• No results found

Bis(2,2′ bi­pyridine κ2N,N′)­chloro­copper(II) tetra­fluoro­borate di­chloro­methane solvate

N/A
N/A
Protected

Academic year: 2020

Share "Bis(2,2′ bi­pyridine κ2N,N′)­chloro­copper(II) tetra­fluoro­borate di­chloro­methane solvate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1039–m1041 doi:10.1107/S1600536805013760 Linfang Jiaet al. [CuCl(C

10H8N2)2]BF4CH2Cl2

m1039

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Bis(2,2

000

-bipyridine-

j

2

N,N

000

)chlorocopper(II)

tetrafluoroborate dichloromethane solvate

Linfang Jia,aWenfu Fu,a,b* Qi Yin,bMingming Yu,aJunfeng Zhangaand Zhanxian Lia

aTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China, andbCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, People’s Republic of China

Correspondence e-mail: fuwfu@sohu.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.012 A˚ Disorder in solvent or counterion

Rfactor = 0.074

wRfactor = 0.223

Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The new mononuclear copper(II) complex, [CuCl(C10H8 -N2)2]BF4CH2Cl2, was prepared by a new procedure using photo-irradiation and a nitrogen atmosphere. X-ray analysis reveals a slightly distorted trigonal–bipyramidal coordination geometry of copper(II); the axial ligands and the CuIIatom deviate slightly from linearity [N—Cu—N = 175.3 (3)].

Comment

The copper(I) complex of [Cu(dmp)2] +

(dmp = 2,9-dimethyl-1,10-phenanthroline) can be photo-oxidized to [Cu(dmp)2]

2+

when irradiated by high-energy laser light in CH2Cl2solution (Horva´th & Stevenson, 1993). The same procedure was used to obtain the copper(II) complex [Cu(bipy)2Cl]BF4 (bipy is 2,20-bipyridine) (see scheme). The copper(II) complex

[Cu(bipy)2Cl]BF4 has already been prepared by a different procedure (Nagleet al., 1990); the complex was obtained using a copper(II) ion in an alcohol–water reaction system. In the complex obtained by Nagle et al. (1990), the CuII atom is coordinated by two 2,20-bipyridyl ligands and by one Cl atom

and exhibits a distorted geometry between square-based pyramidal and trigonal–bipyramidal.

In the title complex, (I), the CuIIatom is also coordinated by two 2,20-bipyridyl ligands and one Cl atom in a slightly

distorted trigonal–bipyramidal geometry (Fig. 1). The axial bond distances Cu—N1 and Cu—N3 are 1.995 (6) and 1.986 (5) A˚ , respectively (mean 1.991 A˚). The equatorial bond distances Cu—N2 and Cu—N4 are 2.104 (6) and 2.100 (5) A˚ , respectively (mean 2.102 A˚ ). The Cu—N distances in (I) (Table 1) are comparable with those in related compounds (Murphy, Nagle et al., 1997; Murphy, Murphy et al., 1997; O’Sullivanet al., 1999; Ma et al., 1999); differences between the title compound and the literature data are within standard deviations of chemically analogous bonds. However,

(2)

ences in molecular geometries between the complex reported by Nagleet al.(1990) and the title compound are significant; the two bonds Cu—N1 and Cu—N3 in (I) differ by 0.009 A˚ , whereas the analogous bonds reported by Nagleet al.differ by 0.023 A˚ . The difference between the two bond lengths Cu— N2 and Cu—N4 is 0.063 A˚ (Nagleet al., 1990), whereas in the title compound, the difference (0.004 A˚ ) is less than a standard deviation (0.006 A˚ ). The Cu—Cl bond distance is 2.333 A˚ in (I), which is longer than the Cu—Cl bond distance (2.285 A˚ ) reported by Nagle et al. (1990). Differences in bond angles between these two structures are even more pronounced; the trigonal–bipyramidal coordination geometry of (I) reveals nearly linear axial bonds [N1—Cu—N3 = 175.3 (3)] and the

mean value of the bond angles for equatorial ligands (with CuIIas the central atom) is 120.0. As the coordination of the

complex reported by Nagleet al.(1990) represents a transition

between square-pyramidal and trigonal–bipyramidal, the bond angles deviate significantly from the usual values for the two ideal geometries. In the crystal structure, a BF4

anion is disordered over two orientations with approximately equal populations; a dichloromethane solvent molecule is disor-dered over two positions with approximately equal popula-tions. The packing of (I) is shown in Fig. 2.

