• No results found

2 tert Butyl 4 methyl 6 (1 piperidinio­methyl)­phenol chloride

N/A
N/A
Protected

Academic year: 2020

Share "2 tert Butyl 4 methyl 6 (1 piperidinio­methyl)­phenol chloride"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2004). E60, o37±o39 DOI: 10.1107/S1600536803027314 Du, Zhao and Wang C17H28NO+Clÿ

o37

organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

2-

tert

-Butyl-4-methyl-6-(1-piperidinio-methyl)phenol chloride

Miao Du,* Xiao-Jun Zhao and Ying Wang

College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail: dumiao@public.tpt.tj.cn

Correspondence e-mail: dumiao@public.tpt.tj.cn

Key indicators Single-crystal X-ray study T= 293 K

Mean(C±C) = 0.004 AÊ Rfactor = 0.044 wRfactor = 0.105

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the crystal structure of the title compound, C17H28NO+Clÿ,

the N-protonated piperidine ring adopts the normal chair conformation. Each chloride anion acts as an acceptor in NÐ H Cl and OÐH Cl hydrogen bonds, resulting in anR21(8)

ring pattern. Intermolecular CÐH Cl and CÐH O interactions further extend these patterns to form a two-dimensional supramolecular network.

Comment

The design and synthesis of new piperidine derivatives have attracted much interest owing to their application in anti-cancer drugs (Varvaresouet al., 1996), high active serotonergic agents (Radlet al., 1999) and other areas of clinical medicine (Orjaleset al., 1995). Recently, we reported the synthesis and crystal structures of 2-tert-butyl-4-methyl-6-(piperidyl±N -methyl)phenol, (I) (Denget al., 2001), and its N-protonated perchlorate and bromide, (II) and (III) (Zhao & Du, 2003; Du & Zhao, 2003). We report here the synthesis and crystal structure of theN-protonated chloride of (I), namely 2-tert -butyl-4-methyl-6-(1-piperidiniomethyl)phenol chloride, (IV).

The crystal structure of (IV) consists of a C17H28NO+

cation and a Clÿcounter-anion, as shown in Fig. 1. As in its

analogues, (I), (II) and (III), the piperidine ring adopts a normal chair conformation. The chair geometry is slightly distorted from ideal, the ring torsion angles lying in the range 55.7 (3)±58.3 (3). In (I), (II) and (III), these angles are in the

ranges 52.5 (4)±59.8 (3), 55.3 (4)±56.8 (5) and 56.3 (10)± 58.5 (13), respectively.

The CÐC and CÐN bond lengths in the piperidine ring (mean values: 1.508 and 1.493 AÊ; Table 1) can be compared with the values in (I) (1.515 and 1.461 AÊ), (II) (1.513 and 1.500 AÊ) and (III) (1.524 and 1.513 AÊ). The slightly longer CÐ N bond distances in (II), (III) and (IV), compared with those in (I), may be due to the protonation of the piperidine ring.

(2)

organic papers

o38

Du, Zhao and Wang C17H28NO+Clÿ Acta Cryst.(2004). E60, o37±o39

The orientations of the piperidine ring and the benzene ring in (III) and (IV) are same; this is re¯ected by the torsion angles N1ÐC7ÐC2ÐC1 [ÿ84.1 (10) for (III) and 84.0 (3)

for (IV)] and N1ÐC7ÐC2ÐC3 [100.2 (10) for (III) and

ÿ98.4 (3)for (IV)]. The orientations of these rings in (II) are

different and the corresponding torsion angles are 103.6 (4) andÿ77.9 (4).

Analysis of the crystal packing of the title compound reveals the existence of an OÐH Cli [symmetry code: (i)

1ÿx, yÿ1

2, 32ÿz] hydrogen bond between the phenolic O

atom and the chloride anion. An NÐH Clihydrogen bond is

also present, involving the protonated piperidine N atom and

the Clÿanion. According to the formalism of graph-set

patterns (Etter, 1990), the resulting motif (Fig. 2) is char-acterized as anR21(8) ring pattern.

