• No results found

(Nitrato κO)[1 (pyridin 2 yl­methyl­imino­methyl)­naphthalen 2 olato κO]copper(II)

N/A
N/A
Protected

Academic year: 2020

Share "(Nitrato κO)[1 (pyridin 2 yl­methyl­imino­methyl)­naphthalen 2 olato κO]copper(II)"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1079±m1080 DOI: 10.1107/S1600536804016265 You and Zhu [Cu(C17H13N3O4)(NO3)]

m1079

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(Nitrato-

j

O

)[1-(pyridin-2-ylmethyliminomethyl)-naphthalen-2-olato-

j

O

]copper(II)

Zhong-Lu Youa,band Hai-Liang Zhua,b*

aDepartment of Chemistry, Fuyang Normal

College, Fuyang Anhui 236041, People's Republic of China, andbDepartment of

Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.037

wRfactor = 0.101

Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, [Cu(C17H13N3O4)(NO3)], is a

mono-nuclear copper(II) compound. The Cu atom is coordinated by two N atoms and one O atom from the Schiff base ligand, and by one O atom from a nitrate anion. The four atoms around the metal adopt a slightly distorted square-planar geometry.

Comment

Recently, we have reported a few Schiff base complexes (You, Linet al., 2003; You, Quet al., 2003; You, Xionget al., 2004; You, Zhu & Liu, 2004). As an extension of our work on the structural characterization of Schiff base complexes, the title mononuclear copper(II) complex, (I), is reported here.

The structure of (I) (Fig. 1) contains a mononuclear copper(II) complex. The Cu atom is in a square-planar geometry and is four-coordinated by one O and two N atoms from the Schiff base ligand, and by one O atom from the coordinated nitrate anion. The four coordinating atoms around the Cu centre are approximately coplanar, giving a square-planar geometry with an average deviation of 0.006 (3) AÊ; the Cu atom lies 0.036 (2) AÊ above this plane.

The C11 N2 bond distance [1.287 (3) AÊ; Table 1] conforms to the value for a double bond, while the C12ÐN2 bond

Received 1 July 2004 Accepted 2 July 2004 Online 9 July 2004

Figure 1

(2)

distance [1.465 (3) AÊ] conforms to the value for a single bond. The Cu1ÐO1 bond length [1.875 (2) AÊ] is a little shorter than the value [1.889 (2) AÊ] observed in another Schiff base complex (You, Chenet al., 2004). The Cu1ÐN2 bond distance [1.916 (2) AÊ] is also a little shorter than the value [1.927 (3) AÊ] observed in the same complex. The Cu1ÐN1 and Cu1ÐO2 distances are also comparable to the values found in most copper(II) complexes (Butcheret al., 2003). The bond angles around the CuII centre show some deviations from ideal

square-planar geometry.

Experimental

All chemicals used (reagent grade) were commercially available. 2-Hydroxy-1-naphthaldehyde (0.1 mmol, 17.2 mg) and 2-amino-methylpyridine (0.1 mmol, 10.8 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 1 h to give a clear yellow solution of HL, where HL is 1-(pyridin-2-ylmethyl-iminomethyl)naphthalen-2-ol. To the solution of HL was added a methanol solution (10 ml) of Cu(NO3)24H2O (0.1 mmol, 26.0 mg),

with stirring. The mixture was stirred for another 1 h at room temperature and then ®ltered. After keeping the ®ltrate in air for 8 d, blue block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator using anhydrous CaCl2(yield 69.3%). Analysis found: C 52.6, H 3.6, N

10.7%; calculated for C17H13CuN3O4: C 52.8, H 3.4, N 10.9%.

Crystal data

[Cu(C17H13N3O4)(NO3)]

Mr= 386.84 Monoclinic,P21=c a= 15.093 (3) AÊ

b= 7.394 (2) AÊ

c= 15.062 (3) AÊ

= 112.766 (3)

V= 1550.0 (6) AÊ3

Z= 4

Dx= 1.658 Mg mÿ3 MoKradiation Cell parameters from 2267

re¯ections

= 2.7±25.2 = 1.44 mmÿ1

T= 273 (2) K Block, blue

0.320.280.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.656,Tmax= 0.733

8707 measured re¯ections

3176 independent re¯ections 2523 re¯ections withI> 2(I)

Rint= 0.031 max= 26.5

h=ÿ18!15

k=ÿ9!9

l=ÿ18!18

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.037

wR(F2) = 0.101

S= 1.01 3176 re¯ections 226 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0531P)2 + 0.2644P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.35 e AÊÿ3 min=ÿ0.27 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Cu1ÐO1 1.875 (2)

Cu1ÐN2 1.916 (2) Cu1ÐN1Cu1ÐO2 1.979 (2)2.011 (2)

O1ÐCu1ÐN2 93.07 (8)

O1ÐCu1ÐN1 176.24 (8)

N2ÐCu1ÐN1 83.60 (9)

O1ÐCu1ÐO2 88.59 (8)

N2ÐCu1ÐO2 177.02 (9)

N1ÐCu1ÐO2 94.65 (9)

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with CÐH distances in the range 0.93± 0.97 AÊ and withUiso(H) = 1.2Ueq(C).

