• No results found

N,N′ Bis(p meth­oxy­phenyl) 2,2′ (m phenyl­ene­di­oxy)­diacet­amide

N/A
N/A
Protected

Academic year: 2020

Share "N,N′ Bis(p meth­oxy­phenyl) 2,2′ (m phenyl­ene­di­oxy)­diacet­amide"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1702

Yong-Hong Wenet al. C24H24N2O6 DOI: 10.1107/S1600536804021440 Acta Cryst.(2004). E60, o1702±o1703 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N,N

000

-Bis(

p

-methoxyphenyl)-2,2

000

-(

m

-phenylenedioxy)diacetamide

Yong-Hong Wen, Shu-Sheng Zhang,* Juan Liang and Xue-Mei Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: zhangshush@public.qd.sd.cn

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.003 AÊ

Rfactor = 0.049

wRfactor = 0.120

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C24H24N2O6, the molecules are linked

into a three-dimensional network by intermolecular NÐ H O and CÐH O hydrogen bonds. The packing is further stabilized by CÐH interactions.

Comment

Previously, we have reported the structure of an amide-type acyclic polyether with 1,3-dihydroxybenzene as skeleton, namely N,N0-bis(p-tolyl)-2,20-(m -phenylenedioxy)diacet-amide, (II) (Zhanget al., 2004). In order to study the effect of the terminal groups of the acyclic polyethers on the coordi-nation selectivity and extractability for metal ions, we have synthesized and carried out the structure determination of the title compound, (I) (Fig. 1).

The bond lengths (Table 1) and angles in (I) are in good agreement with those in (II). In (I), the dihedral angles between the central benzene ring (C10±C15) and the two outer benzene rings (C2±C7 and C18±C23) are 80.2 (1) and 52.7 (1), respectively. Both the outer benzene rings are involved in intramolecular CÐH O interactions with the carbonyl O atoms (Table 2). Molecules of (I) are linked into a three-dimensional networkviaintermolecular NÐH O and CÐH O hydrogen bonds. The packing is further stabilized by CÐH interactions (Table 2).

Received 25 August 2004 Accepted 1 September 2004 Online 11 September 2004

Figure 1

(2)

Experimental

N-(p-Methoxyphenyl)chloroacetamide was prepared by the reaction of p-methoxyaniline and chloroacetyl chloride in the presence of triethylamine, according to the literature method of Li (2001). To a solution ofN-(p-methoxyphenyl)chloroacetamide (2.0 g, 10 mmol) in acetone (35 ml) was added 1,3-dihydroxybenzene (0.55 g, 5.0 mmol), K2CO3(1.52 g, 11 mmol) and KI (0.5 g), and the mixture was stirred

at 328 K for 5 h. After cooling to room temperature, the mixture was washed three times with water, and then ®ltered. The ®ltered solid was recrystallized from alcohol and water. The title compound was obtained after drying the light-grey powder at room temperature for 48 h. Colourless single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a DMF±ethanol (1:20 v/v) solution over a period of one month.

Crystal data

C24H24N2O6

Mr= 436.45 Monoclinic,P21=c

a= 11.2370 (13) AÊ

b= 18.256 (2) AÊ

c= 10.4779 (12) AÊ

= 93.532 (2) V= 2145.4 (4) AÊ3

Z= 4

Dx= 1.351 Mg mÿ3 MoKradiation Cell parameters from 1683

re¯ections

= 2.2±25.0 = 0.10 mmÿ1

T= 293 (2) K Needle, colourless 0.400.110.08 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.962,Tmax= 0.992 11 048 measured re¯ections

3792 independent re¯ections 2349 re¯ections withI> 2(I)

Rint= 0.036

max= 25.0

h=ÿ12!13

k=ÿ17!21

l=ÿ12!12

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.049

wR(F2) = 0.120

S= 1.00 3792 re¯ections 289 parameters

H-atom parameters constrained

w= 1/[2(Fo2) + (0.0509P)2 + 0.1396P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.15 e AÊÿ3

min=ÿ0.12 e AÊÿ3

Table 1

Selected bond distances (AÊ). O2ÐC8 1.222 (2) O3ÐC10 1.371 (2) O3ÐC9 1.413 (3) O4ÐC14 1.376 (2) O4ÐC16 1.418 (2)