Experimental

For the synthesis of (I), a mixture of [Cu(MeCN)4]BF4(100.0 mg,

0.317 mmol) and 2,20-bipyridine (99.2 mg, 0.634 mmol) in

dichloro-methane (25 ml) was stirred for 4 h at room temperature under photoirradiation (365 nm). Green crystals suitable for X-ray diffraction analysis were obtained by recrystallization of the crude product from a dichloromethane–diethyl ether solution. The compound was obtained in 62% yield and identified as [CuCl(2,20

-bipyridine)2]BF4.CH2Cl2. Elemental analysis calculated (%) for

C21H18BCl3CuF4N4: C43.22, H 3.09, N 9.60, found (%): C 43.27,

H 3.10, N 9.55.

Crystal data

[CuCl(C10H8N2)2]BF4CH2Cl2

Mr= 583.09

Monoclinic,P21=c

a= 7.491 (3) A˚ b= 23.458 (8) A˚ c= 14.302 (5) A˚

= 104.803 (6)

V= 2429.7 (14) A˚3

Z= 4

Dx= 1.594 Mg m 3

MoKradiation Cell parameters from 820

reflections

= 2.9–25.7

= 1.28 mm1

T= 293 (2) K Block, green

0.220.200.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.691,Tmax= 0.795

12 474 measured reflections

4267 independent reflections 2452 reflections withI> 2(I) Rint= 0.061

max= 25.0

h=8!8 k=12!27 l=17!17

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.074

wR(F2) = 0.223 S= 1.02 4267 reflections 372 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.1219P)2

+ 1.687P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.005

max= 1.00 e A˚ 3

[image:2.610.43.295.68.292.2]

min=0.36 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Cu1—N3 1.986 (5) Cu1—N1 1.995 (6) Cu1—N4 2.100 (5)

Cu1—N2 2.104 (6) Cu1—Cl1 2.333 (2)

N3—Cu1—N1 175.3 (3) N3—Cu1—N4 80.3 (2) N1—Cu1—N4 98.2 (2) N3—Cu1—N2 97.1 (2) N1—Cu1—N2 79.7 (2)

N4—Cu1—N2 118.5 (2) N3—Cu1—Cl1 92.10 (18) N1—Cu1—Cl1 92.44 (19) N4—Cu1—Cl1 121.16 (16) N2—Cu1—Cl1 120.30 (16)

All H atoms were initially located in a difference Fourier map. Aromatic H atoms were placed in geometrically idealized positions and constrained to C—H distances of 0.93 A˚ andUiso(H) values of

metal-organic papers

m1040

Linfang Jiaet al. [CuCl(C

[image:2.610.45.294.335.512.2]

10H8N2)2]BF4CH2Cl2 Acta Cryst.(2005). E61, m1039–m1041

Figure 1

View of (I), shown with 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Only one disorder component is shown.

Figure 2

[image:2.610.313.565.620.700.2]
(3)

1.5Ueq(C). The H atoms of the dichloromethane solvent were

constrained to an ideal geometry, with C—H distances of 0.96 A˚ and

Uiso(H) values of 1.5Ueq(C) and refined as riding.

Data collection:SMART(Bruker, 1997); cell refinement:SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

This work was supported by the Chinese Academy of

Science Hundred Talents, the Foundation (grant No.

2001E0005Z) for Key Project of Yunnan Provincial Science and Technology Commission, and The National Natural Science Foundation of China (grant Nos. 50273045 and 90210033).

References

Bruker (1997).SMARTandSAINT.Bruker AXS Inc., Madison, Wisconsin, USA.

Horva´th, O. & Stevenson, K. L. (1993).Charge Transfer Photochemistry of Coordiation Compounds, pp. 45–48. New York: Wiley–VCH.

Ma, B.-Q., Gao, S., Yi, T., Yan, C.-H. & Xu, G.-X. (1999).Inorg. Chem. Commun.3, 93–95.

Murphy, G., Murphy, C., Murphy, B. & Hathaway, B. (1997).J. Chem. Soc. Dalton Trans.pp. 2653–2660.

Murphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997).J. Chem. Soc. Dalton Trans.pp. 2645–2652.

Nagle, P., O’Sullivan, E. & Hathaway, B. J. (1990).J. Chem. Soc. Dalton Trans. pp. 3399–3406.

O’Sullivan, C., Murphy, G., Murphy, B. & Hathaway, B. (1999).J. Chem. Soc. Dalton Trans.pp. 1835–1844.

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL.Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Acta Cryst.(2005). E61, m1039–m1041 Linfang Jiaet al. [CuCl(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1039–m1041

supporting information

Acta Cryst. (2005). E61, m1039–m1041 [https://doi.org/10.1107/S1600536805013760]

Bis(2,2

-bipyridine-

κ

2

N,N

)chlorocopper(II) tetrafluoroborate dichloromethane

solvate

Linfang Jia, Wenfu Fu, Qi Yin, Mingming Yu, Junfeng Zhang and Zhanxian Li

Bis(2,2′-bipyridine-κ2N,N)chlorocopper(II) tetrafluoroborate dichloromethane solvate

Crystal data

[CuCl(C10H8N2)2]BF4·CH2Cl2 Mr = 583.09

Monoclinic, P21/c a = 7.491 (3) Å b = 23.458 (8) Å c = 14.302 (5) Å β = 104.803 (6)° V = 2429.7 (14) Å3 Z = 4

F(000) = 1172 Dx = 1.594 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 820 reflections θ = 2.9–25.7°

µ = 1.28 mm−1 T = 293 K Block, green

0.22 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.691, Tmax = 0.795

12474 measured reflections 4267 independent reflections 2452 reflections with I > 2σ(I) Rint = 0.061

θmax = 25.0°, θmin = 1.7°

h = −8→8

k = −12→27

l = −17→17

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.074 wR(F2) = 0.223 S = 1.02 4267 reflections 372 parameters 134 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1219P)2 + 1.687P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.005 Δρmax = 1.00 e Å−3 Δρmin = −0.36 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1039–m1041

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cu1 0.42028 (13) 0.50865 (4) 0.23960 (6) 0.0469 (3)

Cl1 0.7415 (3) 0.50140 (9) 0.28414 (13) 0.0587 (6)

N1 0.4238 (9) 0.5650 (3) 0.1356 (4) 0.0511 (16)

N2 0.2647 (8) 0.4643 (3) 0.1180 (4) 0.0445 (14)

N3 0.3949 (8) 0.4519 (2) 0.3385 (4) 0.0440 (14)

N4 0.2798 (7) 0.5586 (2) 0.3198 (4) 0.0394 (13)

C1 0.5077 (13) 0.6152 (4) 0.1517 (7) 0.068 (2)

H1 0.5662 0.6258 0.2148 0.082*

C2 0.5097 (13) 0.6520 (4) 0.0767 (8) 0.078 (3)

H2 0.5663 0.6874 0.0892 0.094*

C3 0.4275 (14) 0.6358 (4) −0.0163 (8) 0.080 (3)

H3 0.4267 0.6604 −0.0674 0.096*

C4 0.3467 (12) 0.5834 (4) −0.0337 (6) 0.068 (2)

H4 0.2937 0.5716 −0.0968 0.081*

C5 0.3442 (10) 0.5476 (3) 0.0441 (5) 0.0487 (19)

C6 0.2592 (10) 0.4913 (3) 0.0339 (5) 0.0497 (18)

C7 0.1746 (11) 0.4657 (4) −0.0542 (5) 0.064 (2)

H7 0.1706 0.4844 −0.1120 0.077*

C8 0.0977 (12) 0.4128 (4) −0.0549 (7) 0.072 (3)

H8 0.0430 0.3951 −0.1133 0.087*

C9 0.1011 (11) 0.3864 (4) 0.0294 (6) 0.065 (2)

H9 0.0461 0.3509 0.0300 0.078*

C10 0.1883 (11) 0.4133 (3) 0.1149 (6) 0.056 (2)

H10 0.1936 0.3946 0.1729 0.067*

C11 0.4573 (11) 0.3988 (3) 0.3422 (5) 0.0505 (19)

