Tetra μ3 methano­lato tetra­kis­­[(2 formyl­phenolato O)(methanol O)­cobalt(II)]

13 

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online. Tetra-l3-methanolato-tetrakis[(2-formylphenolato-O)(methanol-O)cobalt(II)]. ISSN 1600-5368. Ruihu Wang, Maochun Hong,* Weiping Su and Rong Cao State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China. The title complex, [Co4(CH3O)4L4(CH4O)4] (LH = 2hydroxybenzaldehyde, C7H6O2), has a cubane-type structural topology with four Co atoms and four O atoms, each derived from MeOÿ, at alternate corners. Each Co atom is coordinated in a distorted octahedral geometry de®ned by three bridging O atoms, two O atoms from chelating L, and one O atom from a methanol molecule.. Received 4 June 2001 Accepted 22 June 2001 Online 29 June 2001. Correspondence e-mail: hmc@ms.fjirsm.ac.cn. Comment Key indicators Single-crystal X-ray study T = 293 K Ê Mean (C±C) = 0.006 A R factor = 0.037 wR factor = 0.103 Data-to-parameter ratio = 14.2 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2001 International Union of Crystallography Printed in Great Britain ± all rights reserved. In the past two decades, cubane-type polynuclear complexes have received much attention owing to their magnetic and optical properties, as well their biological relevance. Complexes of the type Mn4O4 and their derivatives have been extensively studied for they are thought to have relevance to the Water Oxidation Center (WOC) in the photosynthetic apparatus of green plants and cyanobacteria (Christou, 1989; Brudrig et al., 1991; Dimitrou et al., 1993; Taft et al., 1993; Wieghardt, 1989). Recently, several cubane-type complexes of. cobalt and other transition metals, such as nickel, zinc and cadmium, have been reported. For example, Christou and others have reported biologically relevant cubane complexes, e.g. [Co4O4(OAc)2bpy4(ClO4)2], containing the [Co4O4]4+ core, which is structurally analogous to, but more stable than, that of MnIIIMnIV or MnIV 4 species (Dimitrou et al., 1993). Two mixed-valence clusters, [Co8O4(O2CPh)12solv4] (solv = DMF, 4+ core, [Co8O4(OMeCN, H2O) containing the [CoIII 4 O4] 0 H)4(OAc)6L2](ClO4)2 [L = 1,2-bis(2,2 -bipyridyl-6-yl)ethane] containing a [Co84-O4(3-OH)4]8+ core with an unusual facesharing triple-cubane architecture, as well as [Co4(2,2-PyC(O)(OH)4(OAc)3(H2O)](ClO4), containing the [CoII4 O4]4+. Acta Cryst. (2001). E57, m325±m665 DOI: 10.1107/S1600536801010479 Wang, Hong, Su and Cao. . [Co4(CH3O)4(C7H5O2)4(CH4O)4]. m325.

(2) metal-organic papers cubane unit, have been also reported (Dimitrou et al., 1995; Grillo et al., 1996; Tong et al., 1999). In an attempt to prepare Schiff base complexes, the unexpected complex, [Co4(OMe)4L4(MeOH)4] (LH = 2-hydroxybenzaldehyde), was isolated and characterized crystallographically. As shown in Fig. 1, four Co atoms and four O atoms, each from MeOÿ, occupy alternate corners of the cubane unit where each Co atom is surrounded by three bridging O atoms derived from MeOÿ, one from MeOH and two O atoms from chelating 2-formylphenolate so as to form a distorted octahedral geometry. Each of the bridging O atoms has a remarkably distorted tetrahedral geometry. The CoÐ O(MeOH) bond lengths are longer than those for CoÐ O(MeOÿ).. Experimental A solution of melamine (0.04 g, 0.33 mmol) and salicylaldehyde (0.12 g, 1 mmol) in methanol solution (20 ml) was heated to 333 K for 3 h with vigorous stirring. After cooling, NaOH (0.04 g, 1 mmol) in methanol (5 ml) was added to the colorless solution. Co(NO3)26H2O (0.15 g, 0.5 mmol) was then added and the reaction mixture was stirred for 1 h to give a red solution which was ®ltered. Deep-red and pale-red crystalline complexes were obtained by keeping the resultant solution open to the air for a week. A deep-red single-crystal was selected for X-ray diffraction. Crystal data [Co4(CH3O)4(C7H5O2)4(CH4O)4] Mr = 972.46 Monoclinic, P21/n Ê a = 14.6546 (5) A Ê b = 14.7082 (5) A Ê c = 20.3235 (7) A

