• No results found

Bis(1,10 phenanthroline κ2N,N′)(sulfato κ2O,O′)cadmium(II) 1,2 ethanediol solvate

N/A
N/A
Protected

Academic year: 2020

Share "Bis(1,10 phenanthroline κ2N,N′)(sulfato κ2O,O′)cadmium(II) 1,2 ethanediol solvate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m891–m893 doi:10.1107/S1600536806010592 Luet al. [Cd(SO

4)(C12H8N2)2]C2H6O2

m891

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1,10-phenanthroline-

j

2

N

,

N

000

)(sulfato-j

2

O

,

O

000

)cadmium(II) 1,2-ethanediol solvate

Wen-Jie Lu,* Kai-Long Zhong and Yi-Min Zhu

Department of Chemical and, Environmental Engineering, Wuyi University, Jiangmen, Guangdong Province, People’s Republic of China

Correspondence e-mail: wjlu_56@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.031

wRfactor = 0.077

Data-to-parameter ratio = 17.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 23 March 2006 Accepted 23 March 2006

#2006 International Union of Crystallography All rights reserved

In the structure of the title compound, [Cd(SO4)(C12H8N2)2]

-C2H6O2, the [Cd(SO4)(C12H8N2)2] and C2H6O2 entities are

connected by hydrogen bonding. The formula unit lies on a special position of site symmetry 2. The CdII centre is coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from the bidentate sulfate ligand in a distorted octahedral geometry. The two chelating NCCN groups subtend a dihedral angle of 74.50 (9).

Comment

The sulfate ion, as a second ligand, has been found to be versatile when generating mixed-ligand complexes with d10

metal centres. It can act as a monodentate, bidentate or bidentate-bridging ligand, giving rise to monomeric, dimeric or polymeric structures in many complexes (Harvey et al., 2000; 2003; Li et al., 2003; Paul et al., 2002). As such, the coordination modes can be tailored by introducing different neutral ligands into the complexes. The title compound, (I), was obtained unintentionally during an attempt to synthesize a mixed-ligand complex of CdII with 1,10-phenanthroline (phen) and 1,2-bis(2-pyridyl)ethylene via a solvothermal reaction. Here, we present the crystal structure of (I), which is isomorphous with the recently reported cobalt(II) structure (Zhonget al., 2006).

(2)

The metal complex and solvent components of (I) (Fig. 1) are held together by hydrogen bonding. A twofold rotation axis passes through the Cd and S atoms, and also through the centre of the solvent C—C bond. In the complex molecule, each CdII centre is coordinated by four N atoms from two chelating phen ligands and two O atoms from a bidentate sulfate ligand in a distorted octahedral geometry (Table 1). The geometry of the phen and sulfate ligands is in good agreement with those observed in many cadmium complexes. The Cd—N bond distances [2.327 (2)–2.343 (2) A˚ ] are in good accord with those reported in six-coordinate Cd–phen complexes, e.g. [Cd(phen)2(H2O)2](C4H2O4)4H2O, (II)

[2.338 (2)–2.383 (2) A˚ ; Yanget al., 2003]. The N—Cd—N bite angle and the dihedral angle between the two chelating NCCN groups are also similar to those found in (II). The Cd—O bond distance [2.361 (2) A˚ ] and O—Cd—O bite angle [59.98 (9)]

are close to those found in the cadmium complex

[H3N(CH2)3NH3][Cd2(H2O)2(SO4)3] [2.334 (5)–2.545 (6) A˚

and 57.9 (2), respectively; Paulet al., 2002].

Experimental

The title compound, as pale-yellow block-shaped crystals, was obtained by a procedure similar to that described previously by Zhong et al. (2006), using 3Cd(SO4)28H2O instead of Co(SO4)2

-7H2O.