H11 0.5132 0.3862 0.2950 0.061*

C12 0.4408 (12) 0.3617 (3) 0.4152 (6) 0.061 (2)

H12 0.4829 0.3244 0.4161 0.073*

C13 0.3631 (12) 0.3804 (3) 0.4847 (6) 0.064 (2)

H13 0.3519 0.3560 0.5342 0.076*

C14 0.3001 (11) 0.4358 (3) 0.4825 (5) 0.0527 (19)

H14 0.2473 0.4491 0.5306 0.063*

C15 0.3165 (9) 0.4709 (3) 0.4082 (4) 0.0403 (16)

C16 0.2512 (9) 0.5304 (3) 0.3974 (4) 0.0394 (15)

C17 0.1667 (10) 0.5571 (3) 0.4608 (5) 0.053 (2)

H17 0.1503 0.5376 0.5147 0.063*

C18 0.1078 (12) 0.6117 (4) 0.4444 (6) 0.063 (2)

H18 0.0494 0.6297 0.4865 0.075*

C19 0.1350 (12) 0.6403 (3) 0.3655 (6) 0.063 (2)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1039–m1041

C20 0.2239 (11) 0.6126 (3) 0.3059 (5) 0.0546 (19)

H20 0.2461 0.6323 0.2536 0.066*

C21 0.091 (3) 0.7134 (5) 0.7242 (9) 0.087 (6) 0.570 (17)

H21A 0.2150 0.7275 0.7516 0.105* 0.570 (17)

H21B 0.0154 0.7237 0.7674 0.105* 0.570 (17)

Cl2 0.0959 (16) 0.6401 (3) 0.7133 (7) 0.071 (2) 0.570 (17)

Cl3 0.001 (2) 0.7441 (3) 0.6111 (5) 0.142 (4) 0.570 (17)

C21′ 0.020 (5) 0.7181 (9) 0.692 (3) 0.150 (16) 0.430 (17)

H21C 0.0381 0.7364 0.7543 0.180* 0.430 (17)

H21D −0.1100 0.7200 0.6589 0.180* 0.430 (17)

Cl2′ 0.088 (4) 0.6481 (7) 0.7076 (17) 0.138 (7) 0.430 (17)

Cl3′ 0.146 (2) 0.7540 (4) 0.6244 (9) 0.137 (5) 0.430 (17)

B1 0.3477 (15) 0.2479 (4) 0.1530 (8) 0.121 (5)

F1 0.343 (3) 0.2869 (8) 0.2193 (16) 0.303 (17) 0.564 (15)

F2 0.2664 (17) 0.1995 (5) 0.1755 (9) 0.119 (5) 0.564 (15)

F3 0.252 (4) 0.2639 (10) 0.0642 (12) 0.317 (17) 0.564 (15)

F4 0.5193 (18) 0.2309 (7) 0.1515 (15) 0.186 (8) 0.564 (15)

F1′ 0.411 (2) 0.2986 (5) 0.1954 (10) 0.109 (6) 0.436 (15)

F2′ 0.418 (4) 0.2037 (7) 0.2077 (15) 0.256 (15) 0.436 (15)

F3′ 0.1601 (17) 0.2514 (8) 0.1294 (13) 0.159 (9) 0.436 (15)

F4′ 0.400 (3) 0.2474 (7) 0.0685 (11) 0.146 (8) 0.436 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0661 (6) 0.0444 (5) 0.0349 (5) 0.0040 (5) 0.0214 (4) 0.0061 (4)

Cl1 0.0578 (13) 0.0786 (15) 0.0410 (10) −0.0018 (10) 0.0150 (9) 0.0076 (9)

N1 0.062 (4) 0.048 (4) 0.052 (4) 0.005 (3) 0.031 (3) 0.011 (3)

N2 0.047 (4) 0.052 (4) 0.037 (3) 0.009 (3) 0.016 (3) 0.004 (3)

N3 0.057 (4) 0.046 (3) 0.033 (3) 0.000 (3) 0.020 (3) 0.007 (2)

N4 0.047 (4) 0.039 (3) 0.032 (3) 0.000 (3) 0.010 (3) −0.001 (2)

C1 0.079 (6) 0.062 (6) 0.074 (6) −0.001 (5) 0.039 (5) 0.015 (4)