Data collection:SMART(Siemens, 1996); cell re®nement:SAINT

(Siemens, 1996); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997a); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank the Education Of®ce of Anhui Province, People's Republic of China, for research grant No. 2004kj300zd.

References

Butcher, R. J., Mockler, G. M. & McKern, O. (2003).Acta Cryst.E59, m1104± m1106.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL.Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996).SMARTandSAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004).Acta Cryst.E60, m884± m886.

You, Z.-L., Lin, Y.-S., Tan, M.-Y. & Zhu, H.-L. (2003).Acta Cryst.E59, m1025± m1027.

You, Z.-L., Qu, Y., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003).Acta Cryst.E59, m1038±m1040.

You, Z.-L., Xiong, Z.-D., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2004).Acta Cryst.E60, m79±m81.

You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004).Acta Cryst.E60, m560±m562.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, m1079–m1080

supporting information

Acta Cryst. (2004). E60, m1079–m1080 [https://doi.org/10.1107/S1600536804016265]

(Nitrato-

κ

O

)[1-(pyridin-2-ylmethyliminomethyl)naphthalen-2-olato-κ

O

]copper(II)

Zhong-Lu You and Hai-Liang Zhu

(Nitrato-κO)[1-(pyridin-2-ylmethyliminomethyl)naphthalen-2-olato-κO]copper(II)

Crystal data

[Cu(C17H13N3O4)(NO3)]

Mr = 386.84

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 15.093 (3) Å b = 7.394 (2) Å c = 15.062 (3) Å β = 112.766 (3)° V = 1550.0 (6) Å3

Z = 4

F(000) = 788 Dx = 1.658 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 2267 reflections θ = 2.7–25.2°

µ = 1.44 mm−1

T = 273 K Block, blue

0.32 × 0.28 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.656, Tmax = 0.733

8707 measured reflections 3176 independent reflections 2523 reflections with I > 2σ(I) Rint = 0.031

θmax = 26.5°, θmin = 1.5°

h = −18→15 k = −9→9 l = −18→18

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.037

wR(F2) = 0.101

S = 1.01 3176 reflections 226 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0531P)2 + 0.2644P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.35 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.26925 (2) 0.55493 (5) 0.47720 (2) 0.03890 (14) O1 0.36933 (14) 0.6242 (3) 0.59209 (12) 0.0508 (5) O2 0.19593 (15) 0.4679 (3) 0.55558 (14) 0.0521 (5) O3 0.14973 (16) 0.7434 (3) 0.51763 (15) 0.0620 (6) O4 0.10086 (18) 0.5922 (4) 0.61316 (18) 0.0826 (8) N1 0.17006 (15) 0.4789 (3) 0.35235 (16) 0.0387 (5) N2 0.33846 (14) 0.6255 (3) 0.39967 (14) 0.0319 (5) N3 0.14710 (17) 0.6037 (4) 0.56263 (17) 0.0492 (6) C1 0.48354 (17) 0.7299 (4) 0.52816 (16) 0.0326 (6) C2 0.45122 (19) 0.6958 (4) 0.60307 (17) 0.0389 (6) C3 0.5124 (2) 0.7464 (5) 0.69857 (19) 0.0546 (8)

H3 0.4913 0.7269 0.7482 0.065*

C4 0.5992 (2) 0.8210 (4) 0.7195 (2) 0.0527 (8)

H4 0.6362 0.8526 0.7829 0.063*

C5 0.6355 (2) 0.8525 (4) 0.64745 (19) 0.0403 (6) C6 0.7285 (2) 0.9256 (4) 0.6707 (2) 0.0487 (8)

H6 0.7667 0.9508 0.7346 0.058*

C7 0.7626 (2) 0.9592 (4) 0.6019 (3) 0.0559 (8)

H7 0.8228 1.0119 0.6180 0.067*

C8 0.7074 (2) 0.9148 (5) 0.5066 (2) 0.0541 (8)