(3) = 103.789 (1) Ê3 V = 4254.3 (3) A Z=4. Co4ÐO4 Co4ÐO6 Co4ÐO7 O12ÐCo1ÐO5 O12ÐCo1ÐO6 O12ÐCo1ÐO7 O12ÐCo1ÐO11 O5ÐCo1ÐO1 O6ÐCo1ÐO1 O6ÐCo1ÐO5 O7ÐCo1ÐO1 O7ÐCo1ÐO5 O7ÐCo1ÐO6 O7ÐCo1ÐO11 O11ÐCo1ÐO1 O11ÐCo1ÐO5 O11ÐCo1ÐO6 O12ÐCo1ÐO1 O5ÐCo2ÐO2 O5ÐCo2ÐO6 O5ÐCo2ÐO8 O5ÐCo2ÐO21 O6ÐCo2ÐO2 O6ÐCo2ÐO8 O6ÐCo2ÐO21 O8ÐCo2ÐO2 O8ÐCo2ÐO21 O21ÐCo2ÐO2 O22ÐCo2ÐO2 O22ÐCo2ÐO5 O22ÐCo2ÐO6 O22ÐCo2ÐO8 O22ÐCo2ÐO21. 2.194 (3) 2.052 (2) 2.107 (2) 91.51 (8) 93.66 (9) 173.41 (9) 88.30 (9) 91.44 (10) 168.34 (9) 83.07 (8) 88.44 (10) 84.30 (8) 80.81 (8) 95.88 (9) 88.68 (10) 179.78 (9) 96.84 (9) 96.77 (10) 87.72 (10) 85.07 (8) 79.89 (8) 98.71 (9) 90.07 (10) 83.79 (8) 176.18 (8) 166.58 (10) 97.34 (9) 89.57 (10) 98.48 (11) 171.91 (9) 89.70 (9) 93.42 (9) 86.59 (9). Co4ÐO8 Co4ÐO41 Co4ÐO42 O5ÐCo3ÐO3 O5ÐCo3ÐO7 O5ÐCo3ÐO31 O7ÐCo3ÐO3 O7ÐCo3ÐO31 O8ÐCo3ÐO3 O8ÐCo3ÐO5 O8ÐCo3ÐO7 O8ÐCo3ÐO31 O31ÐCo3ÐO3 O32ÐCo3ÐO3 O32ÐCo3ÐO5 O32ÐCo3ÐO7 O32ÐCo3ÐO8 O32ÐCo3ÐO31 O6ÐCo4ÐO4 O6ÐCo4ÐO7 O6ÐCo4ÐO8 O6ÐCo4ÐO41 O7ÐCo4ÐO4 O7ÐCo4ÐO8 O8ÐCo4ÐO4 O41ÐCo4ÐO4 O41ÐCo4ÐO7 O41ÐCo4ÐO8 O42ÐCo4ÐO4 O42ÐCo4ÐO6 O42ÐCo4ÐO7 O42ÐCo4ÐO8 O42ÐCo4ÐO41. 2.141 (2) 2.088 (2) 2.024 (2) 166.01 (11) 83.52 (8) 99.04 (9) 88.13 (10) 175.72 (8) 88.19 (10) 79.88 (8) 84.54 (8) 99.25 (9) 90.01 (11) 95.88 (11) 95.24 (9) 89.46 (9) 172.64 (9) 86.90 (9) 89.08 (10) 81.07 (8) 84.32 (8) 93.95 (9) 168.73 (10) 83.12 (8) 90.50 (9) 87.92 (10) 98.16 (9) 177.67 (9) 96.68 (11) 173.63 (10) 92.92 (9) 92.88 (8) 89.00 (9). H-atom positions were generated geometrically and allowed to ride on their respective parent C atoms. The OÐH atoms were. Dx = 1.518 Mg mÿ3 Mo K radiation Cell parameters from 154 re¯ections  = 3.1±20.7  = 1.60 mmÿ1 T = 293 (2) K Block, dark-red 0.50  0.45  0.45 mm. Data collection Siemens SMART CCD diffractometer ! scans Absorption correction: empirical (SADABS; Sheldrick, 1996) Tmin = 0.454, Tmax = 0.487 15 156 measured re¯ections. 7411 independent re¯ections 5377 re¯ections with I > 2(I) Rint = 0.039 max = 24.9 h = ÿ17 ! 17 k = ÿ12 ! 17 l = ÿ10 ! 24. Re®nement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.037 wR(F 2) = 0.103 S = 1.01 7411 re¯ections 521 parameters H-atom parameters constrained. w = 1/[ 2(Fo2) + (0.0537P)2 + 0.6296P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 Ê ÿ3 max = 0.58 e A Ê ÿ3 min = ÿ0.37 e A. Table 1. Ê ,  ). Selected geometric parameters (A Co1ÐO1 Co1ÐO5 Co1ÐO6 Co1ÐO7 Co1ÐO11 Co1ÐO12 Co2ÐO2 Co2ÐO5 Co2ÐO6. m326. 2.147 (3) 2.131 (2) 2.116 (2) 2.054 (2) 2.101 (2) 2.030 (2) 2.152 (3) 2.064 (2) 2.102 (2). Wang, Hong, Su and Cao. Co2ÐO8 Co2ÐO21 Co2ÐO22 Co3ÐO3 Co3ÐO5 Co3ÐO7 Co3ÐO8 Co3ÐO31 Co3ÐO32. . 2.114 (2) 2.115 (2) 2.035 (2) 2.165 (3) 2.103 (2) 2.114 (2) 2.076 (2) 2.125 (2) 2.022 (2). [Co4(CH3O)4(C7H5O2)4(CH4O)4]. Figure 1. The structure of [Co4(OMe)4L4(MeOH)4]. Displacement ellipsoids are plotted at the 50% probability level (Sheldrick, 1997) Acta Cryst. (2001). E57, m325±m665.

(4) metal-organic papers re®ned with isotropic displacement parameters but ®xed in the ®nal cycles of least-squares re®nement. Data collection: SMART (Siemens, 1994); cell re®nement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.. This work was supported by the Natural Science Foundation of China and Natural Science Foundation of Fujian Province.. References Brudrig, G. W., Thorp, H. H. & Crabtree, K. H. (1991). Acc. Chem. Res. 24, 311±316.. Acta Cryst. (2001). E57, m325±m665. Christou, G. (1989). Acc. Chem. Res. 24, 328±335. Dimitrou, K., Folting, K., Streib. W. E. & Christou, G. (1993). J. Am. Chem. Soc. 22, 6432±6433. Dimitrou, K., Sun, J. S., Folting, K. & Christou, G. (1995). Inorg. Chem., 34, 4160±4166. Grillo, V. A., Sun, Z., Folting, K., Hendrickson, D. N. & Christou, G. (1996). J. Chem. Soc. Chem. Commun. pp. 2233±2234. Sheldrick G. M. (1996). SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA. Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Taft, K. L., Caneschi, A., Pence, L. E., Delfs, C. D., Papaefthymiou, G. C. & Lippard, S. J. (1993). J. Am. Chem. Soc. 115, 11753±11766. Tong, M. L., Lee, H. K., Zheng, S. L. & Chen, X. M. (1999). Chem. Lett. pp. 1087±1088. Wieghardt, B. K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153±1172.. Wang, Hong, Su and Cao. . [Co4(CH3O)4(C7H5O2)4(CH4O)4]. m327.

