• No results found

(+) Methyl (4R,5S) 4 [(R) 1 hy­droxy­but 3 enyl] 5 2,2 di­methyl tri­chloro­acet­amido 1,3 dioxane 5 carboxyl­ate

N/A
N/A
Protected

Academic year: 2020

Share "(+) Methyl (4R,5S) 4 [(R) 1 hy­droxy­but 3 enyl] 5 2,2 di­methyl tri­chloro­acet­amido 1,3 dioxane 5 carboxyl­ate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2003). E59, o1259±o1260 DOI: 10.1107/S160053680301691X Shigeru Ohbaet al. C14H20Cl3NO6

o1259

organic papers

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

(+)-Methyl (4

R

,5

S

)-4-[(

R

)-1-hydroxybut-3-

enyl]-5-2,2-dimethyl-trichloroacetamido-1,3-dioxane-5-carboxylate

Shigeru Ohba,a* Hideyuki Sato,b

Masatoshi Iidaband Noritaka

Chidab

aDepartment of Chemistry, Keio University,

Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, andbDepartment of Applied

Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: ohba@flet.keio.ac.jp

Key indicators

Single-crystal X-ray study T= 297 K

Mean(C±C) = 0.009 AÊ Rfactor = 0.056 wRfactor = 0.171

Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C14H20Cl3NO6, was prepared in a

synthetic study of myriocin derivatives. There are intramol-ecular NÐH O and intermolecular OÐH O hydrogen bonds, forming one-dimensional chains along thecaxis.

Comment

The title compound, (I), was prepared in a synthetic study of myriocin, which is a naturally occurring-substituted-amino acid derivative with potent immunosuppressive activity. Compound (I) would be a useful intermediate for the total synthesis of myriocin (Oishi et al., 2002), as well as its congeners, such as mycestericins (Sasakiet al., 1994). Since the geometry of (I) could not be fully determined from NMR experiments, an X-ray analysis has been carried out.

The dioxane ring of (I) shows a chair conformation, with the trichloroacetylamino group in an axial position (Fig. 1). The absolute con®guration at atom C12, derived from that at C-2 of dimethyll-tartrate, was con®rmed by the reasonable Flack (1983) parameter. Consequently, the absolute con®gurations at two other chiral centers (atoms C13 and C17) have been revealed. There are intramolecular N10ÐH10 O6 and intermolecular O6ÐH6 O9i [symmetry code: (i) y, 1ÿx,

zÿ1

4] hydrogen bonds (Table 1), forming one-dimensional

chains along thecaxis (Fig. 2).

Experimental

Treatment of methyl (4R,5S )-4-formyl-2,2-dimethyl-5-trichloroacet-amido-1,3-dioxane-5-carboxylate, prepared from dimethyll-tartrate in a 14-step reaction involving an Overman rearrangement (Satoet al., 2003), with allyltributyltin in the presence of MgBr2in CH2Cl2,

afforded the title compound, (I). Crystals of (I) were grown from an ethyl acetate solution by slow evaporation (m.p. 371±372 K). The speci®c rotation []Dof (I) at 295 K is +56(c= 1.0, CHCl3).

Crystal data

C14H20Cl3NO6 Mr= 404.67

Tetragonal,P41 a= 9.1926 (8) AÊ

c= 22.724 (2) AÊ

V= 1920.2 (3) AÊ3 Z= 4

Dx= 1.400 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections = 10.1±10.8 = 0.50 mmÿ1 T= 297 K Block, colourless 0.550.450.45 mm

(2)

Data collection

Rigaku AFC-7Rdiffractometer !scans

Absorption correction: by integration (Coppenset al., 1965)

Tmin= 0.762,Tmax= 0.815

3009 measured re¯ections 2388 independent re¯ections 1963 re¯ections withI> 2(I)

Rint= 0.016

max= 27.5 h=ÿ4!11

k= 0!11

l=ÿ12!29 3 standard re¯ections

every 150 re¯ections intensity decay: 13.3%

Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.056 wR(F2) = 0.171 S= 1.05 2388 re¯ections 218 parameters

H-atom parameters not re®ned

w= 1/[2(F

o2) + (0.0963P)2

+ 1.4164P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.011

max= 0.62 e AÊÿ3

min=ÿ0.51 e AÊÿ3

Absolute structure: Flack (1983), 140 Friedel pairs

Flack parameter = 0.16 (13)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O6ÐH6 O9i 0.82 1.99 2.790 (5) 167

N10ÐH10 O6 0.95 2.05 2.709 (4) 125

Symmetry code: (i)y;1ÿx;zÿ1 4.