In addition, an intermolecular CÐH Clii[symmetry code:

(ii) xÿ1, y, z] interaction between the C12 atom in the protonated piperidine ring and the chloride ion, and a CÐ H Oiii[symmetry code: (iii)x+ 1,y, z] interaction between

the C15 atom of thetert-butyl group and the phenol oxygen acceptor, further extend these patterns to form a two-dimen-sional layered supramolecular network along the [110] direc-tion, as shown in Fig. 2. The relevant geometrical details are listed in Table 2; these values are in the normal range for weak hydrogen-bonding interactions (Desiraju & Steiner, 1999). Examination of the structure with PLATON (Spek, 2003) indicates that there are no solvent-accessible voids nor ± stacking interactions in the crystal structure of (IV).

Experimental

2-tert-Butyl-4-methyl-6-(piperidyl-N-methyl)phenol was prepared as in our previous work (Deng et al., 2001). Colourless block single crystals of the title compound, (IV), suitable for X-ray diffraction were obtained, in 90% yield, by slow evaporation of a methanol solution of 2-tert-butyl-4-methyl-6-(piperidyl-N-methyl)phenol in the presence of HCl. Analysis calculated for (IV): C 68.55, H 9.47, N 4.70%; found: C 68.69, H 9.72, N 4.68%. FT±IR data (KBr pellet, cmÿ1): 3423 (b), 3074 (m), 3005 (w), 2953 (m), 2871 (m), 2797 (w), 2775 (w), 2675 (m), 2652 (m), 2554 (m), 2392 (w), 1761 (w), 1607 (w), 1477 (vs), 1453 (vs), 1443 (vs), 1432 (vs), 1397 (s), 1359 (m), 1343 (w), 1319 (w), 1286(m), 1262 (s), 1233 (vs), 1222 (vs), 1157(m), 1142 (m), 1078 (w), 1038 (w), 979 (w), 960 (m), 941 (s), 923 (w), 894 (m), 865 (s), 803 (w), 788 (w), 771 (w), 757 (m), 664 (w), 625 (m), 596 (w), 580 (m), 539 (m), 527 (w).

Crystal data C17H28NO+Clÿ

Mr= 297.85

Orthorhombic,P212121

a= 5.882 (2) AÊ b= 12.187 (5) AÊ c= 24.553 (10) AÊ V= 1760.1 (12) AÊ3

Z= 4

Dx= 1.124 Mg mÿ3

MoKradiation Cell parameters from 827

re¯ections

= 3.3±22.8

= 0.21 mmÿ1

T= 293 (2) K Block, colourless 0.340.320.20 mm

Data collection Bruker SMART 1000

diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.841,Tmax= 1.000

7868 measured re¯ections

3092 independent re¯ections 2288 re¯ections withI> 2(I) Rint= 0.033

max= 25.0

h=ÿ5!7 k=ÿ14!13 l=ÿ29!14 Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.105

S= 1.02 3092 re¯ections 186 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0567P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.17 e AÊÿ3

min=ÿ0.16 e AÊÿ3

Absolute structure: Flack (1983); 1275 Friedel pairs

Flack parameter =ÿ0.11 (8)

Figure 1

A view of (IV), with displacement ellipsoids drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.

Figure 2

(3)

Table 1

Selected geometric parameters (AÊ,).

N1ÐC8 1.493 (3) N1ÐC12 1.493 (3) N1ÐC7 1.507 (3) O1ÐC1 1.387 (3)

C8ÐC9 1.502 (4) C9ÐC10 1.506 (5) C10ÐC11 1.502 (5) C11ÐC12 1.523 (4)

C8ÐN1ÐC12 110.98 (19) C8ÐN1ÐC7 111.88 (19) C12ÐN1ÐC7 110.1 (2)

O1ÐC1ÐC2 117.6 (2) O1ÐC1ÐC6 120.6 (2) C2ÐC1ÐC6 121.8 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A N1ÐH1 Cl1i 0.91 2.23 3.137 (3) 173

O1ÐH1A Cl1i 0.82 2.23 3.047 (3) 174

C12ÐH12B Cl1ii 0.97 2.91 3.799 (4) 153

C15ÐH15C O1iii 0.96 2.56 3.487 (3) 162

Symmetry codes: (i) 1ÿx;yÿ1

2;32ÿz; (ii)xÿ1;y;z; (iii) 1‡x;y;z.