(5) supporting information. supporting information Acta Cryst. (2001). E57, m325–m327. [doi:10.1107/S1600536801010479]. Tetra-µ3-methanolato-tetrakis[(2-formylphenolato-O)(methanol-O)cobalt(II)] Ruihu Wang, Maochun Hong, Weiping Su and Rong Cao S1. Comment In the past two decades, cubane-type polynuclear complexes have received much attention owing to their magnetic and optical properties, as well their biological relevance. Complexes of the type Mn4O4 and their derivatives have been extensively studied for they are thought to have relevance to the Water Oxidation Center (WOC) in the photosynthetic apparatus of green plants and cyanobacteria (Christou, 1989; Brudrig et al., 1991; Dimitrou et al., 1993; Taft et al., 1993; Wieghardt, 1989). Recently, several cubane-type complexes of cobalt and other transition metals, such as nickel, zinc and cadmium, have been reported. For example, Christou and others have reported biologically relevant cubane complexes, e.g. [Co4O4(OAc)2bpy4(ClO4)2], containing the [Co4O4]+4 core, which is structurally analogous to, but more stable than, that of MnIIIMnIV or MnIV4 species (Dimitrou et al., 1993). Two mixed-valence clusters, [Co8O4(O2CPh)12solv4] (solv = DMF, MeCN, H2O) containing the [CoIII4O4]+4 core, [Co8O4(OH)4(OAc)6L2](ClO4)2 [L = 1,2-bis(2,2′-bipyridyl-6yl)ethane] containing a [Co8µ4-O4(µ3-OH)4]+8 core with an unusual face-sharing triple-cubane architecture, as well as [Co4(2,2-PyC(O)(OH)4(OAc)3(H2O)](ClO4), containing the [CoII4O4]+4 cubane unit, have been also reported (Dimitrou et al., 1995; Grillo et al., 1996; Tong et al., 1999). In an attempt to prepare Schiff base complexes, the unexpected complex, [Co4(OMe)4L4(MeOH)4] (LH = 2-hydroxylbenzaldehyde), was isolated and characterized crystallographically. As shown in Fig. 1, four Co atoms and four O atoms, each from MeO-, occupy alternate corners of the cubane unit where each Co atom is surrounded by three bridging O atoms derived from MeO-, one from MeOH and two O atoms from chelating 2-formylphenolate so as to form a distorted octahedral geometry. Each of the bridging O atoms has a remarkably distorted tetrahedral geometry. The Co—O(MeOH) bond lengths are longer than those for Co—O(MeO-). S2. Experimental A solution of melamine (0.04 g, 0.33 mmol) and salicylahdehyde (0.12 g, 1 mmol) in methanol solution (20 ml) was heated to 333 K for 3 h with vigorous stirring. After cooling, NaOH (0.04 g, 1 mmol) in methanol (5 ml) was added to the colorless solution. Co(NO3)2·6H2O (0.15 g, 0.5 mmol) was then added and the reaction mixture was stirred for 1 h to give a red solution which was filtered. Deep-red and pale-red crystalline complexes were obtained by keeping the resultant solution open to the air for a week. A deep-red single-crystal was selected for X-ray diffraction. S3. Refinement H-atom positions were generated geometrically and allowed to ride on their respective parent carbon atoms. The O—H atoms were refined with isotropic displacement parameters but fixed in the final cycles of least-squares refinement.. Acta Cryst. (2001). E57, m325–m327. sup-1.

(6) supporting information. Figure 1 The structure of [Co4(OMe)4L4(MeOH)4]. Displacement ellipsoids are plotted at the 50% probability level (Sheldrick, 1997) Tetra-u3methanolate tetra-u2(2-hydroxylatebenzaldehyde) tetra-methanol tetracobalt(II) [Co4OMe4L4(MeOH)4] (L=2-hydroxylatebenzaldehyde) Crystal data [Co4(CH3O)4(C7H5O2)4(CH4O)4] Mr = 972.46 Monoclinic, P21/n a = 14.6546 (5) Å b = 14.7082 (5) Å c = 20.3235 (7) Å β = 103.789 (1)° V = 4254.3 (3) Å3 Z=4. Acta Cryst. (2001). E57, m325–m327. F(000) = 2000 Dx = 1.518 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 154 reflections θ = 3.1–20.7° µ = 1.60 mm−1 T = 293 K Block, dark-red 0.50 × 0.45 × 0.45 mm. sup-2.

(7) supporting information Data collection Siemens SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) Tmin = 0.454, Tmax = 0.487. 15156 measured reflections 7411 independent reflections 5377 reflections with I > 2σ(I) Rint = 0.039 θmax = 24.9°, θmin = 1.6° h = −17→17 k = −12→17 l = −10→24. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.103 S = 1.01 7411 reflections 521 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0537P)2 + 0.6296P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.58 e Å−3 Δρmin = −0.37 e Å−3. Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). Co1 Co2 Co3 Co4 O1 H0A O2 H0B O3 H0C O4 H0D O5 O6 O7. x. y. z. Uiso*/Ueq. 0.61010 (3) 0.70158 (3) 0.82178 (3) 0.75875 (3) 0.6129 (2) 0.664 (3) 0.56573 (19) 0.536 (3) 0.94220 (17) 0.937 (3) 0.7689 (2) 0.754 (3) 0.69698 (14) 0.63723 (14) 0.73533 (13). 0.26149 (3) 0.24802 (3) 0.30894 (3) 0.10739 (3) 0.36420 (19) 0.381 (2) 0.2969 (2) 0.310 (3) 0.2422 (2) 0.191 (2) 0.0147 (2) 0.041 (3) 0.34157 (15) 0.15938 (15) 0.21335 (15). 0.03310 (2) −0.08950 (2) 0.05690 (2) 0.02696 (2) 0.10860 (13) 0.1210 (18) −0.14293 (13) −0.112 (2) 0.12119 (13) 0.1168 (18) −0.05559 (15) −0.086 (2) −0.01468 (10) −0.03310 (10) 0.09075 (9). 0.03916 (14) 0.03774 (13) 0.03873 (13) 0.03858 (13) 0.0554 (7) 0.046 (12)* 0.0632 (8) 0.095 (18)* 0.0546 (8) 0.034 (12)* 0.0576 (7) 0.081 (18)* 0.0379 (5) 0.0381 (5) 0.0366 (5). Acta Cryst. (2001). E57, m325–m327. sup-3.