O5ÐC17 1.225 (2) N1ÐC8 1.340 (3) N1ÐC5 1.409 (3) N2ÐC17 1.341 (3) N2ÐC18 1.417 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1 O5i 0.86 2.02 2.875 (2) 172 N2ÐH2 O2ii 0.86 2.04 2.897 (2) 172 C6ÐH6 O2 0.93 2.35 2.936 (4) 121 C11ÐH11 O1iii 0.93 2.53 3.448 (3) 170 C23ÐH23 O5 0.93 2.32 2.853 (3) 116 C1ÐH1C Cg1i 0.96 2.72 3.608 (3) 155 C16ÐH16A Cg2iv 0.97 2.78 3.729 (2) 165 C24ÐH24B Cg2v 0.96 2.70 3.590 (3) 155

Symmetry codes: (i) x;1

2ÿy;zÿ12; (ii) ÿx;ÿy;1ÿz; (iii) 1‡x;12ÿy;12‡z; (iv) ÿx;ÿy;2ÿz; (v)ÿ1ÿx;ÿy;2ÿz.Cg1 andCg2 denote the centroids of the C2±C7 and C18±C23 benzene rings, respectively

After location in a difference map, all the H atoms were positioned geometrically and re®ned as riding, with CÐH distances in the range 0.93±0.97 AÊ and Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H

atoms.

Data collection:SMART(Siemens, 1996); cell re®nement:SAINT

(Siemens, 1996); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to re®ne structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL, PARST (Nardelli, 1995) andPLATON(Spek, 2003).

This project was supported by the National Natural Science Foundation of China (No. 20275020), the State Key Labora-tory Foundation of Electroanalytical Chemistry of Changchun Institute of Applied Chemistry (No. SKLEAC 2004-8) and the Outstanding Adult-young Scienti®c Research Encouraging Foundation of Shandong Province (No. 03BS081).

References

Li, Z. G. (2001).Preparation of Organic Intermediates, pp. 103±107. Beijing: Chemical Industry Press.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997).SHELXTL.Version 5.1. Bruker AXS Inc., Madison,

Wisconsin, USA.

Siemens (1996).SMARTandSAINT.Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7±13.

(3)

supporting information

sup-1

Acta Cryst. (2004). E60, o1702–o1703

supporting information

Acta Cryst. (2004). E60, o1702–o1703 [https://doi.org/10.1107/S1600536804021440]

N,N

-Bis(

p

-methoxyphenyl)-2,2

-(

m

-phenylenedioxy)diacetamide

Yong-Hong Wen, Shu-Sheng Zhang, Juan Liang and Xue-Mei Li

N,N′-Bis(p-methoxyphenyl)-2,2′-(m-phenylenedioxy)diacetamide

Crystal data

C24H24N2O6

Mr = 436.45

Monoclinic, P21/c Hall symbol: -P 2ybc

a = 11.2370 (13) Å

b = 18.256 (2) Å

c = 10.4779 (12) Å

β = 93.532 (2)°

V = 2145.4 (4) Å3

Z = 4

F(000) = 920

Dx = 1.351 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1683 reflections

θ = 2.2–25.0°

µ = 0.10 mm−1

T = 293 K Needle, colourless 0.40 × 0.11 × 0.08 mm

Data collection

Siemens SMART 1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.33 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.962, Tmax = 0.992

11048 measured reflections 3792 independent reflections 2349 reflections with I > 2σ(I)

Rint = 0.036

θmax = 25.0°, θmin = 1.8°

h = −12→13

k = −17→21

l = −12→12

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.049

wR(F2) = 0.120

S = 1.00 3792 reflections 289 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0509P)2 + 0.1396P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.15 e Å−3 Δρmin = −0.12 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 −0.45850 (17) 0.30848 (10) −0.24233 (19) 0.0864 (6) O2 −0.02869 (16) 0.17412 (9) 0.14602 (16) 0.0736 (5) O3 0.16564 (15) 0.21770 (9) 0.29905 (15) 0.0673 (5) O4 0.01767 (14) 0.06253 (8) 0.61701 (14) 0.0589 (4) O5 −0.12234 (16) 0.08160 (9) 0.80684 (15) 0.0758 (6) O6 −0.47527 (17) −0.07495 (10) 1.18264 (17) 0.0833 (6) N1 −0.10971 (17) 0.28755 (9) 0.15566 (17) 0.0553 (5)