Crystal data

[Cd(SO4)(C12H8N2)2]C2H6O2 Mr= 630.94

Monoclinic,C2=c a= 18.022 (2) A˚

b= 12.1978 (14) A˚

c= 13.2366 (15) A˚

= 121.115 (2)

V= 2491.2 (5) A˚3 Z= 4

Dx= 1.682 Mg m

3

Mo-Kradiation Cell parameters from 3452

reflections

= 3.2–27.5 = 1.01 mm1 T= 293 (2) K Block, pale yellow 0.350.290.20 mm

Data collection

Bruker SMART CCD 1K area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.719,Tmax= 0.823

8598 measured reflections

3101 independent reflections 2710 reflections withI> 2(I)

Rint= 0.031 max= 28.3

h=24!12

k=16!16

l=17!17

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.031 wR(F2) = 0.077 S= 1.09 3101 reflections 173 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0348P)2

+ 1.3354P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.49 e A˚ 3

min=0.35 e A˚3

Table 1

Selected geometric parameters (A˚ ,).

Cd1—N1 2.327 (2)

Cd1—N2 2.343 (2)

Cd1—O1 2.361 (2)

S1—O2 1.4548 (19)

S1—O1 1.4841 (18)

O3—C13 1.372 (5)

C13—C13i

1.460 (10)

N1—Cd1—N2 71.91 (7) O1—Cd1—O1i

59.98 (9) O2i

—S1—O2 110.38 (17) O1i

—S1—O1 105.37 (16) O3—C13—C13i

117.3 (4)

Symmetry code: (i)xþ1;y;zþ1 2.

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O3—H3 O2 0.82 2.01 2.807 (3) 164

The H atoms of the phen ligand were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 A˚ and

Uiso(H) = 1.2Ueq(C). The H atoms of the 1,2-ethanediol solvent were

located in a difference map and then allowed to ride on their parent atoms, with C—H = 0.97 and O—H = 0.82 A˚ , and withUiso(H) =

1.2Ueq(C) or 1.5Ueq(O).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1998); software used to prepare material for publication:SHELXTL.

X-ray data were collected at the Chinese University of Hong Kong.

References

Bruker (1998).SMART,SAINTandSHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Harvey, M., Baggio, S., Mombru´, A. & Baggio, R. (2000).Acta Cryst.C56, 771– 774.

Harvey, M., Baggio, S., Russi, S. & Baggio, R. (2003).Acta Cryst.C59, m171– m174.

metal-organic papers

m892

Luet al. [Cd(SO

[image:2.610.60.279.73.267.2]

4)(C12H8N2)2]C2H6O2 Acta Cryst.(2006). E62, m891–m893 Figure 1

The structure of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. Dashed lines represent O—H O interactions. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code for unlabelled atoms: 1x,y,1

(3)

Li, X., Cao, R., Bi, W., Sun, D. & Hong, M. (2003).Acta Cryst.E59, m230– m231.

Paul, G., Choudhury, A. & Rao, C. N. R. (2002).J. Chem. Soc. Dalton Trans.

pp. 3859–3867.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Yang, J., Ma, J.-F., Li, L. & Liu, J.-F. (2003). Acta Cryst. E59, m568– m570.

Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006).Acta Cryst.E62, m631–m633.

metal-organic papers

Acta Cryst.(2006). E62, m891–m893 Luet al. [Cd(SO

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, m891–m893

supporting information

Acta Cryst. (2006). E62, m891–m893 [https://doi.org/10.1107/S1600536806010592]

Bis(1,10-phenanthroline-

κ

2

N

,

N

)(sulfato-

κ

2

O

,

O

)cadmium(II) 1,2-ethanediol

solvate

Wen-Jie Lu, Kai-Long Zhong and Yi-Min Zhu

Bis(1,10-phenanthroline-κ2N,N)(sulfato- κ2O,O)cadmium(II) 1,2-ethanediol solvate

Crystal data

[Cd(SO4)(C12H8N2)2]·C2H6O2

Mr = 630.94

Monoclinic, C2/c a = 18.022 (2) Å

b = 12.1978 (14) Å

c = 13.2366 (15) Å

β = 121.115 (2)°

V = 2491.2 (5) Å3

Z = 4

F(000) = 1272

Dx = 1.682 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3452 reflections

θ = 3.2–27.5°

µ = 1.01 mm−1

T = 293 K

Block, pale-yellow 0.35 × 0.29 × 0.20 mm

Data collection

Bruker SMART CCD 1K area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.719, Tmax = 0.823