(8) supporting information O8 O11 O12 O21 O22 O31 O32 O41 O42 C1 H1A H1B H1C C2 H2A H2B H2C C3 H3A H3B H3C C4 H4A H4B H4C C5 H5A H5B H5C C6 H6A H6B H6C C7 H7A H7B H7C C8 H8A H8B H8C C11 H11A C12 C13 H13A C14 H14A. 0.82575 (14) 0.52403 (16) 0.49213 (15) 0.76493 (17) 0.71430 (17) 0.91173 (17) 0.80070 (16) 0.68988 (17) 0.88034 (15) 0.5456 (3) 0.5636 0.4850 0.5427 0.5078 (5) 0.4513 0.4925 0.5386 1.0405 (2) 1.0764 1.0556 1.0553 0.8537 (3) 0.8434 0.8712 0.9032 0.6783 (3) 0.6789 0.6179 0.7258 0.5617 (2) 0.5107 0.5405 0.5837 0.7481 (2) 0.8106 0.7034 0.7387 0.9097 (2) 0.9000 0.9600 0.9258 0.4378 (3) 0.4098 0.3741 (2) 0.2762 (3) 0.2571 0.2099 (3) 0.1465. Acta Cryst. (2001). E57, m325–m327. 0.21275 (15) 0.18250 (18) 0.30573 (17) 0.33054 (16) 0.14363 (15) 0.40862 (18) 0.39746 (17) 0.00369 (18) 0.06955 (17) 0.4347 (3) 0.4718 0.4084 0.4714 0.2866 (7) 0.3208 0.2234 0.3081 0.2581 (3) 0.2164 0.3193 0.2494 −0.0334 (3) −0.0695 −0.0721 0.0095 0.4354 (3) 0.4687 0.4413 0.4592 0.0999 (3) 0.1355 0.0660 0.0588 0.1963 (3) 0.1742 0.1516 0.2517 0.2004 (3) 0.1537 0.1829 0.2563 0.1822 (3) 0.1433 0.2341 (3) 0.2229 (3) 0.1846 0.2665 (4) 0.2601. −0.01710 (10) 0.07986 (12) −0.03334 (11) −0.15137 (11) −0.15242 (10) 0.03044 (11) 0.12793 (11) 0.06603 (12) 0.09166 (11) 0.1060 (2) 0.1458 0.1039 0.0665 −0.2050 (3) −0.2076 −0.2128 −0.2388 0.1278 (2) 0.1601 0.1429 0.0847 −0.0574 (3) −0.0978 −0.0184 −0.0571 −0.03076 (18) 0.0100 −0.0616 −0.0514 −0.06551 (18) −0.0914 −0.0317 −0.0950 0.16190 (15) 0.1802 0.1686 0.1844 −0.03997 (18) −0.0740 −0.0025 −0.0589 0.06512 (18) 0.0905 0.01376 (17) 0.0092 (2) 0.0397 −0.0386 (3) −0.0396. 0.0370 (5) 0.0557 (7) 0.0499 (6) 0.0509 (6) 0.0481 (6) 0.0546 (7) 0.0514 (6) 0.0536 (6) 0.0503 (6) 0.0766 (13) 0.115* 0.115* 0.115* 0.208 (5) 0.311* 0.311* 0.311* 0.0695 (12) 0.104* 0.104* 0.104* 0.0854 (15) 0.128* 0.128* 0.128* 0.0556 (10) 0.083* 0.083* 0.083* 0.0520 (9) 0.078* 0.078* 0.078* 0.0523 (10) 0.078* 0.078* 0.078* 0.0501 (9) 0.075* 0.075* 0.075* 0.0577 (10) 0.069* 0.0483 (9) 0.0679 (12) 0.082* 0.0818 (15) 0.098*. sup-4.