Although most H atoms were visible in difference maps, all H atoms were placed in geometrically calculated positions (0.97 AÊ for methylene CÐH, 0.93 AÊ for aromatic CÐH, 0.96 AÊ for methyl CÐH, 0.91 AÊ for NÐH and 0.82 AÊ for OÐH) and included in the ®nal re®nement in the riding-model approximation, with displacement parametersUiso(H) = 1.2Ueq(carrier atom) for NÐH, aromatic CÐH and methylene CÐH, andUiso(H) = 1.5Ueq(carrier atom) for OÐH and methyl CÐH. A rotating-group model was used for the hydroxyl and methyl groups.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:XPin SHELXTL (Bruker, 1998); software used to prepare material for publication:SHELXL97.

We gratefully acknowledge ®nancial support from the Starting Fund of Tianjin Normal University and the Natural Science Foundation of Tianjin Education Commission (to MD).

References

Bruker (1998).SMART, SAINTandSHELXTL.Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, X., Guo, Y.-M., Du, M. & Fang, Y.-Y. (2001).Acta Cryst.E57, o488± o489.

Desiraju, G. R. & Steiner, T. (1999).The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.

Du, M. & Zhao, X. J. (2003).Acta Cryst.E59, o1586±o1588. Etter, M. C. (1990).Acc. Chem. Res.23, 120±126.

Flack, H. D. (1983).Acta Cryst.A39, 876±881.

Orjales, A., Bordell, M. & Rubio, V. (1995).J. Heterocycl. Chem.32, 707±718. Radl, S., Hezky, P., Taimr, J., Proska, J. & Krejci, I. (1999).J. Heterocycl. Chem.

36, 1017±1022.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7±13.

Varvaresou, A., Tsotinis, A., Papadaki-Valiraki, A. & Siatra-Papastaikoudi, T. (1996).J. Heterocycl. Chem.33, 917±921.

Zhao, X. J. & Du, M. (2003).Acta Cryst.E59, o1161±o1162.

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, o37–o39

supporting information

Acta Cryst. (2004). E60, o37–o39 [https://doi.org/10.1107/S1600536803027314]

2-tert-Butyl-4-methyl-6-(1-piperidiniomethyl)phenol chloride

Miao Du, Xiao-Jun Zhao and Ying Wang

2-tert-Butyl-4-methyl-6-(1-piperidiniomethyl)phenol chloride

Crystal data

C17H28NO+·Cl− Mr = 297.85

Orthorhombic, P212121

Hall symbol: P 2ac 2ab

a = 5.882 (2) Å

b = 12.187 (5) Å

c = 24.553 (10) Å

V = 1760.1 (12) Å3 Z = 4

F(000) = 648

Dx = 1.124 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 827 reflections

θ = 3.3–22.8°

µ = 0.21 mm−1 T = 293 K Block, colorless 0.34 × 0.32 × 0.20 mm

Data collection

Bruker SMART 1000 diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.841, Tmax = 1.000

7868 measured reflections

3092 independent reflections 2288 reflections with I > 2σ(I)

Rint = 0.033

θmax = 25.0°, θmin = 2.4° h = −5→7

k = −14→13

l = −29→14

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.044 wR(F2) = 0.105 S = 1.02 3092 reflections 186 parameters

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0567P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.17 e Å−3

Δρmin = −0.16 e Å−3

Absolute structure: Flack (1983); 1275 Friedel pairs

Absolute structure parameter: −0.11 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, o37–o39

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.67538 (12) 0.38671 (5) 0.76206 (3) 0.0619 (2) N1 0.0416 (3) 0.10464 (15) 0.73289 (8) 0.0427 (5)

H1 0.1204 0.0405 0.7311 0.051*

O1 0.1507 (3) −0.04949 (14) 0.62543 (7) 0.0561 (5)

H1A 0.1922 −0.0712 0.6554 0.084*

C1 0.2624 (4) 0.0475 (2) 0.61293 (10) 0.0451 (6) C2 0.1876 (5) 0.1429 (2) 0.63841 (10) 0.0501 (6) C3 0.2985 (5) 0.2407 (2) 0.62721 (12) 0.0632 (8)

H3 0.2494 0.3047 0.6441 0.076*

C4 0.4796 (5) 0.2453 (2) 0.59167 (12) 0.0609 (8) C5 0.5403 (5) 0.1493 (2) 0.56519 (11) 0.0552 (7)

H5 0.6569 0.1524 0.5397 0.066*

C6 0.4373 (4) 0.0489 (2) 0.57453 (10) 0.0437 (6) C7 −0.0151 (5) 0.1392 (2) 0.67555 (11) 0.0559 (7)

