• No results found

Aqua­[4 bromo 2 (pyridin 2 ylmethylimino­methyl)phenolato]copper(II) nitrate monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Aqua­[4 bromo 2 (pyridin 2 ylmethylimino­methyl)phenolato]copper(II) nitrate monohydrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m370

Sunet al. [Cu(C13H10BrN2O)(H2O)](NO3)H2O doi:10.1107/S1600536805001984 Acta Cryst.(2005). E61, m370±m372 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Aqua[4-bromo-2-(pyridin-2-ylmethyliminomethyl)-phenolato]copper(II) nitrate monohydrate

Yu-Xi Sun,* Gen-Zhi Gao, Hong-Xia Pei and Rui Zhang

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C±C) = 0.007 AÊ

Rfactor = 0.050

wRfactor = 0.105

Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Cu(C13H10BrN2O)(H2O)](NO3)H2O, is

a mononuclear copper(II) complex. The CuII atom is

four-coordinated by two N atoms and one O atom from the Schiff base ligand, and another O atom from a coordinated water molecule, forming a slightly distorted square-planar coordina-tion con®guracoordina-tion. In the crystal structure, all the O atoms in the nitrate anions and water molecules contribute to hydrogen bonds, leading to the formation of a two-dimensional network.

Comment

Copper compounds are present in the active sites of several important classes of metalloproteins. The study of copper compounds is of great interest in various aspects of chemistry (Downing & Urbach, 1969; Ganeshpureet al., 1996; Bosnich, 1968; Costeset al., 1995).

The structure of the title complex, (I), consists of a mono-nuclear [Cu(C13H10BrN2O)(H2O)]+cation, a nitrate anion and

an uncoordinated water molecule (Fig. 1). The CuIIatom is

four-coordinated by two N atoms and one O atom from the

Received 10 January 2005 Accepted 19 January 2005 Online 29 January 2005

Figure 1

(2)

Schiff base ligand, and another O atom from a coordinated water molecule, forming a slightly distorted square-planar coordination con®guration. The four coordinating atoms around the Cu centre are approximately coplanar, with an square-planar con®guration with an average deviation of 0.071 (6) AÊ; the Cu atom lies 0.061 (3) AÊ above this plane. The Cu1ÐN2 bond [1.977 (4) AÊ; Table 1] is comparable with the corresponding value [1.979 (2) AÊ] observed in a similar copper(II) complex (You & Zhu, 2004). The Cu1ÐN1 bond length [1.934 (4) AÊ] is a little longer than the value [1.927 (3) AÊ] observed in another Schiff base complex (Youet al., 2004). The Cu1ÐO1 bond length [1.902 (2) AÊ] is comparable with the value [1.889 (2) AÊ] observed in the same complex mentioned above (Youet al., 2004). The bond angles around the CuII centre show some deviations from ideal

square-planar geometry.

In the crystal structure of (I), the molecules are linked via intermolecular OÐH O hydrogen bonds, forming a two-dimensional network (Table 2 and Fig. 2).

Experimental

2-Aminomethylpyridine (0.1 mmol, 10.8 mg) and 5-bromo-salicylaldehyde (0.1 mmol, 20.1 mg) were dissolved in methanol (10 ml). The mixture was stirred for 10 min to give a clear yellow solution. To this solution was added a methanol solution (10 ml) of Cu(NO3)23H2O (0.1 mmol, 24.2 mg), with stirring. The mixture was stirred for another 10 min to give a clear blue solution, which was

allowed to evaporate slowly in the open at room temperature. After 8 d, blue block-shaped crystals were formed at the bottom of the vessel.

Crystal data

[Cu(C13H10BrN2O)(H2O)](NO3)

-H2O Mr= 451.72

Triclinic,P1

a= 7.838 (2) AÊ

b= 9.039 (2) AÊ

c= 11.988 (2) AÊ = 106.95 (1) = 102.77 (1) = 93.04 (1)

V= 786.0 (3) AÊ3

Z= 2

Dx= 1.909 Mg mÿ3

MoKradiation Cell parameters from 1283

re¯ections = 2.4±21.7 = 3.97 mmÿ1 T= 295 (2) K Block, blue

0.170.130.12 mm

Data collection

Bruker APEX area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.530,Tmax= 0.623 9036 measured re¯ections

3532 independent re¯ections 2255 re¯ections withI> 2(I)