(9) supporting information C15 H15A C16 H16A C17 C21 H21A C22 C23 H23A C24 H24A C25 H25A C26 H26A C27 C31 H31A C32 C33 H33A C34 H34A C35 H35A C36 H36A C37 C41 H41A C42 C43 H43A C44 H44A C45 H45A C46 H46A C47. 0.2385 (3) 0.1933 0.3320 (3) 0.3486 0.4035 (2) 0.7779 (2) 0.8017 0.7615 (2) 0.7787 (2) 0.7999 0.7651 (3) 0.7773 0.7326 (3) 0.7220 0.7161 (3) 0.6950 0.7299 (2) 0.9500 (3) 0.9949 0.9343 (2) 0.9944 (3) 1.0406 0.9861 (3) 1.0260 0.9168 (3) 0.9121 0.8556 (3) 0.8086 0.8617 (2) 0.7273 (3) 0.6877 0.8247 (3) 0.8490 (4) 0.8024 0.9383 (4) 0.9528 1.0071 (3) 1.0682 0.9876 (3) 1.0356 0.8957 (2). 0.3206 (3) 0.3492 0.3331 (3) 0.3694 0.2917 (3) 0.3085 (2) 0.3541 0.2234 (2) 0.2180 (3) 0.2693 0.1397 (3) 0.1373 0.0633 (3) 0.0098 0.0658 (3) 0.0133 0.1449 (2) 0.4691 (3) 0.5033 0.4940 (2) 0.5610 (3) 0.5869 0.5885 (3) 0.6327 0.5493 (3) 0.5660 0.4865 (3) 0.4629 0.4564 (2) −0.0537 (3) −0.0984 −0.0612 (2) −0.1332 (3) −0.1733 −0.1454 (4) −0.1936 −0.0855 (4) −0.0937 −0.0133 (3) 0.0262 0.0012 (3). −0.0856 (3) −0.1191 −0.0841 (2) −0.1168 −0.03349 (17) −0.20756 (16) −0.2304 −0.24203 (15) −0.30763 (16) −0.3262 −0.34414 (17) −0.3870 −0.31676 (18) −0.3418 −0.25292 (18) −0.2356 −0.21295 (15) 0.06939 (18) 0.0549 0.13429 (17) 0.1717 (2) 0.1533 0.2341 (2) 0.2580 0.2618 (2) 0.3050 0.22591 (18) 0.2448 0.16106 (16) 0.10748 (17) 0.1173 0.14293 (16) 0.1902 (2) 0.1960 0.2273 (2) 0.2576 0.2197 (2) 0.2453 0.1748 (2) 0.1711 0.13453 (16). 0.0763 (13) 0.092* 0.0635 (11) 0.076* 0.0477 (9) 0.0452 (9) 0.054* 0.0369 (7) 0.0448 (8) 0.054* 0.0532 (10) 0.064* 0.0580 (10) 0.070* 0.0556 (10) 0.067* 0.0388 (8) 0.0576 (10) 0.069* 0.0465 (9) 0.0659 (11) 0.079* 0.0794 (14) 0.095* 0.0766 (14) 0.092* 0.0621 (11) 0.075* 0.0450 (9) 0.0525 (9) 0.063* 0.0493 (9) 0.0726 (12) 0.087* 0.0900 (16) 0.108* 0.0864 (16) 0.104* 0.0679 (12) 0.082* 0.0487 (9). Atomic displacement parameters (Å2). Co1 Co2 Co3. U11. U22. U33. U12. U13. U23. 0.0316 (2) 0.0417 (2) 0.0354 (2). 0.0468 (3) 0.0391 (3) 0.0461 (3). 0.0380 (2) 0.0308 (2) 0.0342 (2). 0.0009 (2) −0.0032 (2) −0.0082 (2). 0.00628 (18) 0.00539 (18) 0.00738 (17). 0.0036 (2) 0.00050 (19) −0.0046 (2). Acta Cryst. (2001). E57, m325–m327. sup-5.

(10) supporting information Co4 O1 O2 O3 O4 O5 O6 O7 O8 O11 O12 O21 O22 O31 O32 O41 O42 C1 C2 C3 C4 C5 C6 C7 C8 C11 C12 C13 C14 C15 C16 C17 C21 C22 C23 C24 C25 C26 C27 C31 C32 C33 C34 C35 C36 C37 C41 C42. 0.0350 (2) 0.0461 (16) 0.0547 (16) 0.0336 (13) 0.0767 (19) 0.0379 (12) 0.0336 (11) 0.0327 (11) 0.0330 (11) 0.0420 (14) 0.0355 (12) 0.0682 (16) 0.0712 (16) 0.0608 (15) 0.0485 (14) 0.0499 (14) 0.0389 (12) 0.075 (3) 0.103 (5) 0.0338 (19) 0.087 (3) 0.069 (3) 0.0427 (19) 0.049 (2) 0.0404 (18) 0.057 (2) 0.0410 (18) 0.045 (2) 0.040 (2) 0.044 (2) 0.045 (2) 0.0387 (18) 0.0468 (19) 0.0350 (16) 0.0444 (19) 0.062 (2) 0.078 (3) 0.076 (3) 0.0411 (18) 0.054 (2) 0.0423 (19) 0.046 (2) 0.055 (3) 0.068 (3) 0.063 (2) 0.0421 (19) 0.063 (2) 0.070 (2). 0.0402 (3) 0.060 (2) 0.088 (2) 0.067 (2) 0.0441 (19) 0.0376 (15) 0.0402 (14) 0.0467 (15) 0.0428 (14) 0.070 (2) 0.0565 (17) 0.0409 (16) 0.0379 (15) 0.0595 (18) 0.0604 (18) 0.0536 (18) 0.0564 (17) 0.065 (3) 0.455 (15) 0.089 (4) 0.062 (3) 0.041 (3) 0.050 (3) 0.072 (3) 0.060 (3) 0.069 (3) 0.053 (3) 0.090 (3) 0.103 (4) 0.070 (3) 0.052 (3) 0.045 (2) 0.045 (2) 0.038 (2) 0.052 (2) 0.063 (3) 0.046 (3) 0.041 (2) 0.038 (2) 0.061 (3) 0.044 (2) 0.064 (3) 0.084 (4) 0.094 (4) 0.073 (3) 0.045 (2) 0.047 (3) 0.041 (2). Acta Cryst. (2001). E57, m325–m327. 0.0392 (2) 0.0610 (16) 0.0403 (14) 0.0573 (16) 0.0573 (17) 0.0373 (11) 0.0368 (11) 0.0291 (10) 0.0363 (11) 0.0548 (14) 0.0551 (14) 0.0444 (13) 0.0368 (12) 0.0469 (13) 0.0484 (13) 0.0556 (14) 0.0535 (14) 0.097 (3) 0.048 (3) 0.079 (3) 0.126 (4) 0.056 (2) 0.058 (2) 0.0354 (17) 0.053 (2) 0.052 (2) 0.052 (2) 0.071 (3) 0.098 (4) 0.101 (3) 0.085 (3) 0.055 (2) 0.0436 (19) 0.0355 (16) 0.0394 (18) 0.0366 (18) 0.051 (2) 0.052 (2) 0.0350 (16) 0.059 (2) 0.052 (2) 0.084 (3) 0.091 (3) 0.062 (3) 0.053 (2) 0.0447 (18) 0.049 (2) 0.0380 (17). 0.0000 (2) 0.0014 (15) 0.0088 (15) −0.0087 (14) 0.0048 (14) 0.0009 (10) −0.0065 (10) −0.0026 (10) −0.0039 (10) −0.0020 (13) 0.0012 (11) −0.0107 (12) −0.0098 (12) −0.0230 (14) −0.0159 (13) −0.0053 (12) 0.0053 (12) 0.016 (3) 0.084 (7) −0.007 (2) 0.008 (3) 0.0014 (19) −0.0135 (17) −0.0032 (19) −0.0049 (17) −0.013 (2) −0.0042 (17) −0.017 (2) −0.001 (2) 0.011 (2) 0.0052 (19) 0.0020 (16) −0.0080 (17) −0.0006 (15) −0.0002 (17) 0.008 (2) 0.000 (2) −0.007 (2) −0.0004 (15) −0.018 (2) −0.0034 (17) −0.012 (2) −0.004 (2) 0.006 (3) −0.001 (2) 0.0018 (17) −0.010 (2) 0.0015 (19). 0.00617 (18) 0.0154 (13) −0.0009 (12) −0.0011 (11) 0.0263 (14) 0.0070 (9) 0.0008 (9) 0.0046 (8) 0.0103 (9) 0.0117 (11) 0.0058 (10) 0.0153 (12) 0.0163 (11) 0.0194 (12) 0.0177 (11) 0.0090 (12) 0.0068 (10) 0.033 (3) −0.014 (3) 0.0002 (18) 0.064 (3) 0.0143 (19) 0.0009 (16) 0.0101 (15) 0.0169 (16) 0.0216 (18) 0.0126 (16) 0.020 (2) 0.008 (2) −0.011 (2) 0.000 (2) 0.0034 (16) 0.0099 (15) 0.0042 (13) 0.0123 (14) 0.0150 (16) 0.0172 (19) 0.0191 (19) 0.0051 (13) 0.0149 (18) 0.0075 (16) 0.008 (2) 0.002 (2) 0.004 (2) 0.0173 (19) 0.0039 (15) 0.0171 (18) 0.0141 (17). 0.0055 (2) −0.0109 (13) 0.0099 (14) −0.0007 (15) 0.0057 (14) 0.0023 (10) 0.0009 (10) 0.0050 (10) −0.0005 (10) 0.0152 (13) 0.0138 (12) −0.0029 (11) −0.0015 (10) −0.0107 (13) −0.0145 (12) 0.0142 (13) 0.0179 (12) −0.004 (3) 0.001 (5) −0.001 (2) 0.000 (3) 0.0072 (18) −0.0071 (18) 0.0055 (17) −0.0072 (18) 0.0003 (19) −0.0146 (18) −0.023 (2) −0.029 (3) −0.008 (3) 0.003 (2) −0.0079 (17) 0.0063 (17) 0.0006 (15) 0.0068 (17) −0.0010 (19) −0.0135 (19) −0.0023 (18) −0.0018 (15) −0.003 (2) −0.0124 (17) −0.023 (2) −0.051 (3) −0.039 (3) −0.020 (2) −0.0072 (17) 0.0034 (19) 0.0036 (16). sup-6.