H7A −0.1259 0.0885 0.6606 0.067*

H7B −0.0846 0.2114 0.6765 0.067*

C8 0.1879 (5) 0.18707 (18) 0.76109 (10) 0.0498 (6)

H8A 0.1092 0.2569 0.7627 0.060*

H8B 0.3273 0.1974 0.7406 0.060*

C9 0.2442 (5) 0.1498 (3) 0.81782 (11) 0.0677 (9)

H9A 0.3374 0.2049 0.8356 0.081*

H9B 0.3312 0.0823 0.8161 0.081*

C10 0.0319 (7) 0.1310 (3) 0.85084 (13) 0.0844 (11)

H10A 0.0720 0.1042 0.8868 0.101*

H10B −0.0500 0.1996 0.8551 0.101*

C11 −0.1158 (6) 0.0486 (3) 0.82230 (14) 0.0780 (10)

H11A −0.2560 0.0394 0.8426 0.094*

H11B −0.0385 −0.0217 0.8214 0.094*

C12 −0.1715 (4) 0.0839 (2) 0.76430 (13) 0.0592 (7)

H12A −0.2594 0.0270 0.7465 0.071*

H12B −0.2628 0.1502 0.7651 0.071*

C13 0.6082 (8) 0.3504 (2) 0.58199 (16) 0.0943 (12)

H13A 0.5045 0.4064 0.5701 0.141*

H13B 0.7215 0.3387 0.5545 0.141*

H13C 0.6804 0.3731 0.6152 0.141*

C14 0.5142 (5) −0.0558 (2) 0.54409 (11) 0.0509 (7) C15 0.6119 (5) −0.1378 (2) 0.58547 (12) 0.0654 (8)

H15A 0.6568 −0.2037 0.5669 0.098*

H15B 0.4983 −0.1549 0.6122 0.098*

H15C 0.7418 −0.1060 0.6031 0.098*

C16 0.3126 (5) −0.1083 (2) 0.51392 (11) 0.0664 (8)

H16A 0.2502 −0.0564 0.4886 0.100*

H16B 0.1979 −0.1291 0.5398 0.100*

H16C 0.3638 −0.1721 0.4946 0.100*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, o37–o39

H17A 0.7412 −0.0974 0.4842 0.114*

H17B 0.8273 0.0003 0.5203 0.114*

H17C 0.6398 0.0204 0.4761 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0646 (4) 0.0410 (3) 0.0800 (5) −0.0074 (3) −0.0032 (4) −0.0008 (3) N1 0.0351 (11) 0.0367 (10) 0.0564 (13) 0.0030 (9) 0.0010 (10) −0.0057 (10) O1 0.0510 (11) 0.0573 (11) 0.0599 (11) −0.0117 (10) −0.0002 (10) −0.0092 (10) C1 0.0438 (15) 0.0449 (14) 0.0465 (14) 0.0021 (12) −0.0102 (12) −0.0016 (12) C2 0.0549 (16) 0.0486 (15) 0.0468 (14) 0.0093 (14) −0.0023 (14) −0.0017 (12) C3 0.082 (2) 0.0441 (15) 0.0637 (18) 0.0150 (16) −0.0036 (19) 0.0003 (13) C4 0.075 (2) 0.0465 (16) 0.0612 (18) −0.0002 (16) −0.0067 (18) 0.0110 (14) C5 0.0526 (17) 0.0613 (18) 0.0518 (15) 0.0011 (14) 0.0019 (14) 0.0116 (14) C6 0.0418 (14) 0.0481 (15) 0.0412 (14) 0.0058 (12) −0.0045 (12) −0.0005 (12) C7 0.0480 (16) 0.0648 (18) 0.0548 (16) 0.0143 (14) −0.0064 (14) −0.0095 (14) C8 0.0487 (14) 0.0427 (13) 0.0580 (15) −0.0064 (12) 0.0038 (16) −0.0068 (12) C9 0.069 (2) 0.079 (2) 0.0548 (17) −0.0063 (16) −0.0068 (16) −0.0108 (15) C10 0.097 (3) 0.098 (3) 0.0581 (19) 0.006 (2) 0.011 (2) 0.0047 (19) C11 0.064 (2) 0.081 (2) 0.090 (2) 0.0074 (19) 0.0260 (18) 0.032 (2) C12 0.0355 (14) 0.0537 (15) 0.089 (2) −0.0017 (13) 0.0097 (17) 0.0049 (15) C13 0.116 (3) 0.0552 (18) 0.112 (3) −0.0128 (19) 0.006 (2) 0.0209 (19) C14 0.0469 (15) 0.0580 (16) 0.0477 (15) 0.0053 (14) −0.0022 (13) −0.0067 (13) C15 0.0618 (19) 0.0656 (19) 0.0687 (19) 0.0218 (15) −0.0073 (15) −0.0084 (15) C16 0.0648 (18) 0.0756 (18) 0.0588 (17) 0.0082 (19) −0.0110 (16) −0.0234 (16) C17 0.069 (2) 0.086 (2) 0.073 (2) 0.013 (2) 0.0170 (19) −0.0082 (17)