Rint= 0.055 max= 27.5 h=ÿ10!10

k=ÿ11!11

l=ÿ15!15

Refinement

Re®nement onF2 R[F2> 2(F2)] = 0.050 wR(F2) = 0.105 S= 0.98 3532 re¯ections 229 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(Fo2) + (0.0388P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.56 e AÊÿ3 min=ÿ0.37 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO1 1.889 (3)

Cu1ÐN1 1.934 (4) Cu1ÐO2Cu1ÐN2 1.973 (3)1.977 (4)

O1ÐCu1ÐN1 93.82 (14)

O1ÐCu1ÐO2 88.90 (14)

N1ÐCu1ÐO2 171.79 (15)

O1ÐCu1ÐN2 176.73 (14)

N1ÐCu1ÐN2 83.02 (15)

O2ÐCu1ÐN2 94.35 (15)

Table 2

Hydrogen-bond geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O2ÐH2B O6i 0.84 (4) 1.84 (5) 2.658 (5) 165 (5)

O6ÐH6B O1ii 0.84 (4) 2.104 (16) 2.930 (5) 169 (5)

O2ÐH2C O3 0.85 (5) 2.56 (5) 3.019 (5) 116 (5) O2ÐH2C O5 0.85 (5) 1.81 (5) 2.650 (5) 170 (5) O6ÐH6A O4 0.85 (5) 1.96 (5) 2.776 (6) 165 (6)

Symmetry codes: (i)xÿ1;y;z; (ii)ÿx‡1;ÿy;ÿz‡1.

The H atoms of the water molecules were located in a difference Fourier map and re®ned isotropically, withUiso(H) values ®xed at 0.08 AÊ2, and with OÐH and H H distances restrained to 0.84 (1) and 1.37 (2) AÊ, respectively. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with CÐH distances in the range 0.93±0.97 AÊ and with

Uiso(H) = 1.2Ueq(C).

Data collection:SMART(Bruker, 2002); cell re®nement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve

metal-organic papers

Acta Cryst.(2005). E61, m370±m372 Sunet al. [Cu(C13H10BrN2O)(H2O)](NO3)H2O

m371

Figure 2

(3)

structure:SHELXS97(Sheldrick, 1997a); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank Qufu Normal University for funding this study.

References

Bruker. (2002).SMART(Version 5.628) andSAINT(Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Bosnich, B. (1968).J. Am. Chem. Soc.90, 627±632.

Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995).Polyhedron.14, 2179±2187.

Downing, R. S. & Urbach, F. L. (1969).J. Am. Chem. Soc.91, 5977±5983. Ganeshpure, P. A., Tembe, G. L. & Satish, S. (1996).J. Mol. Catal. A,113,

L423±L425.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.

You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004).Acta Cryst.E60, m884± m886.

You, Z.-L. & Zhu, H.-L. (2004).Acta Cryst.E60, m1079±m1080.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m370–m372

supporting information

Acta Cryst. (2005). E61, m370–m372 [https://doi.org/10.1107/S1600536805001984]

Aqua[4-bromo-2-(pyridin-2-ylmethyliminomethyl)phenolato]copper(II) nitrate

monohydrate

Yu-Xi Sun, Gen-Zhi Gao, Hong-Xia Pei and Rui Zhang

Aqua[4-bromo-2-(pyridin-2-ylmethyliminomethyl)phenolato]copper(II) nitrate monohydrate

Crystal data

[Cu(C13H10BrN2O)(H2O)](NO3)·H2O Mr = 451.72

Triclinic, P1 Hall symbol: -P 1

a = 7.838 (2) Å

b = 9.039 (2) Å

c = 11.988 (2) Å

α = 106.95 (1)°

β = 102.77 (1)°

γ = 93.04 (1)°

V = 786.0 (3) Å3

Z = 2

F(000) = 450

Dx = 1.909 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 1283 reflections

θ = 2.4–21.7°

µ = 3.97 mm−1

T = 295 K

Block, blue

0.17 × 0.13 × 0.12 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.530, Tmax = 0.623

9036 measured reflections 3532 independent reflections 2255 reflections with I > 2σ(I)

Rint = 0.055

θmax = 27.5°, θmin = 1.8°

h = −10→10

k = −11→11

l = −15→15

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.050 wR(F2) = 0.105

S = 0.98

3532 reflections 229 parameters 6 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0388P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.56 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m370–m372 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.19956 (8) 0.40787 (6) 0.59906 (5) 0.03297 (18)

Br1 0.01281 (8) 0.27990 (6) −0.05513 (4) 0.0505 (2)

O1 0.0892 (4) 0.2583 (3) 0.4495 (3) 0.0389 (8)

O2 0.0928 (5) 0.2795 (4) 0.6798 (3) 0.0385 (8)