(11) supporting information C43 C44 C45 C46 C47. 0.103 (4) 0.111 (4) 0.069 (3) 0.049 (2) 0.053 (2). 0.055 (3) 0.082 (4) 0.112 (5) 0.089 (4) 0.056 (3). 0.057 (2) 0.071 (3) 0.073 (3) 0.064 (2) 0.0379 (18). 0.006 (3) 0.031 (3) 0.042 (3) 0.019 (2) 0.0177 (19). 0.013 (2) 0.009 (3) 0.007 (2) 0.0107 (19) 0.0122 (15). 0.013 (2) 0.028 (3) 0.029 (3) 0.019 (2) 0.0065 (17). Geometric parameters (Å, º) Co1—O1 Co1—O5 Co1—O6 Co1—O7 Co1—O11 Co1—O12 Co2—O2 Co2—O5 Co2—O6 Co2—O8 Co2—O21 Co2—O22 Co3—O3 Co3—O5 Co3—O7 Co3—O8 Co3—O31 Co3—O32 Co4—O4 Co4—O6 Co4—O7 Co4—O8 Co4—O41 Co4—O42 O1—C1 O1—H0A O2—C2 O2—H0B O3—C3 O3—H0C O4—C4 O4—H0D O5—C5 O6—C6 O7—C7 O8—C8 O11—C11 O12—C17 O21—C21 O22—C27. Acta Cryst. (2001). E57, m325–m327. 2.147 (3) 2.131 (2) 2.116 (2) 2.054 (2) 2.101 (2) 2.030 (2) 2.152 (3) 2.064 (2) 2.102 (2) 2.114 (2) 2.115 (2) 2.035 (2) 2.165 (3) 2.103 (2) 2.114 (2) 2.076 (2) 2.125 (2) 2.022 (2) 2.194 (3) 2.052 (2) 2.107 (2) 2.141 (2) 2.088 (2) 2.024 (2) 1.423 (5) 0.77 (4) 1.351 (6) 0.86 (5) 1.434 (4) 0.75 (3) 1.438 (5) 0.72 (4) 1.430 (4) 1.440 (4) 1.435 (3) 1.427 (4) 1.227 (4) 1.314 (4) 1.244 (4) 1.304 (3). C5—H5C C6—H6A C6—H6B C6—H6C C7—H7A C7—H7B C7—H7C C8—H8A C8—H8B C8—H8C C11—C12 C11—H11A C12—C17 C12—C13 C13—C14 C13—H13A C14—C15 C14—H14A C15—C16 C15—H15A C16—C17 C16—H16A C21—C22 C21—H21A C22—C23 C22—C27 C23—C24 C23—H23A C24—C25 C24—H24A C25—C26 C25—H25A C26—C27 C26—H26A C31—C32 C31—H31A C32—C37 C32—C33 C33—C34 C33—H33A. 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.442 (5) 0.9300 1.422 (5) 1.425 (5) 1.359 (6) 0.9300 1.382 (6) 0.9300 1.376 (6) 0.9300 1.419 (5) 0.9300 1.426 (5) 0.9300 1.417 (4) 1.424 (4) 1.359 (5) 0.9300 1.387 (5) 0.9300 1.376 (5) 0.9300 1.406 (5) 0.9300 1.439 (5) 0.9300 1.417 (5) 1.417 (5) 1.364 (6) 0.9300. sup-7.