H1 −0.1061 0.3268 0.2010 0.066*

N2 −0.09817 (17) −0.03653 (9) 0.86904 (16) 0.0521 (5)

H2 −0.0553 −0.0750 0.8601 0.063*

C1 −0.5025 (3) 0.24775 (17) −0.3155 (3) 0.0878 (9)

H1A −0.5619 0.2642 −0.3789 0.132*

H1B −0.5374 0.2129 −0.2602 0.132*

H1C −0.4381 0.2251 −0.3569 0.132*

C2 −0.3725 (2) 0.29650 (14) −0.1461 (2) 0.0618 (7) C3 −0.3380 (3) 0.35712 (14) −0.0759 (3) 0.0816 (9)

H3 −0.3738 0.4020 −0.0955 0.098*

C4 −0.2523 (2) 0.35303 (13) 0.0222 (3) 0.0704 (7)

H4 −0.2301 0.3951 0.0675 0.085*

C5 −0.1985 (2) 0.28715 (11) 0.0546 (2) 0.0504 (6) C6 −0.2333 (3) 0.22685 (13) −0.0161 (3) 0.0724 (8)

H6 −0.1977 0.1819 0.0030 0.087*

C7 −0.3205 (2) 0.23141 (14) −0.1156 (3) 0.0722 (8)

H7 −0.3432 0.1896 −0.1615 0.087*

C8 −0.0301 (2) 0.23574 (12) 0.1915 (2) 0.0523 (6) C9 0.0622 (2) 0.26191 (13) 0.2925 (2) 0.0623 (7)

H9A 0.0843 0.3119 0.2737 0.075*

H9B 0.0276 0.2617 0.3751 0.075*

C10 0.1788 (2) 0.16310 (12) 0.3886 (2) 0.0506 (6) C11 0.2919 (2) 0.13432 (15) 0.4054 (2) 0.0718 (8)

H11 0.3527 0.1512 0.3566 0.086*

C12 0.3137 (2) 0.08079 (16) 0.4942 (2) 0.0831 (9)

H12 0.3902 0.0614 0.5054 0.100*

C13 0.2254 (2) 0.05430 (13) 0.5683 (2) 0.0638 (7)

H13 0.2418 0.0178 0.6288 0.077*

C14 0.1139 (2) 0.08304 (12) 0.55022 (19) 0.0474 (6) C15 0.0887 (2) 0.13740 (11) 0.45945 (19) 0.0496 (6)

H15 0.0119 0.1561 0.4469 0.059*

C16 0.0370 (2) 0.01494 (11) 0.7232 (2) 0.0535 (6)

(5)

supporting information

sup-3

Acta Cryst. (2004). E60, o1702–o1703

H16B 0.0445 −0.0353 0.6946 0.064*

C17 −0.0697 (2) 0.02298 (12) 0.8024 (2) 0.0505 (6) C18 −0.1920 (2) −0.04221 (11) 0.9528 (2) 0.0479 (6) C19 −0.2346 (2) −0.11127 (12) 0.9778 (2) 0.0661 (7)

H19 −0.2008 −0.1521 0.9412 0.079*

C20 −0.3270 (3) −0.11988 (14) 1.0565 (2) 0.0776 (8)

H20 −0.3540 −0.1668 1.0739 0.093*

C21 −0.3806 (2) −0.06023 (14) 1.1102 (2) 0.0608 (7) C22 −0.3365 (2) 0.00838 (13) 1.0881 (2) 0.0578 (6)

H22 −0.3700 0.0491 1.1254 0.069*

C23 −0.2428 (2) 0.01699 (12) 1.0107 (2) 0.0556 (6)

H23 −0.2130 0.0637 0.9972 0.067*

C24 −0.5353 (3) −0.01605 (16) 1.2377 (2) 0.0812 (8)

H24A −0.5987 −0.0347 1.2858 0.122*

H24B −0.5677 0.0157 1.1713 0.122*

H24C −0.4803 0.0109 1.2935 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C21 0.0649 (18) 0.0643 (17) 0.0538 (14) −0.0117 (13) 0.0077 (13) 0.0008 (13) C22 0.0703 (18) 0.0513 (15) 0.0523 (14) 0.0037 (12) 0.0063 (13) −0.0024 (12) C23 0.0714 (18) 0.0393 (13) 0.0564 (14) −0.0019 (12) 0.0070 (13) 0.0056 (11) C24 0.074 (2) 0.102 (2) 0.0686 (17) −0.0033 (17) 0.0136 (15) −0.0125 (16)