8598 measured reflections 3101 independent reflections 2710 reflections with I > 2σ(I)

Rint = 0.031

θmax = 28.3°, θmin = 2.1°

h = −24→12

k = −16→16

l = −17→17

Refinement

Refinement on F2 Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.031

wR(F2) = 0.077

S = 1.09 3101 reflections 173 parameters 12 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0348P)2 + 1.3354P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.49 e Å−3 Δρmin = −0.35 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, m891–m893

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cd1 0.5000 0.68715 (2) 0.2500 0.03350 (10)

S1 0.5000 0.44572 (6) 0.2500 0.02955 (17)

N2 0.60679 (14) 0.80245 (15) 0.39265 (19) 0.0347 (5)

O2 0.57667 (12) 0.37764 (16) 0.29145 (18) 0.0476 (5)

O1 0.48849 (13) 0.51948 (16) 0.15375 (16) 0.0482 (5)

C4 0.72996 (17) 0.82525 (19) 0.2418 (2) 0.0359 (5)

C11 0.66922 (16) 0.83380 (18) 0.3707 (2) 0.0305 (5)

N1 0.59864 (14) 0.72769 (17) 0.19176 (19) 0.0356 (4)

C1 0.59493 (19) 0.6901 (2) 0.0950 (3) 0.0433 (6)

H1A 0.5496 0.6437 0.0455 0.052*

C12 0.66481 (16) 0.79502 (18) 0.2644 (2) 0.0313 (5)

C7 0.73898 (17) 0.90134 (19) 0.4483 (2) 0.0360 (5)

C6 0.80368 (18) 0.9301 (2) 0.4218 (2) 0.0431 (6)

H6A 0.8495 0.9748 0.4736 0.052*

C10 0.6118 (2) 0.8378 (2) 0.4911 (2) 0.0430 (6)

H10A 0.5688 0.8170 0.5062 0.052*

C3 0.7235 (2) 0.7837 (2) 0.1379 (3) 0.0451 (6)

H3A 0.7653 0.8017 0.1195 0.054*

C5 0.79974 (18) 0.8935 (2) 0.3228 (2) 0.0445 (6)

H5A 0.8428 0.9131 0.3074 0.053*

C8 0.7417 (2) 0.9363 (2) 0.5518 (2) 0.0449 (6)

H8A 0.7866 0.9810 0.6057 0.054*

C2 0.6561 (2) 0.7172 (2) 0.0646 (3) 0.0489 (7)

H2B 0.6509 0.6904 −0.0045 0.059*

C9 0.6788 (2) 0.9048 (2) 0.5726 (2) 0.0483 (7)

H9A 0.6803 0.9276 0.6407 0.058*

O3 0.5490 (2) 0.1707 (2) 0.1850 (3) 0.0854 (9)

H3 0.5469 0.2299 0.2128 0.128*

C13 0.5394 (4) 0.0875 (3) 0.2471 (5) 0.0972 (14)

H13A 0.5887 0.0894 0.3272 0.117*

H13B 0.5419 0.0185 0.2125 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cd1 0.03050 (15) 0.03271 (14) 0.04268 (16) 0.000 0.02275 (12) 0.000

S1 0.0248 (4) 0.0307 (4) 0.0319 (4) 0.000 0.0138 (3) 0.000

N2 0.0369 (12) 0.0342 (11) 0.0384 (11) −0.0013 (9) 0.0233 (10) −0.0006 (8)

O2 0.0368 (11) 0.0480 (11) 0.0610 (12) 0.0110 (8) 0.0274 (10) 0.0081 (9)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, m891–m893

C4 0.0335 (13) 0.0369 (13) 0.0416 (13) 0.0025 (10) 0.0225 (11) 0.0090 (10)

C11 0.0316 (12) 0.0272 (11) 0.0336 (11) 0.0030 (9) 0.0176 (10) 0.0049 (9)

N1 0.0338 (11) 0.0382 (11) 0.0403 (11) −0.0037 (9) 0.0231 (10) −0.0045 (9)

C1 0.0431 (16) 0.0474 (15) 0.0453 (15) −0.0064 (12) 0.0270 (13) −0.0110 (12)