Geometric parameters (Å, º)

N1—C8 1.493 (3) C9—H9B 0.97

N1—C12 1.493 (3) C10—C11 1.502 (5)

N1—C7 1.507 (3) C10—H10A 0.97

N1—H1 0.91 C10—H10B 0.97

O1—C1 1.387 (3) C11—C12 1.523 (4)

O1—H1A 0.82 C11—H11A 0.97

C1—C2 1.391 (3) C11—H11B 0.97

C1—C6 1.395 (3) C12—H12A 0.97

C2—C3 1.386 (4) C12—H12B 0.97

C2—C7 1.501 (4) C13—H13A 0.96

C3—C4 1.378 (4) C13—H13B 0.96

C3—H3 0.93 C13—H13C 0.96

C4—C5 1.386 (4) C14—C17 1.518 (4)

C4—C13 1.507 (4) C14—C15 1.536 (4)

C5—C6 1.384 (4) C14—C16 1.538 (4)

C5—H5 0.93 C15—H15A 0.96

C6—C14 1.546 (4) C15—H15B 0.96

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, o37–o39

C7—H7B 0.97 C16—H16A 0.96

C8—C9 1.502 (4) C16—H16B 0.96

C8—H8A 0.97 C16—H16C 0.96

C8—H8B 0.97 C17—H17A 0.96

C9—C10 1.506 (5) C17—H17B 0.96

C9—H9A 0.97 C17—H17C 0.96

C8—N1—C12 110.98 (19) C11—C10—H10B 109.8

C8—N1—C7 111.88 (19) C9—C10—H10B 109.8

C12—N1—C7 110.1 (2) H10A—C10—H10B 108.3

C8—N1—H1 107.9 C10—C11—C12 111.8 (3)

C12—N1—H1 107.9 C10—C11—H11A 109.3

C7—N1—H1 107.9 C12—C11—H11A 109.3

C1—O1—H1A 109.5 C10—C11—H11B 109.3

O1—C1—C2 117.6 (2) C12—C11—H11B 109.3

O1—C1—C6 120.6 (2) H11A—C11—H11B 107.9

C2—C1—C6 121.8 (2) N1—C12—C11 110.5 (2)

C3—C2—C1 118.7 (3) N1—C12—H12A 109.6

C3—C2—C7 121.3 (2) C11—C12—H12A 109.6

C1—C2—C7 120.0 (2) N1—C12—H12B 109.6

C4—C3—C2 121.6 (3) C11—C12—H12B 109.6

C4—C3—H3 119.2 H12A—C12—H12B 108.1

C2—C3—H3 119.2 C4—C13—H13A 109.5

C3—C4—C5 117.5 (3) C4—C13—H13B 109.5

C3—C4—C13 121.5 (3) H13A—C13—H13B 109.5

C5—C4—C13 121.0 (3) C4—C13—H13C 109.5

C6—C5—C4 123.8 (3) H13A—C13—H13C 109.5

C6—C5—H5 118.1 H13B—C13—H13C 109.5

C4—C5—H5 118.1 C17—C14—C15 108.1 (2)

C5—C6—C1 116.4 (2) C17—C14—C16 107.8 (2)

C5—C6—C14 121.4 (2) C15—C14—C16 109.7 (2)

C1—C6—C14 122.2 (2) C17—C14—C6 111.6 (2)

C2—C7—N1 113.6 (2) C15—C14—C6 109.0 (2)

C2—C7—H7A 108.8 C16—C14—C6 110.5 (2)