C2 0.081 (7) 0.057 (6) 0.114 (8) 0.009 (5) 0.058 (7) 0.026 (6)

C3 0.087 (7) 0.085 (7) 0.082 (7) 0.037 (6) 0.045 (6) 0.053 (6)

C4 0.061 (6) 0.089 (7) 0.058 (5) 0.020 (5) 0.024 (4) 0.029 (5)

C5 0.051 (5) 0.067 (5) 0.034 (4) 0.023 (4) 0.024 (3) 0.019 (3)

C6 0.045 (4) 0.069 (5) 0.039 (4) 0.019 (4) 0.019 (3) 0.005 (4)

C7 0.048 (5) 0.109 (8) 0.034 (4) 0.023 (5) 0.011 (4) 0.006 (4)

C8 0.054 (6) 0.094 (7) 0.066 (6) 0.006 (5) 0.012 (5) −0.023 (5)

C9 0.053 (5) 0.073 (6) 0.065 (6) −0.003 (4) 0.008 (4) −0.017 (5)

C10 0.053 (5) 0.061 (5) 0.054 (5) 0.002 (4) 0.017 (4) −0.003 (4)

C11 0.062 (5) 0.045 (4) 0.044 (4) 0.009 (4) 0.013 (4) 0.006 (3)

C12 0.072 (6) 0.040 (4) 0.068 (5) 0.004 (4) 0.010 (4) 0.010 (4)

C13 0.078 (6) 0.057 (5) 0.056 (5) −0.016 (4) 0.016 (4) 0.016 (4)

C14 0.058 (5) 0.059 (5) 0.045 (4) −0.013 (4) 0.019 (4) 0.008 (4)

C15 0.039 (4) 0.049 (4) 0.031 (4) −0.008 (3) 0.006 (3) 0.000 (3)

C16 0.037 (4) 0.048 (4) 0.031 (3) −0.010 (3) 0.005 (3) −0.004 (3)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1039–m1041

C18 0.068 (6) 0.064 (5) 0.063 (5) 0.006 (4) 0.029 (4) −0.017 (4)

C19 0.069 (6) 0.055 (5) 0.068 (5) 0.013 (4) 0.022 (4) −0.001 (4)

C20 0.068 (5) 0.048 (5) 0.046 (4) 0.006 (4) 0.012 (4) 0.005 (3)

C21 0.096 (10) 0.069 (9) 0.092 (10) 0.016 (8) 0.015 (8) −0.012 (7)

Cl2 0.084 (4) 0.060 (3) 0.074 (4) 0.012 (3) 0.027 (3) 0.003 (3)

Cl3 0.165 (9) 0.106 (5) 0.144 (5) 0.017 (5) 0.022 (5) 0.042 (4)

C21′ 0.153 (19) 0.142 (19) 0.157 (18) 0.008 (10) 0.042 (11) −0.006 (10)

Cl2′ 0.146 (11) 0.124 (10) 0.148 (10) −0.005 (8) 0.046 (8) 0.010 (7)

Cl3′ 0.133 (9) 0.102 (6) 0.176 (8) −0.002 (5) 0.042 (6) 0.034 (5)

B1 0.131 (9) 0.106 (9) 0.124 (9) 0.028 (8) 0.029 (8) −0.005 (7)

F1 0.315 (19) 0.297 (19) 0.307 (19) −0.006 (10) 0.097 (11) −0.053 (10)

F2 0.111 (8) 0.093 (7) 0.143 (9) −0.041 (6) 0.017 (6) 0.028 (6)

F3 0.313 (19) 0.308 (19) 0.321 (19) 0.003 (10) 0.062 (11) 0.016 (10)

F4 0.164 (11) 0.196 (12) 0.199 (12) 0.023 (8) 0.050 (9) −0.039 (9)

F1′ 0.163 (10) 0.062 (7) 0.106 (9) −0.014 (7) 0.041 (7) −0.035 (6)

F2′ 0.266 (18) 0.236 (18) 0.259 (17) 0.004 (10) 0.057 (11) 0.039 (10)

F3′ 0.147 (11) 0.183 (13) 0.154 (12) −0.023 (9) 0.053 (9) 0.024 (9)