C12 0.0302 (12) 0.0306 (11) 0.0348 (12) 0.0014 (9) 0.0181 (11) 0.0031 (9)

C7 0.0360 (14) 0.0313 (11) 0.0345 (12) 0.0013 (10) 0.0137 (11) 0.0039 (10)

C6 0.0327 (14) 0.0400 (14) 0.0445 (14) −0.0081 (11) 0.0114 (12) 0.0044 (11) C10 0.0513 (17) 0.0429 (14) 0.0449 (15) −0.0010 (12) 0.0319 (14) −0.0011 (11) C3 0.0474 (17) 0.0511 (15) 0.0517 (16) −0.0027 (13) 0.0361 (15) 0.0015 (13) C5 0.0326 (14) 0.0510 (15) 0.0508 (16) −0.0035 (12) 0.0223 (13) 0.0093 (13) C8 0.0470 (16) 0.0408 (14) 0.0354 (13) −0.0034 (12) 0.0131 (13) −0.0028 (11) C2 0.0608 (19) 0.0523 (16) 0.0478 (16) −0.0026 (14) 0.0380 (16) −0.0056 (13) C9 0.0615 (19) 0.0492 (16) 0.0361 (13) −0.0003 (14) 0.0266 (14) −0.0064 (12)

O3 0.119 (2) 0.0703 (16) 0.1022 (19) 0.0018 (15) 0.0820 (19) −0.0129 (14)

C13 0.117 (3) 0.065 (2) 0.114 (3) 0.022 (2) 0.064 (3) 0.003 (2)

Geometric parameters (Å, º)

Cd1—N1i 2.327 (2) C1—C2 1.395 (4)

Cd1—N1 2.327 (2) C1—H1A 0.9300

Cd1—N2 2.343 (2) C7—C8 1.412 (4)

Cd1—N2i 2.343 (2) C7—C6 1.424 (4)

Cd1—O1 2.361 (2) C6—C5 1.351 (4)

Cd1—O1i 2.361 (2) C6—H6A 0.9300

Cd1—S1 2.9449 (9) C10—C9 1.394 (4)

S1—O2i 1.4548 (19) C10—H10A 0.9300

S1—O2 1.4548 (19) C3—C2 1.363 (4)

S1—O1i 1.4841 (18) C3—H3A 0.9300

S1—O1 1.4841 (18) C5—H5A 0.9300

N2—C10 1.331 (3) C8—C9 1.352 (4)

N2—C11 1.354 (3) C8—H8A 0.9300

C4—C12 1.403 (3) C2—H2B 0.9300

C4—C3 1.413 (4) C9—H9A 0.9300

C4—C5 1.425 (4) O3—C13 1.372 (5)

C11—C7 1.407 (3) O3—H3 0.8200

C11—C12 1.447 (3) C13—C13i 1.460 (10)

N1—C1 1.329 (3) C13—H13A 0.9700

N1—C12 1.355 (3) C13—H13B 0.9700

N1i—Cd1—N1 155.47 (10) C1—N1—C12 118.7 (2)

N1i—Cd1—N2 93.18 (7) C1—N1—Cd1 125.40 (18)

N1—Cd1—N2 71.91 (7) C12—N1—Cd1 115.86 (15)

N1i—Cd1—N2i 71.91 (7) N1—C1—C2 122.9 (3)

N1—Cd1—N2i 93.18 (7) N1—C1—H1A 118.6

N2—Cd1—N2i 106.24 (10) C2—C1—H1A 118.6

N1i—Cd1—O1 119.58 (7) N1—C12—C4 122.3 (2)

N1—Cd1—O1 82.79 (7) N1—C12—C11 118.3 (2)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, m891–m893

N2i—Cd1—O1 106.17 (7) C11—C7—C8 117.1 (2)

N1i—Cd1—O1i 82.79 (7) C11—C7—C6 120.1 (2)

N1—Cd1—O1i 119.58 (7) C8—C7—C6 122.9 (2)

N2—Cd1—O1i 106.17 (7) C5—C6—C7 121.2 (2)

N2i—Cd1—O1i 139.56 (7) C5—C6—H6A 119.4

O1—Cd1—O1i 59.98 (9) C7—C6—H6A 119.4

N1i—Cd1—S1 102.27 (5) N2—C10—C9 122.7 (3)