O3 0.4584 (5) 0.2477 (4) 0.6407 (4) 0.0646 (12)

O4 0.5916 (6) 0.0689 (6) 0.6933 (4) 0.0833 (15)

O5 0.3593 (5) 0.1329 (4) 0.7518 (3) 0.0524 (10)

N1 0.2809 (5) 0.5545 (4) 0.5267 (3) 0.0307 (9)

N2 0.3222 (5) 0.5705 (4) 0.7507 (3) 0.0336 (9)

N3 0.4713 (6) 0.1500 (5) 0.6954 (4) 0.0460 (11)

C1 0.0761 (6) 0.2717 (5) 0.3423 (4) 0.0333 (11)

C2 −0.0204 (7) 0.1489 (5) 0.2422 (4) 0.0406 (12)

H2A −0.0727 0.0622 0.2546 0.049*

C3 −0.0393 (6) 0.1534 (6) 0.1271 (4) 0.0383 (12)

H3A −0.1039 0.0706 0.0625 0.046*

C4 0.0381 (6) 0.2817 (5) 0.1069 (4) 0.0330 (11)

C5 0.1321 (6) 0.4033 (5) 0.1997 (4) 0.0353 (12)

H5A 0.1839 0.4881 0.1847 0.042*

C6 0.1520 (6) 0.4018 (5) 0.3195 (4) 0.0291 (10)

C7 0.2496 (6) 0.5366 (5) 0.4130 (4) 0.0317 (11)

H7 0.2938 0.6175 0.3899 0.038*

C8 0.3784 (7) 0.7019 (5) 0.6116 (4) 0.0377 (12)

H8A 0.3124 0.7874 0.6030 0.045*

H8B 0.4913 0.7198 0.5941 0.045*

C9 0.4067 (6) 0.6954 (5) 0.7378 (4) 0.0315 (11)

C10 0.5106 (6) 0.8112 (5) 0.8350 (4) 0.0394 (12)

H10 0.5703 0.8956 0.8240 0.047*

C11 0.5245 (7) 0.7998 (6) 0.9485 (4) 0.0442 (13)

H11 0.5939 0.8767 1.0155 0.053*

C12 0.4351 (7) 0.6740 (6) 0.9622 (5) 0.0450 (13)

H12 0.4427 0.6646 1.0383 0.054*

C13 0.3350 (7) 0.5630 (6) 0.8621 (4) 0.0435 (13)

H13 0.2732 0.4786 0.8716 0.052*

O6 0.8301 (5) 0.0549 (4) 0.5514 (4) 0.0511 (10)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m370–m372

H2C 0.169 (5) 0.225 (5) 0.703 (5) 0.080*

H6B 0.863 (7) −0.033 (3) 0.546 (5) 0.080*

H2B −0.002 (4) 0.222 (5) 0.640 (5) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0425 (4) 0.0269 (3) 0.0294 (3) −0.0035 (3) 0.0085 (3) 0.0101 (3)

Br1 0.0786 (5) 0.0438 (3) 0.0293 (3) 0.0068 (3) 0.0113 (3) 0.0133 (3)

O1 0.058 (2) 0.0288 (18) 0.0262 (18) −0.0114 (16) 0.0070 (16) 0.0079 (14)

O2 0.045 (2) 0.037 (2) 0.036 (2) −0.0023 (17) 0.0106 (17) 0.0162 (16)

O3 0.071 (3) 0.055 (3) 0.094 (3) 0.009 (2) 0.040 (2) 0.046 (3)

O4 0.068 (3) 0.102 (4) 0.119 (4) 0.038 (3) 0.048 (3) 0.069 (3)

O5 0.052 (2) 0.072 (3) 0.044 (2) 0.008 (2) 0.0173 (19) 0.031 (2)

N1 0.039 (2) 0.023 (2) 0.029 (2) −0.0012 (17) 0.0079 (18) 0.0087 (17)

N2 0.040 (2) 0.031 (2) 0.027 (2) −0.0005 (19) 0.0054 (18) 0.0087 (18)

N3 0.042 (3) 0.048 (3) 0.048 (3) 0.000 (2) 0.015 (2) 0.014 (2)

C1 0.042 (3) 0.028 (3) 0.031 (3) 0.004 (2) 0.011 (2) 0.009 (2)

C2 0.054 (3) 0.030 (3) 0.036 (3) −0.006 (2) 0.013 (2) 0.009 (2)

C3 0.040 (3) 0.037 (3) 0.031 (3) −0.001 (2) 0.005 (2) 0.004 (2)

