 0.0442 (4)

(6)

supporting information

sup-3 Acta Cryst. (2002). E58, m658–m660

C47 0.1181 (7) 0.6135 (9) 0.6231 (6) 0.071 (3)

H47A 0.1167 0.6696 0.6648 0.085* 0.541 (15) H47B 0.0534 0.5884 0.6060 0.085* 0.541 (15) H47C 0.1553 0.6333 0.6710 0.085* 0.459 (15) H47D 0.0537 0.6426 0.6244 0.085* 0.459 (15) C74A 0.1801 (13) 0.5015 (15) 0.6496 (9) 0.046 (5)* 0.541 (15) H74A 0.2391 0.5288 0.6781 0.056* 0.541 (15) H74B 0.1466 0.4530 0.6831 0.056* 0.541 (15) C74B 0.1170 (16) 0.4798 (19) 0.6118 (12) 0.053 (7)* 0.459 (15) H74C 0.1069 0.4419 0.6592 0.063* 0.459 (15) H74D 0.0628 0.4598 0.5750 0.063* 0.459 (15) C57 0.3757 (7) 0.4138 (8) 0.6320 (5) 0.062 (3)

H57A 0.4273 0.3557 0.6393 0.074* 0.541 (15) H57B 0.3754 0.4599 0.6783 0.074* 0.541 (15) H57C 0.3823 0.3305 0.6166 0.074* 0.459 (15) H57D 0.4244 0.4303 0.6741 0.074* 0.459 (15) C75A 0.2799 (12) 0.3483 (17) 0.6121 (10) 0.051 (6)* 0.541 (15) H75A 0.2868 0.2887 0.5733 0.061* 0.541 (15) H75B 0.2649 0.3054 0.6566 0.061* 0.541 (15) C75B 0.2808 (13) 0.432 (2) 0.6560 (11) 0.049 (6)* 0.459 (15) H75C 0.2784 0.5104 0.6803 0.059* 0.459 (15) H75D 0.2691 0.3705 0.6924 0.059* 0.459 (15) C67 0.1251 (8) 0.2859 (10) 0.4893 (6) 0.079 (4)

H67A 0.0646 0.2510 0.4686 0.095* 0.541 (15) H67B 0.1704 0.2206 0.5002 0.095* 0.541 (15) H67C 0.0593 0.3038 0.4946 0.095* 0.459 (15) H67D 0.1284 0.2032 0.4718 0.095* 0.459 (15) C76A 0.1141 (16) 0.350 (2) 0.5586 (11) 0.077 (7)* 0.541 (15) H76A 0.1027 0.2926 0.5975 0.092* 0.541 (15) H76B 0.0591 0.4030 0.5499 0.092* 0.541 (15) C76B 0.1870 (18) 0.300 (2) 0.5669 (12) 0.066 (8)* 0.459 (15) H76C 0.1556 0.2603 0.6057 0.079* 0.459 (15) H76D 0.2478 0.2602 0.5652 0.079* 0.459 (15) C2 0.2663 (8) 0.6038 (10) 0.4178 (6) 0.069 (3)

O2 0.2819 (7) 0.6534 (8) 0.3642 (4) 0.117 (4)

(7)