N1—Cd1—S1 102.27 (5) N2—C10—H10A 118.6

N2—Cd1—S1 126.88 (5) C9—C10—H10A 118.6

N2i—Cd1—S1 126.88 (5) C2—C3—C4 120.1 (2)

O1—Cd1—S1 29.99 (4) C2—C3—H3A 120.0

O1i—Cd1—S1 29.99 (4) C4—C3—H3A 120.0

O2i—S1—O2 110.38 (17) C6—C5—C4 120.4 (2)

O2i—S1—O1i 110.73 (11) C6—C5—H5A 119.8

O2—S1—O1i 109.76 (11) C4—C5—H5A 119.8

O2i—S1—O1 109.76 (11) C9—C8—C7 120.0 (3)

O2—S1—O1 110.73 (11) C9—C8—H8A 120.0

O1i—S1—O1 105.37 (16) C7—C8—H8A 120.0

O2i—S1—Cd1 124.81 (8) C3—C2—C1 118.8 (3)

O2—S1—Cd1 124.81 (8) C3—C2—H2B 120.6

O1i—S1—Cd1 52.68 (8) C1—C2—H2B 120.6

O1—S1—Cd1 52.68 (8) C8—C9—C10 119.4 (3)

C10—N2—C11 118.4 (2) C8—C9—H9A 120.3

C10—N2—Cd1 126.54 (18) C10—C9—H9A 120.3

C11—N2—Cd1 115.10 (15) C13—O3—H3 109.5

S1—O1—Cd1 97.33 (10) O3—C13—C13i 117.3 (4)

C12—C4—C3 117.2 (2) O3—C13—H13A 108.0

C12—C4—C5 120.2 (2) C13i—C13—H13A 108.0

C3—C4—C5 122.6 (2) O3—C13—H13B 108.0

N2—C11—C7 122.5 (2) C13i—C13—H13B 108.0

N2—C11—C12 118.8 (2) H13A—C13—H13B 107.2

C7—C11—C12 118.7 (2)

N1i—Cd1—S1—O2i 40.03 (11) N1i—Cd1—N1—C1 −126.0 (2)

N1—Cd1—S1—O2i −139.97 (11) N2—Cd1—N1—C1 179.1 (2)

N2—Cd1—S1—O2i 143.57 (11) N2i—Cd1—N1—C1 −74.8 (2)

N2i—Cd1—S1—O2i −36.43 (11) O1—Cd1—N1—C1 31.1 (2)

O1—Cd1—S1—O2i −89.30 (14) O1i—Cd1—N1—C1 80.4 (2)

O1i—Cd1—S1—O2i 90.70 (14) S1—Cd1—N1—C1 54.0 (2)

N1i—Cd1—S1—O2 −139.97 (11) N1i—Cd1—N1—C12 54.28 (16)

N1—Cd1—S1—O2 40.03 (11) N2—Cd1—N1—C12 −0.62 (16)

N2—Cd1—S1—O2 −36.43 (11) N2i—Cd1—N1—C12 105.43 (17)

N2i—Cd1—S1—O2 143.57 (11) O1—Cd1—N1—C12 −148.66 (18)

O1—Cd1—S1—O2 90.70 (14) O1i—Cd1—N1—C12 −99.33 (17)

O1i—Cd1—S1—O2 −89.30 (14) S1—Cd1—N1—C12 −125.72 (16)

N1i—Cd1—S1—O1i −50.67 (12) C12—N1—C1—C2 −0.2 (4)

N1—Cd1—S1—O1i 129.33 (12) Cd1—N1—C1—C2 −180.0 (2)

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, m891–m893

N2i—Cd1—S1—O1i −127.13 (12) Cd1—N1—C12—C4 178.95 (17)

O1—Cd1—S1—O1i 180.0 C1—N1—C12—C11 −178.8 (2)

N1i—Cd1—S1—O1 129.33 (12) Cd1—N1—C12—C11 0.9 (3)

N1—Cd1—S1—O1 −50.67 (12) C3—C4—C12—N1 0.9 (4)