H8 0.7313 0.9358 0.4591 0.065*

C9 0.6180 (2) 0.8402 (4) 0.4823 (2) 0.0461 (7)

H9 0.5823 0.8110 0.4183 0.055*

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, m1079–m1080

H16 −0.0325 0.2820 0.2435 0.067* C17 0.0864 (2) 0.3963 (4) 0.3383 (2) 0.0485 (7) H17 0.0701 0.3774 0.3911 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0359 (2) 0.0511 (3) 0.0325 (2) 0.00112 (15) 0.01634 (15) 0.00511 (14) O1 0.0450 (12) 0.0801 (16) 0.0303 (10) −0.0058 (11) 0.0179 (9) 0.0035 (10) O2 0.0508 (13) 0.0619 (14) 0.0521 (12) 0.0064 (11) 0.0293 (10) 0.0115 (10) O3 0.0660 (15) 0.0649 (16) 0.0578 (13) 0.0095 (12) 0.0268 (12) 0.0088 (12) O4 0.0724 (17) 0.124 (2) 0.0766 (17) 0.0092 (15) 0.0561 (15) 0.0071 (16) N1 0.0332 (12) 0.0401 (14) 0.0422 (12) 0.0015 (10) 0.0139 (10) 0.0012 (10) N2 0.0317 (12) 0.0378 (12) 0.0263 (10) 0.0027 (9) 0.0115 (9) 0.0022 (9) N3 0.0382 (14) 0.076 (2) 0.0363 (13) −0.0002 (13) 0.0174 (11) 0.0013 (13) C1 0.0353 (13) 0.0342 (14) 0.0277 (12) 0.0056 (11) 0.0115 (10) 0.0013 (10) C2 0.0395 (15) 0.0464 (17) 0.0300 (13) 0.0042 (12) 0.0125 (11) 0.0000 (12) C3 0.0552 (19) 0.082 (2) 0.0273 (14) 0.0029 (17) 0.0164 (13) −0.0031 (15) C4 0.0537 (19) 0.063 (2) 0.0319 (14) 0.0003 (16) 0.0056 (13) −0.0101 (14) C5 0.0429 (16) 0.0310 (15) 0.0398 (14) 0.0055 (12) 0.0081 (12) −0.0009 (12) C6 0.0457 (17) 0.0375 (17) 0.0497 (17) 0.0004 (13) 0.0040 (14) −0.0048 (13) C7 0.0395 (17) 0.0417 (18) 0.078 (2) −0.0036 (14) 0.0132 (16) 0.0019 (16) C8 0.0438 (17) 0.062 (2) 0.0563 (19) −0.0023 (15) 0.0192 (15) 0.0048 (15) C9 0.0417 (16) 0.0553 (19) 0.0404 (15) −0.0030 (14) 0.0151 (13) −0.0009 (14) C10 0.0354 (14) 0.0294 (14) 0.0362 (13) 0.0070 (11) 0.0100 (11) 0.0002 (11) C11 0.0379 (14) 0.0382 (15) 0.0280 (12) 0.0041 (11) 0.0162 (11) 0.0032 (11) C12 0.0395 (15) 0.0474 (17) 0.0253 (12) −0.0006 (12) 0.0092 (11) −0.0003 (11) C13 0.0359 (14) 0.0322 (14) 0.0369 (14) 0.0040 (11) 0.0112 (11) −0.0003 (11) C14 0.0447 (17) 0.065 (2) 0.0388 (15) −0.0048 (15) 0.0111 (13) −0.0047 (14) C15 0.0483 (19) 0.065 (2) 0.0533 (19) −0.0090 (17) 0.0042 (15) −0.0142 (17) C16 0.0399 (17) 0.053 (2) 0.067 (2) −0.0058 (15) 0.0117 (15) 0.0014 (17) C17 0.0384 (16) 0.0530 (19) 0.0551 (18) −0.0009 (14) 0.0191 (14) 0.0033 (14)

Geometric parameters (Å, º)

Cu1—O1 1.875 (2) C5—C6 1.416 (4)

Cu1—N2 1.916 (2) C6—C7 1.347 (4)

Cu1—N1 1.979 (2) C6—H6 0.93

Cu1—O2 2.011 (2) C7—C8 1.392 (4)

O1—C2 1.295 (3) C7—H7 0.93

O2—N3 1.274 (3) C8—C9 1.370 (4)

O3—N3 1.244 (3) C8—H8 0.93

O4—N3 1.219 (3) C9—C10 1.407 (4)