supporting information

sup-4 Acta Cryst. (2002). E58, m658–m660

H81B −0.0331 1.1738 0.3065 0.052* 0.39 (3) C82B 0.097 (3) 1.086 (3) 0.282 (2) 0.067 (11)* 0.39 (3) H82B 0.1050 1.1281 0.2380 0.081* 0.39 (3) C83B 0.160 (2) 1.000 (3) 0.307 (2) 0.071 (11)* 0.39 (3) H83B 0.2118 0.9855 0.2809 0.086* 0.39 (3) C84B 0.147 (3) 0.927 (4) 0.376 (2) 0.080 (12)* 0.39 (3) H84B 0.1875 0.8646 0.3929 0.096* 0.39 (3) C85B 0.069 (3) 0.960 (3) 0.4126 (17) 0.047 (10)* 0.39 (3) H85B 0.0562 0.9186 0.4555 0.057* 0.39 (3) C86B 0.017 (2) 1.047 (3) 0.3871 (16) 0.045 (8)* 0.39 (3) H86B −0.0287 1.0683 0.4180 0.054* 0.39 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23 Fe1 0.0621 (9) 0.0286 (7) 0.0429 (7) −0.0003 (7) 0.0108 (7) 0.0012 (6) S1 0.0786 (19) 0.0424 (15) 0.0400 (13) −0.0059 (14) 0.0196 (13) −0.0030 (12) S2 0.087 (2) 0.0389 (15) 0.0382 (13) −0.0060 (14) 0.0087 (13) 0.0057 (11) S3 0.087 (2) 0.0354 (14) 0.0577 (16) −0.0029 (15) 0.0127 (14) −0.0044 (13) N4 0.059 (5) 0.042 (5) 0.049 (5) 0.001 (4) 0.006 (4) 0.003 (4) C14 0.084 (8) 0.050 (7) 0.047 (6) −0.012 (6) 0.000 (5) 0.014 (5) C41 0.092 (9) 0.055 (8) 0.071 (7) 0.002 (6) 0.000 (7) 0.023 (6) C24 0.095 (9) 0.058 (7) 0.058 (7) −0.004 (7) 0.032 (6) −0.008 (6) C42 0.076 (8) 0.086 (9) 0.065 (7) 0.013 (7) 0.026 (6) 0.021 (7) C34 0.074 (8) 0.058 (7) 0.061 (7) −0.020 (6) −0.009 (6) 0.010 (6) C43 0.089 (9) 0.051 (7) 0.081 (8) 0.002 (6) −0.004 (7) 0.017 (6) C1 0.069 (8) 0.039 (7) 0.096 (9) −0.011 (6) −0.001 (7) −0.012 (6) O1 0.062 (6) 0.074 (7) 0.244 (12) 0.023 (5) −0.002 (7) −0.001 (7) Fe2 0.0684 (10) 0.0311 (7) 0.0387 (7) −0.0036 (7) 0.0131 (7) −0.0003 (6) Fe3 0.0777 (11) 0.0412 (8) 0.0377 (7) −0.0092 (8) 0.0126 (7) −0.0001 (7) S4 0.0692 (18) 0.0381 (15) 0.0641 (16) 0.0054 (13) 0.0097 (14) 0.0122 (13) S5 0.0628 (18) 0.0411 (15) 0.0600 (16) 0.0003 (13) 0.0205 (13) −0.0134 (13) S6 0.131 (3) 0.076 (2) 0.0520 (17) −0.034 (2) −0.0005 (18) −0.0125 (16) N7 0.060 (5) 0.036 (5) 0.050 (5) 0.009 (4) 0.011 (4) 0.008 (4) C47 0.075 (8) 0.061 (8) 0.085 (8) 0.012 (6) 0.047 (6) 0.020 (6) C57 0.085 (8) 0.029 (5) 0.067 (7) 0.001 (6) −0.006 (6) −0.007 (5) C67 0.096 (9) 0.061 (8) 0.076 (8) −0.026 (7) −0.013 (7) 0.002 (6) C2 0.101 (9) 0.055 (7) 0.053 (7) −0.012 (7) 0.014 (6) −0.002 (6) O2 0.203 (10) 0.111 (7) 0.043 (4) −0.052 (7) 0.038 (5) 0.011 (5)

Geometric parameters (Å, º)

Fe1—C1 1.708 (13) S5—C57 1.850 (10) Fe1—N4 2.043 (8) S6—C67 1.820 (10) Fe1—S3 2.214 (3) N7—C75A 1.422 (17)

Fe1—S2 2.243 (3) N7—C76B 1.45 (2)

Fe1—S1 2.272 (3) N7—C74B 1.47 (2)

(8)

supporting information

sup-5 Acta Cryst. (2002). E58, m658–m660

S1—C14 1.805 (10) N7—C76A 1.53 (2)

S1—Fe2 2.281 (3) N7—C75B 1.56 (2)

S2—C24 1.822 (10) C47—C74B 1.49 (2) S2—Fe2 2.295 (3) C47—C74A 1.558 (18) S3—C34 1.820 (10) C57—C75B 1.47 (2) N4—C42 1.481 (11) C57—C75A 1.540 (18) N4—C43 1.493 (12) C67—C76A 1.45 (2) N4—C41 1.498 (11) C67—C76B 1.55 (2) C14—C41 1.516 (13) C2—O2 1.148 (11) C24—C42 1.510 (12) C81A—C82A 1.26 (3) C34—C43 1.498 (13) C81A—C86A 1.40 (3) C1—O1 1.150 (12) C82A—C83A 1.39 (3) Fe2—S5 2.276 (3) C83A—C84A 1.33 (3) Fe2—S4 2.298 (3) C84A—C85A 1.43 (3) Fe2—Fe3 2.6721 (18) C85A—C86A 1.38 (3) Fe3—C2 1.743 (11) C81B—C82B 1.50 (5) Fe3—N7 2.054 (7) C81B—C86B 1.38 (4) Fe3—S6 2.209 (3) C82B—C83B 1.34 (5) Fe3—S5 2.256 (3) C83B—C84B 1.50 (5) Fe3—S4 2.260 (3) C84B—C85B 1.40 (5) S4—C47 1.838 (9) C85B—C86B 1.26 (4)