N2—Cd1—S1—O1 −127.13 (12) C5—C4—C12—N1 −178.0 (2)

N2i—Cd1—S1—O1 52.87 (12) C3—C4—C12—C11 178.9 (2)

O1i—Cd1—S1—O1 180.0 C5—C4—C12—C11 0.0 (3)

N1i—Cd1—N2—C10 20.9 (2) N2—C11—C12—N1 −0.7 (3)

N1—Cd1—N2—C10 −179.0 (2) C7—C11—C12—N1 178.3 (2)

N2i—Cd1—N2—C10 93.0 (2) N2—C11—C12—C4 −178.8 (2)

O1—Cd1—N2—C10 −125.0 (2) C7—C11—C12—C4 0.2 (3)

O1i—Cd1—N2—C10 −62.5 (2) N2—C11—C7—C8 −0.2 (3)

S1—Cd1—N2—C10 −87.0 (2) C12—C11—C7—C8 −179.2 (2)

N1i—Cd1—N2—C11 −159.88 (16) N2—C11—C7—C6 178.8 (2)

N1—Cd1—N2—C11 0.23 (15) C12—C11—C7—C6 −0.2 (3)

N2i—Cd1—N2—C11 −87.80 (16) C11—C7—C6—C5 −0.1 (4)

O1—Cd1—N2—C11 54.3 (2) C8—C7—C6—C5 178.9 (3)

O1i—Cd1—N2—C11 116.71 (16) C11—N2—C10—C9 −0.6 (4)

S1—Cd1—N2—C11 92.20 (16) Cd1—N2—C10—C9 178.7 (2)

O2i—S1—O1—Cd1 119.26 (10) C12—C4—C3—C2 0.0 (4)

O2—S1—O1—Cd1 −118.62 (11) C5—C4—C3—C2 178.9 (3)

O1i—S1—O1—Cd1 0.0 C7—C6—C5—C4 0.3 (4)

N1i—Cd1—O1—S1 −60.35 (12) C12—C4—C5—C6 −0.2 (4)

N1—Cd1—O1—S1 130.37 (11) C3—C4—C5—C6 −179.1 (3)

N2—Cd1—O1—S1 79.50 (14) C11—C7—C8—C9 −0.1 (4)

N2i—Cd1—O1—S1 −138.39 (9) C6—C7—C8—C9 −179.0 (3)

O1i—Cd1—O1—S1 0.0 C4—C3—C2—C1 −0.9 (4)

C10—N2—C11—C7 0.5 (3) N1—C1—C2—C3 1.1 (5)

Cd1—N2—C11—C7 −178.85 (17) C7—C8—C9—C10 0.0 (4)

C10—N2—C11—C12 179.5 (2) N2—C10—C9—C8 0.3 (4)

Cd1—N2—C11—C12 0.2 (3) O3—C13—C13i—O3i −67.3 (9)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

Figure

Figure 1

References

Related documents

DOI: 10.4236/fns.2017.812082 1109 Food and Nutrition Sciences Many domestic researchers majored in edible fungi investigated the detoxifica- tion technology of pine wood sawdust

BACKGROUND AND PURPOSE: The purpose of this study was to analyze angiographic and clinical results before and after additional endovascular therapy in patients with previously

This paper presents a PC-based automated control system operation of the Northern Grain Silo of Jordan.. The system connects to a PLC (programmable logic controller) device,

The alpha shape method can be used to construct a geometric surface based on motion data to enable visualization of the performance, while the surface derivative (surface/time to

Corporate Social Responsibility and the role of Rural Women in Sustainable Agricultural Development in sub-Saharan Africa: Evidence from the Niger Delta

(2014) Knowledge, Attitude, Utilization of Emergency Contraceptive and Associated Factors among Female Students of Debre Markos Higher Institutions, Northwest Ethiopia.

Spre finele anului 2000, când a trecut valul următor prin băncile moldovenești, ceea ce a dus la micșorarea bugetelor pentru secțiile de programare și tehnice, au fost

MCC, JHS, and DCA conceived the project; MCC performed experiments on mitochondrial trafficking, chemotaxis, tumor cell invasion, the xenograft mouse model of localized and