C4 0.044 (3) 0.030 (3) 0.025 (2) 0.008 (2) 0.008 (2) 0.009 (2)

C5 0.041 (3) 0.033 (3) 0.037 (3) 0.001 (2) 0.009 (2) 0.019 (2)

C6 0.032 (3) 0.026 (2) 0.030 (3) −0.002 (2) 0.007 (2) 0.012 (2)

C7 0.039 (3) 0.026 (2) 0.033 (3) −0.007 (2) 0.007 (2) 0.017 (2)

C8 0.050 (3) 0.027 (3) 0.033 (3) −0.008 (2) 0.009 (2) 0.009 (2)

C9 0.031 (3) 0.028 (3) 0.034 (3) 0.005 (2) 0.004 (2) 0.011 (2)

C10 0.042 (3) 0.028 (3) 0.044 (3) −0.003 (2) 0.006 (2) 0.009 (2)

C11 0.048 (3) 0.035 (3) 0.038 (3) 0.003 (3) −0.002 (3) 0.004 (2)

C12 0.057 (4) 0.043 (3) 0.031 (3) 0.008 (3) 0.003 (3) 0.012 (2)

C13 0.052 (3) 0.037 (3) 0.039 (3) −0.004 (3) 0.010 (3) 0.013 (2)

O6 0.055 (3) 0.044 (2) 0.055 (3) −0.0043 (19) 0.013 (2) 0.018 (2)

Geometric parameters (Å, º)

Cu1—O1 1.889 (3) C3—H3A 0.9300

Cu1—N1 1.934 (4) C4—C5 1.351 (6)

Cu1—O2 1.973 (3) C5—C6 1.414 (6)

Cu1—N2 1.977 (4) C5—H5A 0.9300

Br1—C4 1.904 (4) C6—C7 1.432 (6)

O1—C1 1.308 (5) C7—H7 0.9300

O2—H2C 0.85 (5) C8—C9 1.499 (6)

O2—H2B 0.84 (4) C8—H8A 0.9700

O3—N3 1.240 (5) C8—H8B 0.9700

O4—N3 1.224 (5) C9—C10 1.376 (6)

O5—N3 1.250 (5) C10—C11 1.376 (6)

N1—C7 1.290 (5) C10—H10 0.9300

N1—C8 1.467 (5) C11—C12 1.373 (7)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m370–m372

N2—C9 1.344 (5) C12—C13 1.364 (7)

C1—C2 1.406 (6) C12—H12 0.9300

C1—C6 1.414 (6) C13—H13 0.9300

C2—C3 1.368 (6) O6—H6A 0.85 (5)

C2—H2A 0.9300 O6—H6B 0.84 (4)

C3—C4 1.388 (6)

O1—Cu1—N1 93.82 (14) C4—C5—C6 120.2 (4)

O1—Cu1—O2 88.90 (14) C4—C5—H5A 119.9

N1—Cu1—O2 171.79 (15) C6—C5—H5A 119.9

O1—Cu1—N2 176.73 (14) C1—C6—C5 119.9 (4)

N1—Cu1—N2 83.02 (15) C1—C6—C7 123.1 (4)

O2—Cu1—N2 94.35 (15) C5—C6—C7 116.9 (4)

C1—O1—Cu1 127.3 (3) N1—C7—C6 125.1 (4)

Cu1—O2—H2C 108 (4) N1—C7—H7 117.4

Cu1—O2—H2B 117 (4) C6—C7—H7 117.4

H2C—O2—H2B 110 (3) N1—C8—C9 109.8 (4)

C7—N1—C8 118.5 (4) N1—C8—H8A 109.7

C7—N1—Cu1 126.0 (3) C9—C8—H8A 109.7

C8—N1—Cu1 115.4 (3) N1—C8—H8B 109.7

C13—N2—C9 118.4 (4) C9—C8—H8B 109.7

C13—N2—Cu1 126.1 (3) H8A—C8—H8B 108.2

C9—N2—Cu1 115.5 (3) N2—C9—C10 121.9 (4)

O4—N3—O3 120.5 (5) N2—C9—C8 115.8 (4)

O4—N3—O5 119.8 (5) C10—C9—C8 122.3 (4)

O3—N3—O5 119.6 (5) C11—C10—C9 118.8 (5)

O1—C1—C2 118.2 (4) C11—C10—H10 120.6

O1—C1—C6 124.6 (4) C9—C10—H10 120.6

C2—C1—C6 117.3 (4) C12—C11—C10 119.5 (5)

