• No results found

4 {(2,4 Di­chloro­phen­yl)[5 hydr­­oxy 1 phenyl 3 (tri­fluoro­meth­yl) 1H pyrazol 4­yl]meth­yl} 1 phenyl 3 (tri­fluoro­meth­yl) 1H pyrazol 5 ol monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "4 {(2,4 Di­chloro­phen­yl)[5 hydr­­oxy 1 phenyl 3 (tri­fluoro­meth­yl) 1H pyrazol 4­yl]meth­yl} 1 phenyl 3 (tri­fluoro­meth­yl) 1H pyrazol 5 ol monohydrate"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o771–o773 doi:10.1107/S1600536806002339 Yaoet al. C

27H16Cl2F6N4O2H2O

o771

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

4-{(2,4-Dichlorophenyl)[5-hydroxy-1-phenyl-3-(tri-

fluoromethyl)-1H-pyrazol-4yl]methyl}-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol monohydrate

Chang-Sheng Yao,* Chen-Xia Yu, Shu-Jiang Tu and Xiang-Shan Wang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People’s Republic of China, and Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People’s Republic of China Correspondence e-mail:

chshengyao@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study

T= 294 K

Mean(C–C) = 0.005 A˚ Disorder in main residue

Rfactor = 0.057

wRfactor = 0.137

Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C27H16Cl2F6N4O2H2O, was obtained by the reaction of 2,4-dichlorobenzaldehyde and 2-phenyl-5-trifluoromethyl-2H-pyrazol-3-ol in aqueous media without any catalyst. In the crystal structure, both intra- and intermolecular hydrogen bonds are found.

Comment

Pyrazole derivatives are very attractive for their various bioactivities. For example, pyrazolate is a widely used herbi-cide (Endoet al., 2004). Some of them can inhibit the release of inflammatory cytokines and tumor necrosis factor (TNF) (John et al., 2003; Clark & Lyon, 2005). Water-insoluble azo dyes are derived from the pyrazole ring (Bernardin & Pech-meze, 1980). Compounds that contain fluorine, such as flumioxazin, are widely used as herbicides (Hermann et al., 2003; Ulrich, 2004). To further study the relationship between structure and bioactivity, we synthesized a series of pyrazole derivatives containing the trifluoromethyl group. We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The dihedral angles between planes C12–C17 and C7–C9/N1/N2, planes C12–C17 and C18–C20/N3/N4, and planes C7–C9/N1/ N2 and C18–C20/N3/N4 are 79.4 (1), 76.4 (1) and 57.9 (2), respectively. In the molecular structure, there are two

intra-molecular hydrogen bonds: O1—H1A O3 and O2—

H2A O1. The crystal packing is stabilized by two

inter-molecular hydrogen bonds: O3—H3A N2 and O3—

H3B N1 (Fig. 2 and Table 1).

Experimental

The title compound was synthesized, according to the procedure reported by Shi et al. (2005), by the reaction of

(2)

benzaldehyde and 2-phenyl-5-trifluoromethyl-2H-pyrazol-3-ol in a 1:2 molar ratio in aqueous media without any catalyst at 363 K. After cooling, the precipitate was filtered off and recrystallized from ethanol, giving single crystals suitable for X-ray diffraction.

Crystal data

C27H16Cl2F6N4O2H2O

Mr= 631.35 Orthorhombic,Pbca a= 19.214 (3) A˚ b= 14.821 (2) A˚ c= 19.639 (3) A˚ V= 5592.9 (15) A˚3

Z= 8

Dx= 1.500 Mg m

3

MoKradiation Cell parameters from 3648

reflections = 2.3–21.9

= 0.31 mm1

T= 294 (2) K Block, colorless 0.300.120.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick 1996) Tmin= 0.913,Tmax= 0.976

30100 measured reflections

5733 independent reflections 2698 reflections withI> 2(I) Rint= 0.108

max= 26.4

h=24!22 k=15!18 l=22!24

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.057

wR(F2) = 0.137

S= 1.00 5733 reflections 391 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0346P)2

+ 5.8586P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.27 e A˚

3

min=0.33 e A˚

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1—H1A O3 0.82 1.61 2.424 (4) 169

O2—H2A O1 0.80 (4) 1.89 (4) 2.681 (4) 172 (5) O3—H3A N2i

0.86 (5) 1.94 (5) 2.802 (4) 177 (5) O3—H3B N4ii

0.82 (5) 1.98 (5) 2.792 (4) 169 (5)

Symmetry codes: (i)xþ1 2;yþ

1

2;z; (ii)xþ 1

2;yþ1;zþ 1 2.