F4′ 0.174 (12) 0.136 (11) 0.144 (11) −0.018 (9) 0.071 (9) 0.004 (8)

Geometric parameters (Å, º)

Cu1—N3 1.986 (5) C12—C13 1.348 (11)

Cu1—N1 1.995 (6) C12—H12 0.9300

Cu1—N4 2.100 (5) C13—C14 1.379 (11)

Cu1—N2 2.104 (6) C13—H13 0.9300

Cu1—Cl1 2.333 (2) C14—C15 1.376 (9)

N1—C1 1.327 (10) C14—H14 0.9300

N1—C5 1.355 (9) C15—C16 1.473 (10)

N2—C10 1.323 (9) C16—C17 1.382 (9)

N2—C6 1.351 (8) C17—C18 1.355 (11)

N3—C11 1.326 (9) C17—H17 0.9300

N3—C15 1.354 (8) C18—C19 1.373 (11)

N4—C20 1.333 (9) C18—H18 0.9300

N4—C16 1.355 (8) C19—C20 1.372 (10)

C1—C2 1.381 (11) C19—H19 0.9300

C1—H1 0.9300 C20—H20 0.9300

C2—C3 1.369 (13) C21—Cl2 1.727 (9)

C2—H2 0.9300 C21—Cl3 1.742 (10)

C3—C4 1.365 (13) C21—H21A 0.9700

C3—H3 0.9300 C21—H21B 0.9700

C4—C5 1.398 (10) C21′—Cl2′ 1.718 (11)

C4—H4 0.9300 C21′—Cl3′ 1.725 (11)

C5—C6 1.457 (11) C21′—H21C 0.9700

C6—C7 1.392 (11) C21′—H21D 0.9700

C7—C8 1.367 (13) B1—F2′ 1.323 (10)

C7—H7 0.9300 B1—F1 1.325 (10)

C8—C9 1.350 (12) B1—F3 1.343 (10)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1039–m1041

C9—C10 1.382 (11) B1—F3′ 1.361 (10)

C9—H9 0.9300 B1—F4′ 1.364 (10)

C10—H10 0.9300 B1—F2 1.364 (9)

C11—C12 1.388 (10) B1—F1′ 1.364 (9)

C11—H11 0.9300

N3—Cu1—N1 175.3 (3) C15—C14—C13 119.0 (7)

N3—Cu1—N4 80.3 (2) C15—C14—H14 120.5

N1—Cu1—N4 98.2 (2) C13—C14—H14 120.5

N3—Cu1—N2 97.1 (2) N3—C15—C14 120.8 (7)

N1—Cu1—N2 79.7 (2) N3—C15—C16 115.4 (5)

N4—Cu1—N2 118.5 (2) C14—C15—C16 123.7 (6)

N3—Cu1—Cl1 92.10 (18) N4—C16—C17 120.7 (7)

N1—Cu1—Cl1 92.44 (19) N4—C16—C15 115.5 (5)

N4—Cu1—Cl1 121.16 (16) C17—C16—C15 123.8 (6)

N2—Cu1—Cl1 120.30 (16) C18—C17—C16 119.9 (7)

C1—N1—C5 120.5 (7) C18—C17—H17 120.1

C1—N1—Cu1 123.6 (6) C16—C17—H17 120.1

C5—N1—Cu1 115.7 (5) C17—C18—C19 119.6 (7)

C10—N2—C6 118.6 (7) C17—C18—H18 120.2

C10—N2—Cu1 128.2 (5) C19—C18—H18 120.2

C6—N2—Cu1 112.9 (5) C20—C19—C18 118.4 (8)

C11—N3—C15 119.6 (6) C20—C19—H19 120.8

C11—N3—Cu1 124.1 (5) C18—C19—H19 120.8

C15—N3—Cu1 116.2 (4) N4—C20—C19 122.8 (7)

C20—N4—C16 118.4 (6) N4—C20—H20 118.6

C20—N4—Cu1 129.1 (5) C19—C20—H20 118.6

C16—N4—Cu1 112.4 (4) Cl2—C21—Cl3 109.9 (7)