C3—C2—C1 121.8 (4) C12—C11—H11 120.3

C3—C2—H2A 119.1 C10—C11—H11 120.3

C1—C2—H2A 119.1 C13—C12—C11 118.8 (5)

C2—C3—C4 119.9 (5) C13—C12—H12 120.6

C2—C3—H3A 120.1 C11—C12—H12 120.6

C4—C3—H3A 120.1 N2—C13—C12 122.7 (5)

C5—C4—C3 120.9 (4) N2—C13—H13 118.7

C5—C4—Br1 120.8 (4) C12—C13—H13 118.7

C3—C4—Br1 118.2 (4) H6A—O6—H6B 110 (3)

N1—Cu1—O1—C1 −3.2 (4) C2—C1—C6—C7 178.3 (4)

O2—Cu1—O1—C1 169.1 (4) C4—C5—C6—C1 1.2 (7)

O1—Cu1—N1—C7 2.5 (4) C4—C5—C6—C7 −178.4 (4)

N2—Cu1—N1—C7 −178.4 (4) C8—N1—C7—C6 −178.1 (4)

O1—Cu1—N1—C8 178.9 (3) Cu1—N1—C7—C6 −1.7 (7)

N2—Cu1—N1—C8 −1.9 (3) C1—C6—C7—N1 0.7 (7)

N1—Cu1—N2—C13 −179.3 (4) C5—C6—C7—N1 −179.7 (4)

O2—Cu1—N2—C13 8.5 (4) C7—N1—C8—C9 −177.6 (4)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m370–m372

O2—Cu1—N2—C9 −175.0 (3) C13—N2—C9—C10 2.7 (7)

Cu1—O1—C1—C2 −176.6 (3) Cu1—N2—C9—C10 −174.1 (3)

Cu1—O1—C1—C6 3.2 (7) C13—N2—C9—C8 −176.4 (4)

O1—C1—C2—C3 −179.6 (5) Cu1—N2—C9—C8 6.8 (5)

C6—C1—C2—C3 0.7 (7) N1—C8—C9—N2 −8.0 (6)

C1—C2—C3—C4 0.1 (8) N1—C8—C9—C10 173.0 (4)

C2—C3—C4—C5 −0.2 (7) N2—C9—C10—C11 −1.5 (7)

C2—C3—C4—Br1 178.4 (4) C8—C9—C10—C11 177.5 (5)

C3—C4—C5—C6 −0.4 (7) C9—C10—C11—C12 0.0 (7)

Br1—C4—C5—C6 −179.0 (3) C10—C11—C12—C13 0.2 (8)

O1—C1—C6—C5 179.0 (4) C9—N2—C13—C12 −2.4 (7)

C2—C1—C6—C5 −1.3 (7) Cu1—N2—C13—C12 174.0 (4)

O1—C1—C6—C7 −1.4 (7) C11—C12—C13—N2 0.9 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2B···O6i 0.84 (4) 1.84 (5) 2.658 (5) 165 (5)

O6—H6B···O1ii 0.84 (4) 2.10 (2) 2.930 (5) 169 (5)

O2—H2C···O3 0.85 (5) 2.56 (5) 3.019 (5) 116 (5)

O2—H2C···O5 0.85 (5) 1.81 (5) 2.650 (5) 170 (5)

O6—H6A···O4 0.85 (5) 1.96 (5) 2.776 (6) 165 (6)

References

Related documents

To investigate the influence of the gas jet on particle motion, a numerical simulation of the uniform flow around a spherical particle with a nonuniform outflow or high

In vivo in an MCDS mouse model, which expresses the MCDS-causing N617K mutation in collagen X, CBZ induced a reduction in ER stress and enabled hypertrophic chondrocytes to

More precisely, the paper develops a positive model of government behavior in order to define the intertemporal fiscal policies that are optimal for a country,

We demon- strate a speed-up of several orders of magni- tude when predicting word similarity by vector operations on our embeddings as opposed to directly computing the

We identify online obituaries as a new data source and propose a special named entity recognition and relation extraction solution to extract names and kinships

The 30-ounce loss constitutes 10% of the bank’s assets, so one might expect it to cause a 10% fall in the value of the bank’s dollar notes, but the loss of value is exaggerated by

SB − AGR is the agricultural material prices, and SB − M ET is the metal, SB − F OO is the food prices, and SB − ST O is the stock market factors estimated by the Dynamic

In this proposal, we propose a corpus based study to examine doctor-patient conversation of antibiotic treatment negotiation in Chinese pedi- atric settings, using a mixed