(12) supporting information O31—C31 O32—C37 O41—C41 O42—C47 C1—H1A C1—H1B C1—H1C C2—H2A C2—H2B C2—H2C C3—H3A C3—H3B C3—H3C C4—H4A C4—H4B C4—H4C C5—H5A C5—H5B. 1.233 (4) 1.310 (4) 1.226 (4) 1.315 (4) 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600. C34—C35 C34—H34A C35—C36 C35—H35A C36—C37 C36—H36A C41—C42 C41—H41A C42—C43 C42—C47 C43—C44 C43—H43A C44—C45 C44—H44A C45—C46 C45—H45A C46—C47 C46—H46A. 1.397 (6) 0.9300 1.370 (6) 0.9300 1.413 (5) 0.9300 1.441 (5) 0.9300 1.417 (5) 1.428 (5) 1.358 (7) 0.9300 1.375 (7) 0.9300 1.384 (6) 0.9300 1.416 (5) 0.9300. O12—Co1—O5 O12—Co1—O6 O12—Co1—O7 O12—Co1—O11 O5—Co1—O1 O6—Co1—O1 O6—Co1—O5 O7—Co1—O1 O7—Co1—O5 O7—Co1—O6 O7—Co1—O11 O11—Co1—O1 O11—Co1—O5 O11—Co1—O6 O12—Co1—O1 O5—Co2—O2 O5—Co2—O6 O5—Co2—O8 O5—Co2—O21 O6—Co2—O2 O6—Co2—O8 O6—Co2—O21 O8—Co2—O2 O8—Co2—O21 O21—Co2—O2 O22—Co2—O2 O22—Co2—O5 O22—Co2—O6 O22—Co2—O8. 91.51 (8) 93.66 (9) 173.41 (9) 88.30 (9) 91.44 (10) 168.34 (9) 83.07 (8) 88.44 (10) 84.30 (8) 80.81 (8) 95.88 (9) 88.68 (10) 179.78 (9) 96.84 (9) 96.77 (10) 87.72 (10) 85.07 (8) 79.89 (8) 98.71 (9) 90.07 (10) 83.79 (8) 176.18 (8) 166.58 (10) 97.34 (9) 89.57 (10) 98.48 (11) 171.91 (9) 89.70 (9) 93.42 (9). H3A—C3—H3B O3—C3—H3C H3A—C3—H3C H3B—C3—H3C O4—C4—H4A O4—C4—H4B H4A—C4—H4B O4—C4—H4C H4A—C4—H4C H4B—C4—H4C O5—C5—H5A O5—C5—H5B H5A—C5—H5B O5—C5—H5C H5A—C5—H5C H5B—C5—H5C O6—C6—H6A O6—C6—H6B H6A—C6—H6B O6—C6—H6C H6A—C6—H6C H6B—C6—H6C O7—C7—H7A O7—C7—H7B H7A—C7—H7B O7—C7—H7C H7A—C7—H7C H7B—C7—H7C O8—C8—H8A. 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5. Acta Cryst. (2001). E57, m325–m327. sup-8.

(13) supporting information O22—Co2—O21 O5—Co3—O3 O5—Co3—O7 O5—Co3—O31 O7—Co3—O3 O7—Co3—O31 O8—Co3—O3 O8—Co3—O5 O8—Co3—O7 O8—Co3—O31 O31—Co3—O3 O32—Co3—O3 O32—Co3—O5 O32—Co3—O7 O32—Co3—O8 O32—Co3—O31 O6—Co4—O4 O6—Co4—O7 O6—Co4—O8 O6—Co4—O41 O7—Co4—O4 O7—Co4—O8 O8—Co4—O4 O41—Co4—O4 O41—Co4—O7 O41—Co4—O8 O42—Co4—O4 O42—Co4—O6 O42—Co4—O7 O42—Co4—O8 O42—Co4—O41 C1—O1—Co1 C1—O1—H0A Co1—O1—H0A C2—O2—Co2 C2—O2—H0B Co2—O2—H0B C3—O3—Co3 C3—O3—H0C Co3—O3—H0C C4—O4—Co4 C4—O4—H0D Co4—O4—H0D C5—O5—Co2 C5—O5—Co3 Co2—O5—Co3 C5—O5—Co1 Co2—O5—Co1. Acta Cryst. (2001). E57, m325–m327. 86.59 (9) 166.01 (11) 83.52 (8) 99.04 (9) 88.13 (10) 175.72 (8) 88.19 (10) 79.88 (8) 84.54 (8) 99.25 (9) 90.01 (11) 95.88 (11) 95.24 (9) 89.46 (9) 172.64 (9) 86.90 (9) 89.08 (10) 81.07 (8) 84.32 (8) 93.95 (9) 168.73 (10) 83.12 (8) 90.50 (9) 87.92 (10) 98.16 (9) 177.67 (9) 96.68 (11) 173.63 (10) 92.92 (9) 92.88 (8) 89.00 (9) 126.2 (3) 113 (3) 108 (3) 137.1 (4) 113 (3) 106 (3) 129.7 (3) 104 (3) 109 (3) 122.8 (3) 110 (4) 105 (4) 120.88 (19) 117.8 (2) 100.48 (9) 122.4 (2) 95.47 (9). O8—C8—H8B H8A—C8—H8B O8—C8—H8C H8A—C8—H8C H8B—C8—H8C O11—C11—C12 O11—C11—H11A C12—C11—H11A C17—C12—C13 C17—C12—C11 C13—C12—C11 C14—C13—C12 C14—C13—H13A C12—C13—H13A C13—C14—C15 C13—C14—H14A C15—C14—H14A C16—C15—C14 C16—C15—H15A C14—C15—H15A C15—C16—C17 C15—C16—H16A C17—C16—H16A O12—C17—C16 O12—C17—C12 C16—C17—C12 O21—C21—C22 O21—C21—H21A C22—C21—H21A C23—C22—C27 C23—C22—C21 C27—C22—C21 C24—C23—C22 C24—C23—H23A C22—C23—H23A C23—C24—C25 C23—C24—H24A C25—C24—H24A C26—C25—C24 C26—C25—H25A C24—C25—H25A C25—C26—C27 C25—C26—H26A C27—C26—H26A O22—C27—C26 O22—C27—C22 C26—C27—C22 O31—C31—C32. 109.5 109.5 109.5 109.5 109.5 128.8 (3) 115.6 115.6 119.2 (4) 123.7 (3) 117.1 (4) 121.9 (4) 119.0 119.0 118.8 (4) 120.6 120.6 121.7 (4) 119.1 119.1 121.2 (4) 119.4 119.4 119.5 (3) 123.4 (3) 117.0 (3) 129.4 (3) 115.3 115.3 119.5 (3) 117.7 (3) 122.7 (3) 121.7 (3) 119.1 119.1 119.2 (3) 120.4 120.4 120.8 (4) 119.6 119.6 122.2 (4) 118.9 118.9 120.0 (3) 123.4 (3) 116.6 (3) 128.6 (3). sup-9.