N1—C1—C2 121.2 (9) Cl2—C21—H21A 109.7

N1—C1—H1 119.4 Cl3—C21—H21A 109.7

C2—C1—H1 119.4 Cl2—C21—H21B 109.7

C3—C2—C1 119.3 (9) Cl3—C21—H21B 109.7

C3—C2—H2 120.3 H21A—C21—H21B 108.2

C1—C2—H2 120.3 Cl2′—C21′—Cl3′ 110.8 (9)

C4—C3—C2 119.7 (8) Cl2′—C21′—H21C 109.5

C4—C3—H3 120.1 Cl3′—C21′—H21C 109.5

C2—C3—H3 120.1 Cl2′—C21′—H21D 109.5

C3—C4—C5 119.4 (9) Cl3′—C21′—H21D 109.5

C3—C4—H4 120.3 H21C—C21′—H21D 108.1

C5—C4—H4 120.3 F2′—B1—F1 101.4 (15)

N1—C5—C4 119.7 (8) F2′—B1—F3 144.5 (15)

N1—C5—C6 116.3 (6) F1—B1—F3 112.2 (11)

C4—C5—C6 124.0 (8) F2′—B1—F4 62.7 (11)

N2—C6—C7 120.5 (8) F1—B1—F4 114.5 (11)

N2—C6—C5 114.9 (6) F3—B1—F4 110.3 (11)

C7—C6—C5 124.6 (7) F2′—B1—F3′ 115.2 (11)

C8—C7—C6 119.4 (8) F1—B1—F3′ 85.5 (13)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1039–m1041

C6—C7—H7 120.3 F4—B1—F3′ 160.0 (12)

C9—C8—C7 119.9 (8) F2′—B1—F4′ 110.9 (11)

C9—C8—H8 120.1 F1—B1—F4′ 134.9 (14)

C7—C8—H8 120.1 F3—B1—F4′ 50.8 (11)

C8—C9—C10 118.5 (9) F4—B1—F4′ 59.5 (9)

C8—C9—H9 120.8 F3′—B1—F4′ 107.0 (10)

C10—C9—H9 120.8 F2′—B1—F2 49.1 (11)

N2—C10—C9 123.1 (8) F1—B1—F2 108.2 (11)

N2—C10—H10 118.5 F3—B1—F2 107.1 (10)

C9—C10—H10 118.5 F4—B1—F2 104.1 (9)

N3—C11—C12 121.4 (7) F3′—B1—F2 67.3 (9)

N3—C11—H11 119.3 F4′—B1—F2 116.7 (11)

C12—C11—H11 119.3 F2′—B1—F1′ 112.3 (11)

C13—C12—C11 119.2 (7) F1—B1—F1′ 31.7 (12)

C13—C12—H12 120.4 F3—B1—F1′ 102.5 (14)

C11—C12—H12 120.4 F4—B1—F1′ 92.3 (11)

C12—C13—C14 120.0 (7) F3′—B1—F1′ 106.1 (9)

C12—C13—H13 120.0 F4′—B1—F1′ 104.7 (9)

C14—C13—H13 120.0 F2—B1—F1′ 138.3 (11)

N3—Cu1—N1—C1 133 (3) C3—C4—C5—C6 178.9 (7)

N4—Cu1—N1—C1 62.0 (6) C10—N2—C6—C7 0.0 (10)

N2—Cu1—N1—C1 179.6 (7) Cu1—N2—C6—C7 174.9 (5)

Cl1—Cu1—N1—C1 −60.0 (6) C10—N2—C6—C5 179.2 (6)

N3—Cu1—N1—C5 −51 (3) Cu1—N2—C6—C5 −6.0 (7)

N4—Cu1—N1—C5 −122.2 (5) N1—C5—C6—N2 2.4 (9)

N2—Cu1—N1—C5 −4.6 (5) C4—C5—C6—N2 −177.3 (6)

Cl1—Cu1—N1—C5 115.8 (5) N1—C5—C6—C7 −178.5 (7)

N3—Cu1—N2—C10 −3.4 (6) C4—C5—C6—C7 1.8 (11)

N1—Cu1—N2—C10 180.0 (6) N2—C6—C7—C8 −0.3 (11)

N4—Cu1—N2—C10 −86.3 (6) C5—C6—C7—C8 −179.4 (7)

Cl1—Cu1—N2—C10 93.2 (6) C6—C7—C8—C9 1.2 (12)