N1—C13 1.337 (3) C9—H9 0.93

N1—C17 1.343 (4) C11—H11 0.93

N2—C11 1.287 (3) C12—C13 1.503 (4)

N2—C12 1.465 (3) C12—H12A 0.97

(6)

C1—C11 1.423 (3) C13—C14 1.377 (4)

C1—C10 1.452 (4) C14—C15 1.374 (4)

C2—C3 1.426 (4) C14—H14 0.93

C3—C4 1.342 (4) C15—C16 1.373 (4)

C3—H3 0.93 C15—H15 0.93

C4—C5 1.412 (4) C16—C17 1.355 (4)

C4—H4 0.93 C16—H16 0.93

C5—C10 1.409 (4) C17—H17 0.93

O1—Cu1—N2 93.07 (8) C6—C7—H7 120.1 O1—Cu1—N1 176.24 (8) C8—C7—H7 120.1 N2—Cu1—N1 83.60 (9) C9—C8—C7 120.3 (3) O1—Cu1—O2 88.59 (8) C9—C8—H8 119.9 N2—Cu1—O2 177.02 (9) C7—C8—H8 119.9 N1—Cu1—O2 94.65 (9) C8—C9—C10 122.0 (3) C2—O1—Cu1 128.15 (16) C8—C9—H9 119.0 N3—O2—Cu1 105.32 (17) C10—C9—H9 119.0 C13—N1—C17 118.6 (2) C9—C10—C5 116.8 (2) C13—N1—Cu1 114.59 (18) C9—C10—C1 123.5 (2) C17—N1—Cu1 126.8 (2) C5—C10—C1 119.7 (2) C11—N2—C12 118.3 (2) N2—C11—C1 126.5 (2) C11—N2—Cu1 126.11 (17) N2—C11—H11 116.8 C12—N2—Cu1 115.58 (16) C1—C11—H11 116.8 O4—N3—O3 123.0 (3) N2—C12—C13 109.4 (2) O4—N3—O2 119.2 (3) N2—C12—H12A 109.8 O3—N3—O2 117.9 (2) C13—C12—H12A 109.8 C2—C1—C11 120.9 (2) N2—C12—H12B 109.8 C2—C1—C10 119.3 (2) C13—C12—H12B 109.8 C11—C1—C10 119.8 (2) H12A—C12—H12B 108.3 O1—C2—C1 125.3 (2) N1—C13—C14 121.4 (3) O1—C2—C3 116.7 (2) N1—C13—C12 116.6 (2) C1—C2—C3 118.0 (2) C14—C13—C12 122.1 (2) C4—C3—C2 122.5 (3) C15—C14—C13 119.1 (3)

C4—C3—H3 118.8 C15—C14—H14 120.5

C2—C3—H3 118.8 C13—C14—H14 120.5

C3—C4—C5 121.4 (3) C16—C15—C14 119.5 (3)

C3—C4—H4 119.3 C16—C15—H15 120.2

C5—C4—H4 119.3 C14—C15—H15 120.2

C10—C5—C4 119.0 (3) C17—C16—C15 118.4 (3) C10—C5—C6 120.0 (3) C17—C16—H16 120.8 C4—C5—C6 121.0 (3) C15—C16—H16 120.8 C7—C6—C5 121.2 (3) N1—C17—C16 123.0 (3)

C7—C6—H6 119.4 N1—C17—H17 118.5

C5—C6—H6 119.4 C16—C17—H17 118.5

References

Related documents

This publication shows quarterly and, for comparison, annual growth rates for the main aggregates of national accounts, in volume and price terms, for some Member States (Federal

F) Evaluation of radiation risks and optimisation of protection. Radiation dosimetry provides the concepts, procedures and methods for the determination of the amount of

Materials and Methods: A retrospective cohort study was con- ducted to evaluate the independent and interactive effects of pulse pressure and antihypertensive class

Female Economic Participation with Information and Communication Technology (ICT) Advancement: Evidence from Sub-Saharan Africa.. Forthcoming: South African Journal

We demon- strate a speed-up of several orders of magni- tude when predicting word similarity by vector operations on our embeddings as opposed to directly computing the

We identify online obituaries as a new data source and propose a special named entity recognition and relation extraction solution to extract names and kinships

A classical benchmark for DSMs is represented by the estimation of word similarity: evaluation datasets are built by asking human subjects to rate the degree of semantic similarity

In this proposal, we propose a corpus based study to examine doctor-patient conversation of antibiotic treatment negotiation in Chinese pedi- atric settings, using a mixed