The hydroxy H atom was located from a difference synthesis and allowed to ride on the O atom, withUiso(H) =Ueq(O). The other H

atoms were positioned geometrically and ®xed with Uiso(H) =

1.2Ueq(parent atom).

Data collection: WinAFC Diffractometer Control Software

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corpor-ation, 2001); program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure: SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965).Acta Cryst.18, 1035± 1038.

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381±5209, USA.

Oishi, T., Ando, K., Inomiya, K., Sato, H., Iida, M. & Chida, N. (2002).Bull. Chem. Soc. Jpn,75, 1927±1947.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, Tokyo, Japan.

Sasaki, S., Hashimoto, R., Kikuchi, M., Inoue, K., Ikumoto, T., Hirose, R., Chiba, K., Hoshino, Y. & Fujita, T. (1994).J. Antibiot.47, 420±433. Sato, H., Iida, M. & Chida, N. (2003). In preparation.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Figure 2

A projection of the crystal structure of (I) along theaaxis, with thin lines indicating hydrogen bonds.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2003). E59, o1259–o1260

supporting information

Acta Cryst. (2003). E59, o1259–o1260 [doi:10.1107/S160053680301691X]

(+)-Methyl (4

R

,5

S

)-4-[(

R

)-1-hydroxybut-3-enyl]-5-2,2-dimethyl-trichloro-acetamido-1,3-dioxane-5-carboxylate

Shigeru Ohba, Hideyuki Sato, Masatoshi Iida and Noritaka Chida

S1. Comment

The title compound, (I), was prepared in a synthetic study on myriocin, which is a naturally occurring α-substituted α

-amino acid derivative with potent immunosuppressive activity. Compound (I) would be a useful intermediate for the total

synthesis of myriocin (Oishi et al., 2002), as well as its congeners, such as mycestericins (Sasaki et al., 1994). Since the

geometry of (I) could not be fully determined based on the NMR experiments, an X-ray analysis has been carried out.

The dioxane ring of (I) shows a chair conformation, with the trichloroacetylamino group in an axial position (Fig. 1).

The absolute configuration at atom C12, which came from that at C-2 of dimethyl L-tartrate, was confirmed with the

reasonable Flack (1983) parameter. Consequently, the absolute configurations around other two chiral centers (C13 and

C17 atoms) have been revealed. There are intramolecular N10—H10···O6 and intermolecular O6—H6···O9i [symmetry

code: (i) y, 1 − x, z − 1/4] hydrogen bonds (Table 1), forming one-dimensional chains along the c axis (Fig. 2).

S2. Experimental

Treatment of methyl (4R,5S)-4-formyl-2,2-dimethyl-5-trichloroacetamido- 1,3-dioxane-5-carboxylate, prepared from

di-methyl L-tartrate in 14-step reactions involving an Overman rearrangement (Sato et al., 2003), with allyltributyltin in the

presence of MgBr2 in CH2Cl2 afforded the title compound, (I). Crystals of (I) were grown from an ethyl acetate solution

by slow evaporation (m.p. 371–372 K). The specific rotation [α]D of (I) at 295 K is +56° (c = 1.0, CHCl3).

S3. Refinement

Decay of the standard reflections was 13.3%, which was corrected. The hydroxy H atom was located from difference

synthesis and allowed to ride on the O atom with Uiso(H) = Ueq(O). The other H-atoms were positioned geometrically and

(4)
[image:4.610.124.486.73.350.2]

Figure 1

(5)

supporting information

sup-3

[image:5.610.212.402.71.524.2]

Acta Cryst. (2003). E59, o1259–o1260

Figure 2

The projection of the crystal structure of (I) along the a axis, with thin lines indicating hydrogen bonding.

(I)

Crystal data

C14H20Cl3NO6

Mr = 404.67 Tetragonal, P41

Hall symbol: P 4w

a = 9.1926 (8) Å

c = 22.724 (2) Å

V = 1920.2 (3) Å3

Z = 4

F(000) = 840

Dx = 1.400 Mg m−3

Melting point = 371–372 K Mo radiation, λ = 0.7107 Å Cell parameters from 25 reflections

θ = 10.1–10.8°

µ = 0.50 mm−1

(6)

Rigaku AFC-7R diffractometer

ω scans

Absorption correction: integration (Coppens et al., 1965)

Tmin = 0.762, Tmax = 0.815

3009 measured reflections 2388 independent reflections

1963 reflections with I > 2σ(I)

Rint = 0.016

θmax = 27.5°

h = −4→11

k = 0→11

l = −12→29

3 standard reflections every 150 reflections intensity decay: 13.3%

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.056

wR(F2) = 0.171

S = 1.05 2388 reflections 218 parameters

H-atom parameters not refined

w = 1/[σ2(F

o2) + (0.0963P)2 + 1.4164P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.011