(9)

supporting information

sup-6 Acta Cryst. (2002). E58, m658–m660

C43—N4—Fe1 109.8 (6) C75A—N7—Fe3 108.4 (8) C41—N4—Fe1 111.7 (6) C76B—N7—Fe3 112.4 (10) C41—C14—S1 111.2 (7) C74B—N7—Fe3 108.4 (9) N4—C41—C14 111.7 (9) C74A—N7—Fe3 112.6 (8) C42—C24—S2 111.2 (7) C76A—N7—Fe3 108.6 (9) N4—C42—C24 111.8 (8) C75B—N7—Fe3 111.6 (8) C43—C34—S3 108.2 (7) C74B—C47—C74A 41.2 (9) N4—C43—C34 112.5 (8) C74B—C47—S4 109.6 (10) O1—C1—Fe1 176.6 (10) C74A—C47—S4 108.5 (8) S5—Fe2—S1 116.63 (11) N7—C74A—C47 112.9 (12) S5—Fe2—S2 107.48 (10) N7—C74B—C47 116.8 (15) S1—Fe2—S2 105.37 (10) C75B—C57—C75A 47.4 (9) S5—Fe2—S4 105.88 (11) C75B—C57—S5 109.8 (9) S1—Fe2—S4 108.38 (11) C75A—C57—S5 107.2 (8) S2—Fe2—S4 113.33 (10) N7—C75A—C57 114.4 (13) S5—Fe2—Fe3 53.54 (8) C57—C75B—N7 110.2 (14) S1—Fe2—Fe3 138.41 (9) C76A—C67—C76B 45.7 (10) S2—Fe2—Fe3 116.15 (8) C76A—C67—S6 110.4 (11) S4—Fe2—Fe3 53.44 (8) C76B—C67—S6 110.3 (10) S5—Fe2—Fe1 136.53 (9) C67—C76A—N7 111.7 (15) S1—Fe2—Fe1 53.61 (7) N7—C76B—C67 111.0 (16) S2—Fe2—Fe1 52.73 (7) O2—C2—Fe3 177.7 (10) S4—Fe2—Fe1 117.44 (9) C82A—C81A—C86A 125 (2) Fe3—Fe2—Fe1 164.28 (7) C81A—C82A—C83A 120 (2) C2—Fe3—N7 176.5 (4) C84A—C83A—C82A 117 (3) C2—Fe3—S6 88.5 (3) C83A—C84A—C85A 124 (2) N7—Fe3—S6 88.0 (2) C86A—C85A—C84A 114.7 (18) C2—Fe3—S5 94.5 (4) C85A—C86A—C81A 118.0 (18) N7—Fe3—S5 87.5 (2) C86B—C81B—C82B 109 (3) S6—Fe3—S5 125.40 (13) C83B—C82B—C81B 122 (3) C2—Fe3—S4 93.8 (4) C82B—C83B—C84B 120 (3) N7—Fe3—S4 88.3 (2) C85B—C84B—C83B 116 (3) S6—Fe3—S4 126.39 (14) C86B—C85B—C84B 119 (3) S5—Fe3—S4 107.83 (11) C85B—C86B—C81B 133 (3) C2—Fe3—Fe2 87.5 (3)

(10)

supporting information

sup-7 Acta Cryst. (2002). E58, m658–m660

References

Related documents

In our model, each name mention is modeled as a sample generated through a three-step generative story, where the entity knowledge is encoded in

We have shown that using confidence-weighted classifiers with transition-based dependency pars- ing yields results comparable with the state-of-the- art results achieved with

The aim is not only to determine the index of total factor productivity change but also to record its driving forces for the decision making units under

the uncertainty of decision-making and decision consequences, then the vartational uncertainty is. rather a response to expressed uncertainties of all the other

The insertion errors corre- sponded to “Yes” words that were placed after a new-consult system utterance, which is the case of the second turn presented in Figure 4.. These words

behind these econometric demand functions, thus we could conclude that the attribute theory might be as good as utility theory. If we have to consider Model 5 that has no constant

These findings can also be true when the two constraints move to high budget and high fat (Scenario C). Therefore, it is empirically reasonable to accept the fact that

The system was evaluated against two sets of texts: artificially generated errors from the Brown corpus (Francis and Kucera 1967) and genuine spelling errors