Geometric parameters (Å, º)

O1—C2 1.370 (3) C8—C9 1.513 (3)

O1—C1 1.419 (3) C9—H9A 0.97

O2—C8 1.222 (2) C9—H9B 0.97

O3—C10 1.371 (2) C10—C15 1.374 (3)

O3—C9 1.413 (3) C10—C11 1.377 (3)

O4—C14 1.376 (2) C11—C12 1.361 (3)

O4—C16 1.418 (2) C11—H11 0.93

O5—C17 1.225 (2) C12—C13 1.385 (3)

O6—C21 1.371 (3) C12—H12 0.93

O6—C24 1.411 (3) C13—C14 1.360 (3)

N1—C8 1.340 (3) C13—H13 0.93

N1—C5 1.409 (3) C14—C15 1.392 (3)

N1—H1 0.86 C15—H15 0.93

N2—C17 1.341 (3) C16—C17 1.507 (3)

N2—C18 1.417 (3) C16—H16A 0.97

N2—H2 0.86 C16—H16B 0.97

C1—H1A 0.96 C18—C19 1.379 (3)

C1—H1B 0.96 C18—C23 1.380 (3)

C1—H1C 0.96 C19—C20 1.374 (3)

C2—C7 1.354 (3) C19—H19 0.93

C2—C3 1.372 (3) C20—C21 1.381 (3)

C3—C4 1.366 (3) C20—H20 0.93

C3—H3 0.93 C21—C22 1.372 (3)

C4—C5 1.379 (3) C22—C23 1.378 (3)

C4—H4 0.93 C22—H22 0.93

C5—C6 1.370 (3) C23—H23 0.93

C6—C7 1.389 (3) C24—H24A 0.96

C6—H6 0.93 C24—H24B 0.96

C7—H7 0.93 C24—H24C 0.96

C2—O1—C1 118.6 (2) C12—C11—H11 120.4

C10—O3—C9 120.15 (18) C10—C11—H11 120.4

C14—O4—C16 118.58 (17) C11—C12—C13 122.0 (2)

C21—O6—C24 118.9 (2) C11—C12—H12 119.0

C8—N1—C5 129.54 (19) C13—C12—H12 119.0

C8—N1—H1 115.2 C14—C13—C12 118.2 (2)

C5—N1—H1 115.2 C14—C13—H13 120.9

C17—N2—C18 126.33 (19) C12—C13—H13 120.9

C17—N2—H2 116.8 C13—C14—O4 124.8 (2)

C18—N2—H2 116.8 C13—C14—C15 121.1 (2)

(7)

supporting information

sup-5

Acta Cryst. (2004). E60, o1702–o1703

O1—C1—H1B 109.5 C10—C15—C14 119.1 (2)

H1A—C1—H1B 109.5 C10—C15—H15 120.4

O1—C1—H1C 109.5 C14—C15—H15 120.4

H1A—C1—H1C 109.5 O4—C16—C17 106.48 (18)

H1B—C1—H1C 109.5 O4—C16—H16A 110.4

C7—C2—O1 126.1 (3) C17—C16—H16A 110.4

C7—C2—C3 118.5 (3) O4—C16—H16B 110.4

O1—C2—C3 115.4 (2) C17—C16—H16B 110.4

C4—C3—C2 121.5 (2) H16A—C16—H16B 108.6

C4—C3—H3 119.3 O5—C17—N2 123.8 (2)

C2—C3—H3 119.3 O5—C17—C16 120.6 (2)

C3—C4—C5 120.7 (2) N2—C17—C16 115.56 (19)

C3—C4—H4 119.6 C19—C18—C23 118.4 (2)

C5—C4—H4 119.6 C19—C18—N2 117.7 (2)

C6—C5—C4 117.5 (2) C23—C18—N2 124.0 (2)

C6—C5—N1 125.1 (2) C20—C19—C18 120.1 (2)

C4—C5—N1 117.4 (2) C20—C19—H19 119.9

C5—C6—C7 121.5 (2) C18—C19—H19 119.9

C5—C6—H6 119.3 C19—C20—C21 121.3 (2)

C7—C6—H6 119.3 C19—C20—H20 119.4

C2—C7—C6 120.3 (2) C21—C20—H20 119.4

C2—C7—H7 119.9 O6—C21—C22 125.0 (2)