Δρmax = 0.62 e Å−3

Δρmin = −0.51 e Å−3

Absolute structure: Flack (1983), 140 Friedel pairs

Absolute structure parameter: 0.16 (13)

Special details

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R

-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for

calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.9478 (2) 0.4855 (3) 0.31714 (9) 0.0885 (7)

Cl2 0.9019 (4) 0.7523 (3) 0.3779 (1) 0.131 (1)

Cl3 0.6682 (2) 0.6126 (3) 0.3164 (1) 0.0864 (7)

O4 0.4651 (5) 0.4282 (5) 0.4821 (2) 0.0543 (10)

O5 0.4247 (4) 0.2631 (4) 0.4062 (2) 0.0411 (7)

O6 0.6421 (5) 0.1769 (5) 0.3241 (2) 0.055 (1)

O7 0.9048 (5) 0.1782 (6) 0.4394 (2) 0.077 (2)

O8 0.7717 (5) 0.1137 (5) 0.5168 (2) 0.063 (1)

O9 0.8516 (5) 0.5221 (6) 0.4619 (2) 0.063 (1)

N10 0.7042 (5) 0.3826 (5) 0.4054 (2) 0.0395 (9)

C11 0.3580 (6) 0.3434 (6) 0.4535 (3) 0.049 (1)

C12 0.5442 (5) 0.1758 (5) 0.4229 (2) 0.0357 (9)

C13 0.6635 (5) 0.2754 (6) 0.4504 (2) 0.0379 (10)

C14 0.5878 (6) 0.3485 (6) 0.5024 (2) 0.046 (1)

C15 0.2574 (9) 0.4508 (9) 0.4229 (4) 0.078 (2)

C16 0.2780 (7) 0.2450 (9) 0.4952 (3) 0.066 (2)

C17 0.5885 (6) 0.0846 (6) 0.3697 (2) 0.043 (1)

C18 0.4614 (8) −0.0077 (7) 0.3486 (3) 0.061 (2)

C19 0.4043 (10) −0.1111 (8) 0.3943 (3) 0.074 (2)

C20 0.275 (1) −0.113 (1) 0.4146 (5) 0.098 (3)

C21 0.7939 (6) 0.1847 (7) 0.4673 (2) 0.047 (1)

C22 0.8868 (8) 0.018 (1) 0.5372 (4) 0.085 (2)

(7)

supporting information

sup-5

Acta Cryst. (2003). E59, o1259–o1260

C24 0.8233 (6) 0.5869 (6) 0.3598 (3) 0.048 (1)

H6 0.6034 0.1549 0.2928 0.0552*

H10 0.6645 0.3716 0.3672 0.0471*

H12 0.5116 0.1112 0.4529 0.0427*

H14A 0.6532 0.4146 0.5207 0.0554*

H14B 0.5573 0.2775 0.5296 0.0554*

H15A 0.2158 0.5142 0.4515 0.0912*

H15B 0.3106 0.5058 0.3951 0.0912*

H15C 0.1817 0.3990 0.4035 0.0912*

H16A 0.2328 0.3032 0.5248 0.0782*

H16B 0.2060 0.1929 0.4743 0.0782*

H16C 0.3446 0.1802 0.5129 0.0782*

H17 0.6640 0.0202 0.3811 0.0520*

H18A 0.3833 0.0567 0.3383 0.0712*

H18B 0.4899 −0.0615 0.3155 0.0712*

H19 0.4712 −0.1798 0.4092 0.0883*

H20A 0.2461 −0.1815 0.4435 0.1129*

H20B 0.2033 −0.0438 0.4006 0.1129*

H22A 0.8598 −0.0287 0.5725 0.1001*

H22B 0.9028 −0.0574 0.5076 0.1001*

H22C 0.9746 0.0693 0.5420 0.1001*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.082 (1) 0.113 (2) 0.071 (1) 0.024 (1) 0.038 (1) 0.023 (1)

Cl2 0.196 (3) 0.081 (1) 0.115 (2) −0.078 (2) −0.020 (2) 0.010 (1) Cl3 0.0588 (9) 0.103 (1) 0.098 (1) 0.0004 (9) −0.0142 (10) 0.051 (1)

O4 0.061 (2) 0.057 (2) 0.046 (2) 0.005 (2) 0.005 (2) −0.008 (2)

O5 0.041 (2) 0.049 (2) 0.033 (2) 0.005 (1) −0.004 (1) −0.001 (1) O6 0.071 (2) 0.066 (2) 0.029 (2) −0.019 (2) 0.000 (2) −0.005 (2)