(14) supporting information Co3—O5—Co1 C6—O6—Co4 C6—O6—Co2 Co4—O6—Co2 C6—O6—Co1 Co4—O6—Co1 Co2—O6—Co1 C7—O7—Co1 C7—O7—Co4 Co1—O7—Co4 C7—O7—Co3 Co1—O7—Co3 Co4—O7—Co3 C8—O8—Co3 C8—O8—Co2 Co3—O8—Co2 C8—O8—Co4 Co3—O8—Co4 Co2—O8—Co4 C11—O11—Co1 C17—O12—Co1 C21—O21—Co2 C27—O22—Co2 C31—O31—Co3 C37—O32—Co3 C41—O41—Co4 C47—O42—Co4 O1—C1—H1A O1—C1—H1B H1A—C1—H1B O1—C1—H1C H1A—C1—H1C H1B—C1—H1C O2—C2—H2A O2—C2—H2B H2A—C2—H2B O2—C2—H2C H2A—C2—H2C H2B—C2—H2C O3—C3—H3A O3—C3—H3B. Acta Cryst. (2001). E57, m325–m327. 94.26 (8) 120.6 (2) 121.51 (19) 96.72 (8) 118.77 (19) 98.87 (8) 94.77 (9) 121.26 (19) 119.3 (2) 99.12 (8) 120.00 (19) 96.22 (8) 95.37 (8) 119.87 (19) 118.07 (18) 99.73 (9) 124.1 (2) 95.48 (8) 93.69 (8) 125.8 (2) 129.4 (2) 125.5 (2) 130.2 (2) 123.3 (2) 126.3 (2) 125.9 (2) 128.8 (2) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5. O31—C31—H31A C32—C31—H31A C37—C32—C33 C37—C32—C31 C33—C32—C31 C34—C33—C32 C34—C33—H33A C32—C33—H33A C33—C34—C35 C33—C34—H34A C35—C34—H34A C36—C35—C34 C36—C35—H35A C34—C35—H35A C35—C36—C37 C35—C36—H36A C37—C36—H36A O32—C37—C36 O32—C37—C32 C36—C37—C32 O41—C41—C42 O41—C41—H41A C42—C41—H41A C43—C42—C47 C43—C42—C41 C47—C42—C41 C44—C43—C42 C44—C43—H43A C42—C43—H43A C43—C44—C45 C43—C44—H44A C45—C44—H44A C44—C45—C46 C44—C45—H45A C46—C45—H45A C45—C46—C47 C45—C46—H46A C47—C46—H46A O42—C47—C46 O42—C47—C42 C46—C47—C42. 115.7 115.7 119.5 (3) 123.5 (3) 117.0 (3) 121.6 (4) 119.2 119.2 119.1 (4) 120.4 120.4 120.7 (4) 119.7 119.7 121.9 (4) 119.1 119.1 119.9 (3) 122.9 (3) 117.2 (3) 128.6 (3) 115.7 115.7 119.2 (4) 117.1 (4) 123.7 (3) 121.9 (5) 119.1 119.1 119.3 (4) 120.4 120.4 121.6 (4) 119.2 119.2 121.0 (4) 119.5 119.5 119.2 (4) 123.8 (3) 117.0 (3). sup-10.

(15)

New documents

To examine whether lone parents and working-age adults with a disability were less disadvantaged in the Social democratic countries, we focused on the social risk gap: the percentage

In this paper we compare the behavior of n-gram models and Recurrent Neural Network Language Models RNNLMs with regard to properties of their generated language... We investigate the

Analyses revealed that longer proper names - in terms of number of tokens and proper name attributes - are more likely to be generated early in the text, in the object role of a

The tree kernel function produces the syntactic similarity score between each sentence in the given body of text and the generated question.. Each sentence contributes a score to the

Women in Group 2 had 46 per cent, of their number with a poor or bad condition of the hair, while the highest in any of the other groups was only 20 per cent., and became less as the

As the QG - STEC IRR reliability scores show, it seems that judges interpret an annotation scheme for these criteria very differently, when they use the scheme independently, with

The research of Gkatzia et al 2013 relates most closely to the LARC project - they generated reports based on time-series data from student lecture attendance and weekly questionnaires,

In that sense, drawing upon the eight transport-related exclusion categories described in section 3.1 and the relationship of transport disadvantage and social exclusion proposed by

The results are consistent with what was reported by Wang and Gaizauskas 2015 – that whilst both bboxdist and bboxsize show that content selection is dependent on these features,

In contrast, in interrogative sentences we have more problematic cases: one realized sentence is identical to the gold 19; two realized sentences are different only in the word order