N1—C7—H7A 108.8 C14—C15—H15A 109.5

C2—C7—H7B 108.8 C14—C15—H15B 109.5

N1—C7—H7B 108.8 H15A—C15—H15B 109.5

H7A—C7—H7B 107.7 C14—C15—H15C 109.5

N1—C8—C9 110.7 (2) H15A—C15—H15C 109.5

N1—C8—H8A 109.5 H15B—C15—H15C 109.5

C9—C8—H8A 109.5 C14—C16—H16A 109.5

N1—C8—H8B 109.5 C14—C16—H16B 109.5

C9—C8—H8B 109.5 H16A—C16—H16B 109.5

H8A—C8—H8B 108.1 C14—C16—H16C 109.5

C8—C9—C10 111.2 (3) H16A—C16—H16C 109.5

C8—C9—H9A 109.4 H16B—C16—H16C 109.5

C10—C9—H9A 109.4 C14—C17—H17A 109.5

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, o37–o39

C10—C9—H9B 109.4 H17A—C17—H17B 109.5

H9A—C9—H9B 108.0 C14—C17—H17C 109.5

C11—C10—C9 109.3 (3) H17A—C17—H17C 109.5

C11—C10—H10A 109.8 H17B—C17—H17C 109.5

C9—C10—H10A 109.8

O1—C1—C2—C3 179.1 (2) C1—C2—C7—N1 84.0 (3)

C6—C1—C2—C3 −3.4 (4) C8—N1—C7—C2 66.1 (3)

O1—C1—C2—C7 −3.2 (3) C12—N1—C7—C2 −170.0 (2)

C6—C1—C2—C7 174.3 (2) C12—N1—C8—C9 57.3 (3)

C1—C2—C3—C4 0.0 (4) C7—N1—C8—C9 −179.2 (2)

C7—C2—C3—C4 −177.7 (3) N1—C8—C9—C10 −58.3 (3)

C2—C3—C4—C5 3.2 (4) C8—C9—C10—C11 57.1 (4)

C2—C3—C4—C13 −176.5 (3) C9—C10—C11—C12 −56.0 (4)

C3—C4—C5—C6 −3.4 (4) C8—N1—C12—C11 −55.7 (3)

C13—C4—C5—C6 176.3 (3) C7—N1—C12—C11 179.8 (2)

C4—C5—C6—C1 0.3 (4) C10—C11—C12—N1 55.9 (3)

C4—C5—C6—C14 −179.4 (3) C5—C6—C14—C17 −3.7 (3)

O1—C1—C6—C5 −179.3 (2) C1—C6—C14—C17 176.7 (2)

C2—C1—C6—C5 3.2 (3) C5—C6—C14—C15 115.8 (3)

O1—C1—C6—C14 0.3 (3) C1—C6—C14—C15 −63.9 (3)

C2—C1—C6—C14 −177.2 (2) C5—C6—C14—C16 −123.6 (3)

C3—C2—C7—N1 −98.4 (3) C1—C6—C14—C16 56.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···Cl1i 0.91 2.23 3.137 (3) 173

O1—H1A···Cl1i 0.82 2.23 3.047 (3) 174

C12—H12B···Cl1ii 0.97 2.91 3.799 (4) 153

C15—H15C···O1iii 0.96 2.56 3.487 (3) 162

References

Related documents

Data collection: SMART (Bruker, 1998); cell re®nement: SAINT (Bruker, 1998); data reduction: SAINT ; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997 a ); program(s)

Data collection: SMART (Bruker, 1998); cell re®nement: SAINT (Bruker, 1998); data reduction: SAINT ; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used

Data collection: SMART (Bruker, 1998); cell re®nement: SMART ; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used

Data collection: SMART (Bruker, 2000); cell re®nement: SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Bruker, 2000); program(s) used to solve structure: SHELXS 97

Data collection: SMART (Bruker, 2000); cell re®nement: SMART ; data reduction: SAINT and SHELXTL (Bruker, 2000); program(s) used to solve structure: SHELXS 97 (Sheldrick,

Data collection: SMART (Bruker, 1998); cell re®nement: SMART ; data reduction: SHELXTL and SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS 97 (Sheldrick,

Data collection: SMART (Bruker, 1998); cell re®nement: SMART ; data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997);

Data collection: SMART-NT (Bruker, 1998); cell re®nement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT ; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997);