O7 0.057 (3) 0.111 (4) 0.062 (3) 0.022 (3) 0.013 (2) 0.021 (3)

O8 0.051 (2) 0.080 (3) 0.058 (3) 0.001 (2) −0.003 (2) 0.032 (2)

O9 0.062 (3) 0.092 (3) 0.035 (2) −0.029 (2) −0.002 (2) −0.012 (2) N10 0.047 (2) 0.045 (2) 0.026 (2) −0.008 (2) −0.002 (2) 0.002 (2) C11 0.039 (3) 0.058 (3) 0.050 (3) 0.010 (2) 0.000 (2) −0.002 (2) C12 0.039 (2) 0.041 (2) 0.026 (2) −0.002 (2) −0.002 (2) −0.001 (2) C13 0.042 (2) 0.047 (3) 0.024 (2) −0.009 (2) 0.001 (2) 0.003 (2) C14 0.055 (3) 0.055 (3) 0.027 (2) −0.007 (2) 0.004 (2) −0.006 (2) C15 0.073 (5) 0.082 (5) 0.079 (5) 0.034 (4) −0.009 (4) −0.001 (4)

C16 0.046 (3) 0.093 (5) 0.059 (4) 0.011 (3) 0.016 (3) 0.001 (3)

(8)

Geometric parameters (Å, º)

Cl1—C24 1.766 (6) C13—C21 1.509 (7)

Cl2—C24 1.732 (6) C14—H14A 0.951

Cl3—C24 1.750 (6) C14—H14B 0.943

O4—C11 1.414 (7) C15—H15A 0.951

O4—C14 1.422 (7) C15—H15B 0.947

O5—C11 1.440 (7) C15—H15C 0.952

O5—C12 1.413 (6) C16—H16A 0.955

O6—C17 1.427 (6) C16—H16B 0.945

O6—H6 0.820 C16—H16C 0.945

O7—C21 1.202 (7) C17—C18 1.522 (9)

O8—C21 1.317 (7) C17—H17 0.948

O8—C22 1.454 (10) C18—C19 1.502 (10)

O9—C23 1.206 (6) C18—H18A 0.960

N10—C13 1.469 (6) C18—H18B 0.936

N10—C23 1.322 (7) C19—C20 1.28 (1)

N10—H10 0.947 C19—H19 0.945

C11—C15 1.52 (1) C20—H20A 0.945

C11—C16 1.503 (9) C20—H20B 0.971

C12—C13 1.559 (7) C22—H22A 0.943

C12—C17 1.526 (7) C22—H22B 0.975

C12—H12 0.952 C22—H22C 0.943

C13—C14 1.527 (7) C23—C24 1.569 (8)

C11—O4—C14 114.6 (4) H16A—C16—H16B 109.5

C11—O5—C12 115.0 (4) H16A—C16—H16C 109.5

C17—O6—H6 109.5 H16B—C16—H16C 110.3

C21—O8—C22 117.5 (5) O6—C17—C12 109.9 (4)

C13—N10—C23 122.9 (4) O6—C17—C18 111.6 (4)

C13—N10—H10 118.0 O6—C17—H17 108.4

C23—N10—H10 119.1 C12—C17—C18 110.6 (4)

O4—C11—O5 109.3 (4) C12—C17—H17 108.8

O4—C11—C15 106.0 (5) C18—C17—H17 107.4

O4—C11—C16 112.5 (5) C17—C18—C19 113.8 (5)

O5—C11—C15 104.6 (5) C17—C18—H18A 107.9

O5—C11—C16 111.7 (5) C17—C18—H18B 109.5

C15—C11—C16 112.4 (5) C19—C18—H18A 107.3

O5—C12—C13 108.7 (4) C19—C18—H18B 108.5

O5—C12—C17 107.9 (4) H18A—C18—H18B 109.8

O5—C12—H12 107.6 C18—C19—C20 125.9 (8)

C13—C12—C17 116.9 (4) C18—C19—H19 116.4

C13—C12—H12 107.5 C20—C19—H19 117.7

C17—C12—H12 108.0 C19—C20—H20A 121.5

N10—C13—C12 107.1 (4) C19—C20—H20B 120.0

(9)

supporting information

sup-7

Acta Cryst. (2003). E59, o1259–o1260

N10—C13—C21 110.2 (4) O7—C21—O8 123.8 (5)

C12—C13—C14 104.3 (4) O7—C21—C13 124.6 (5)

C12—C13—C21 109.6 (4) O8—C21—C13 111.6 (4)