N3—Cu1—N2—C6 −177.6 (5) C7—C8—C9—C10 −1.9 (13)

N1—Cu1—N2—C6 5.8 (5) C6—N2—C10—C9 −0.7 (11)

N4—Cu1—N2—C6 99.5 (5) Cu1—N2—C10—C9 −174.7 (6)

Cl1—Cu1—N2—C6 −81.0 (5) C8—C9—C10—N2 1.7 (12)

N1—Cu1—N3—C11 108 (3) C15—N3—C11—C12 1.3 (11)

N4—Cu1—N3—C11 179.9 (6) Cu1—N3—C11—C12 177.8 (6)

N2—Cu1—N3—C11 62.1 (6) N3—C11—C12—C13 −1.4 (12)

Cl1—Cu1—N3—C11 −58.8 (6) C11—C12—C13—C14 0.4 (13)

N1—Cu1—N3—C15 −75 (3) C12—C13—C14—C15 0.6 (12)

N4—Cu1—N3—C15 −3.5 (5) C11—N3—C15—C14 −0.3 (10)

N2—Cu1—N3—C15 −121.4 (5) Cu1—N3—C15—C14 −177.0 (5)

Cl1—Cu1—N3—C15 117.8 (5) C11—N3—C15—C16 −179.9 (6)

N3—Cu1—N4—C20 −179.4 (7) Cu1—N3—C15—C16 3.4 (7)

N1—Cu1—N4—C20 −3.9 (7) C13—C14—C15—N3 −0.7 (11)

N2—Cu1—N4—C20 −86.6 (6) C13—C14—C15—C16 178.9 (7)

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1039–m1041

N3—Cu1—N4—C16 3.0 (4) Cu1—N4—C16—C17 177.6 (5)

N1—Cu1—N4—C16 178.6 (4) C20—N4—C16—C15 −180.0 (6)

N2—Cu1—N4—C16 95.9 (4) Cu1—N4—C16—C15 −2.2 (7)

Cl1—Cu1—N4—C16 −83.5 (4) N3—C15—C16—N4 −0.7 (8)

C5—N1—C1—C2 2.8 (12) C14—C15—C16—N4 179.8 (6)

Cu1—N1—C1—C2 178.4 (6) N3—C15—C16—C17 179.6 (6)

N1—C1—C2—C3 −1.6 (13) C14—C15—C16—C17 0.0 (11)

C1—C2—C3—C4 −0.7 (13) N4—C16—C17—C18 1.4 (11)

C2—C3—C4—C5 1.9 (13) C15—C16—C17—C18 −178.8 (7)

C1—N1—C5—C4 −1.6 (10) C16—C17—C18—C19 −0.9 (12)

Cu1—N1—C5—C4 −177.5 (5) C17—C18—C19—C20 −0.8 (13)

C1—N1—C5—C6 178.7 (7) C16—N4—C20—C19 −1.6 (11)

Cu1—N1—C5—C6 2.8 (8) Cu1—N4—C20—C19 −179.0 (6)

Figure

Table 1

References

Related documents

Rubble ramp shore and prograding stream delta at Mahakipawa Arm, Pelorus Sound. Shoreline forms on a sheltered shallow gradient shore. See Figure 6.2a: profile of rubble ramp,

This endur- ing power of political parties primarily results from their preserved appointment authority over semi-public firms (beyond public agen- cies), one of the tools by which

Mitigating externalities of terrorism on tourism: global evidence from police, security officers and armed service personnel.. Asongu, Simplice and

Reinforced cement concrete (RCC) used for roof construc- tion has high thermal conductivity. The outer temperature of conventional roofs varies from 32˚C to 55˚C in summer season

This study aims to study impact of personality traits- Openness, Conscientiousness, Extraversion, Agreeableness ad Neuroticism- on Impulse Buying

We included error rate (in form of z- scores) as a predictor, because accuracy is an im- portant criterion for the evaluation of students’ language performance and thus overall

Additionally, a positive long-run response of stock market development to all three forms of liberalization in all the markets considered suggested that greater focus should

Berdasarkan grafik di atas terlihat nilai RPM cenderung naik, sehingga dapat dikatakan bahwa tanaman buah-buahan basis mempunyai hubungan dengan komoditas non basis yang