C6—C7—H7 119.9 O6—C21—C20 116.3 (2)

O2—C8—N1 124.4 (2) C22—C21—C20 118.7 (2)

O2—C8—C9 122.6 (2) C21—C22—C23 120.0 (2)

N1—C8—C9 112.98 (19) C21—C22—H22 120.0

O3—C9—C8 112.32 (19) C23—C22—H22 120.0

O3—C9—H9A 109.1 C22—C23—C18 121.4 (2)

C8—C9—H9A 109.1 C22—C23—H23 119.3

O3—C9—H9B 109.1 C18—C23—H23 119.3

C8—C9—H9B 109.1 O6—C24—H24A 109.5

H9A—C9—H9B 107.9 O6—C24—H24B 109.5

O3—C10—C15 124.5 (2) H24A—C24—H24B 109.5

O3—C10—C11 115.1 (2) O6—C24—H24C 109.5

C15—C10—C11 120.4 (2) H24A—C24—H24C 109.5 C12—C11—C10 119.1 (2) H24B—C24—H24C 109.5

(8)

O1—C2—C7—C6 179.4 (2) O4—C16—C17—N2 150.49 (18) C3—C2—C7—C6 −0.7 (4) C17—N2—C18—C19 157.9 (2) C5—C6—C7—C2 0.8 (4) C17—N2—C18—C23 −22.2 (3) C5—N1—C8—O2 −6.9 (4) C23—C18—C19—C20 1.3 (4) C5—N1—C8—C9 171.2 (2) N2—C18—C19—C20 −178.8 (2) C10—O3—C9—C8 −97.1 (2) C18—C19—C20—C21 1.2 (4) O2—C8—C9—O3 17.9 (3) C24—O6—C21—C22 1.3 (4) N1—C8—C9—O3 −160.28 (19) C24—O6—C21—C20 −178.6 (2) C9—O3—C10—C15 13.2 (3) C19—C20—C21—O6 177.2 (2) C9—O3—C10—C11 −166.5 (2) C19—C20—C21—C22 −2.7 (4) O3—C10—C11—C12 178.8 (2) O6—C21—C22—C23 −178.2 (2) C15—C10—C11—C12 −0.9 (4) C20—C21—C22—C23 1.7 (4) C10—C11—C12—C13 0.1 (4) C21—C22—C23—C18 0.8 (4) C11—C12—C13—C14 0.3 (4) C19—C18—C23—C22 −2.3 (3) C12—C13—C14—O4 −179.6 (2) N2—C18—C23—C22 177.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···O5i 0.86 2.02 2.875 (2) 172

N2—H2···O2ii 0.86 2.04 2.897 (2) 172

C6—H6···O2 0.93 2.35 2.936 (4) 121

C11—H11···O1iii 0.93 2.53 3.448 (3) 170

C23—H23···O5 0.93 2.32 2.853 (3) 116

C1—H1C···Cg1i 0.96 2.72 3.608 (3) 155 C16—H16A···Cg2iv 0.97 2.78 3.729 (2) 165 C24—H24B···Cg2v 0.96 2.70 3.590 (3) 155

References

Related documents

We follow the method used by Kazama and Torisawa (2007), which encodes the matching with a gazetteer entity using IOB tags, with the modification for Japanese.. They describe using

Radiologist involved in cardiac imaging should have a thorough understanding about the contribution and limitations of echocardiography. Gathering and analysing

Wyja ś nianiem funkcjonowania mechanizmu cenowego zajmuje si ę neoklasyczna mikroekonomia (zob. Hierarchie, charakterystyczne dla przedsi ę biorstw [25], działaj ą na

The NM pres- ence allows the users to better identify and follow the tutoring plan and to better integrate the instruc- tion.. It was also easier for users to concentrate and to

rithm is a small set of pairs of named entities that are known to belong (positive) or not belong (negative) to the given relationship. Table 1 shows four posi- tive and two

Based on our results in Table 4, discourse and dependency relations support each other in differ- ent situations. We also notice that multiple in- stances require modeling of

R EALM executes the type checking and relation assessment components separately; each component takes the seed and non-seed extractions as arguments and returns a ranking of

We additionally note that the two methods en- code different assumptions. Macro-averaging as- sumes that there is nothing intrinsically interesting about a nugget—it is simply a