C14—C13—C21 114.1 (4) O8—C22—H22A 110.7

O4—C14—C13 109.8 (4) O8—C22—H22B 108.6

O4—C14—H14A 108.3 O8—C22—H22C 110.7

O4—C14—H14B 109.5 H22A—C22—H22B 108.0

C13—C14—H14A 109.4 H22A—C22—H22C 110.7

C13—C14—H14B 109.8 H22B—C22—H22C 108.0

H14A—C14—H14B 110.0 O9—C23—N10 127.3 (5)

C11—C15—H15A 109.3 O9—C23—C24 120.0 (5)

C11—C15—H15B 109.7 N10—C23—C24 112.6 (4)

C11—C15—H15C 109.3 Cl1—C24—CL2 108.9 (3)

H15A—C15—H15B 109.7 Cl1—C24—CL3 106.9 (3)

H15A—C15—H15C 109.2 Cl1—C24—C23 106.0 (4)

H15B—C15—H15C 109.6 Cl2—C24—CL3 110.8 (3)

C11—C16—H16A 108.7 Cl2—C24—C23 111.4 (4)

C11—C16—H16B 109.3 Cl3—C24—C23 112.7 (4)

C11—C16—H16C 109.4

Cl1—C24—C23—O9 101.0 (5) O8—C21—C13—C12 −78.0 (5)

Cl1—C24—C23—N10 −75.9 (5) O8—C21—C13—C14 38.5 (6)

Cl2—C24—C23—O9 −17.2 (7) O9—C23—N10—C13 0.7 (9)

Cl2—C24—C23—N10 165.8 (4) N10—C13—C12—C17 63.2 (5)

Cl3—C24—C23—O9 −142.4 (5) C11—O4—C14—C13 60.4 (6)

Cl3—C24—C23—N10 40.6 (6) C11—O5—C12—C13 −59.5 (5)

O4—C11—O5—C12 55.0 (6) C11—O5—C12—C17 172.9 (4)

O4—C14—C13—N10 56.0 (5) C12—O5—C11—C15 168.1 (5)

O4—C14—C13—C12 −59.1 (5) C12—O5—C11—C16 −70.1 (5)

O4—C14—C13—C21 −178.7 (4) C12—C13—N10—C23 172.9 (4)

O5—C11—O4—C14 −54.5 (6) C12—C17—C18—C19 −59.5 (7)

O5—C12—C13—N10 −59.1 (5) C13—N10—C23—C24 177.4 (4)

O5—C12—C13—C14 58.7 (5) C13—C12—C17—C18 179.3 (4)

O5—C12—C13—C21 −178.7 (4) C13—C21—O8—C22 177.8 (5)

O5—C12—C17—O6 65.6 (5) C14—O4—C11—C15 −166.7 (5)

O5—C12—C17—C18 −58.0 (5) C14—O4—C11—C16 70.1 (6)

O6—C17—C12—C13 −57.1 (6) C14—C13—N10—C23 59.6 (6)

O6—C17—C18—C19 177.9 (5) C14—C13—C12—C17 −179.0 (4)

O7—C21—O8—C22 −2.6 (9) C17—C12—C13—C21 −56.4 (5)

O7—C21—C13—N10 −15.3 (8) C17—C18—C19—C20 120.3 (9)

O7—C21—C13—C12 102.4 (6) C21—C13—N10—C23 −67.9 (6)

O7—C21—C13—C14 −141.0 (6) C21—C13—N10—C23 −67.9 (6)

O8—C21—C13—N10 164.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

(10)

N10—H10···O6 0.95 2.05 2.709 (4) 125

Figure

Figure 1
Figure 2

References

Related documents

In this work, we further extend this line of exploration and propose a novel but simple approach, which utilizes a ranking model based on word or- der precedence in the target

Setting n = 10 , for each source sentence we re-rank the ten best sentences as scored by the decoder according to the Leven- shtein Distance (or edit distance) measure (Leven-

In general, Result 3 provides contradictory evidence to the conventional wisdom that market competition will divert decision rights to individuals who are better able to utilise

companies with low investment opportunities experience a stronger market reaction. FCF : Free cash flow per share. DIVINC : A binary variable taking the value of 1 if on the date

The reduction of the rank of a LCFRS , called binarization, is a process very similar to the reduction of a context-free grammar into Chomsky normal form.. While in the special case

PWYW for several products (cinema tickets, DVD, digital album, flight tickets, hotel, rental car, opera, wine), online survey which varied social distance, product value, external

For elsewhere he states (1978b: 356), “The socialist essential, it must always be remembered, is not the plan; it is the democratic power of the people over the plan and the

number of available beds among all Polish Euro 2012 host cities / regions (figure 6).