H atoms bonded to O atoms were located in a Fourier difference map and were refined freely, except for that on O1, where the instruction AFIX 3 was used to fix the atomic parameters. Other H atoms were placed in calculated positions, with C—H = 0.93 or 0.98 A˚ , and included in the final cycles of refinement using a riding model, withUiso(H) = 1.2Ueq(parent atom). In the molecular

struc-ture, the F atoms of one CF3group (F1, F2 and F3) were disordered

over two positions, with refined site-occupancy factors of 0.889 (7) and 0.111 (7), for which the C—F bond lengths were restrained to 1.32 (1) A˚ . The C atoms of the C21–C26 aromatic ring and their attached H atoms were disordered over two positions also, with refined site-occupancy factors of 0.890 (3) and 0.110 (3).

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1999); software used to prepare material for publication:SHELXTL.

The authors acknowledge the financial support of the National Natural Science Foundation of Xuzhou Normal University (grant No. 05XLA07).

References

Bernardin, J. A. N. & Pechmeze, J. P. E. (1980). US Patent No. 4212647. Bruker (1998).SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison,

Wisconsin, USA.

Clark, M. P. & Lyon, R. A. (2005). US Patent No. 2005148610. Endo, K., Ito, S. & Mukoda, H. (2004). Japanese Patent No. 2004352657. Hacker, E., Bieringer, H. & Krahmer, H. (2003). US Patent No. 2003176284.

organic papers

o772

Yaoet al. C

27H16Cl2F6N4O2H2O Acta Cryst.(2006). E62, o771–o773

Figure 2

[image:2.610.322.554.337.572.2]

The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Figure 1

(3)

Haas, U. J. (2004). US Patent No. 2004033897.

Laufersweiler, M. J., Clark, M. P., Djung, J. F.-J., Golebiowski, A., De, B. & Brugel, T. A. (2003). WO Patent No. 03024973.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Shi, D. Q., Chen, J., Wu, N., Zhuang, Q. Y. & Wang, X. S. (2005).Chin. J. Org. Chem.25, 405–408. (In Chinese.)

organic papers

Acta Cryst.(2006). E62, o771–o773 Yaoet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o771–o773

supporting information

Acta Cryst. (2006). E62, o771–o773 [https://doi.org/10.1107/S1600536806002339]

4-{(2,4-Dichlorophenyl)[5-hydroxy-1-phenyl-3-(trifluoromethyl)-1

H

-pyrazol-4yl]methyl}-1-phenyl-3-(trifluoromethyl)-1

H

-pyrazol-5-ol monohydrate

Chang-Sheng Yao, Chen-Xia Yu, Shu-Jiang Tu and Xiang-Shan Wang

4-{(2,4-Dichlorophenyl)[5-hydroxy-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-

yl)methyl}-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5-ol monohydrate

Crystal data

C27H16Cl2F6N4O2·H2O

Mr = 631.35

Orthorhombic, Pbca a = 19.214 (3) Å

b = 14.821 (2) Å

c = 19.639 (3) Å

V = 5592.9 (15) Å3

Z = 8

F(000) = 2560

Dx = 1.500 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3648 reflections

θ = 2.3–21.9°

µ = 0.31 mm−1

T = 294 K Block, colorless 0.30 × 0.12 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick 1996)

Tmin = 0.913, Tmax = 0.976

30100 measured reflections 5733 independent reflections 2698 reflections with I > 2σ(I)

Rint = 0.108

θmax = 26.4°, θmin = 2.0°

h = −24→22

k = −15→18

l = −22→24

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057

wR(F2) = 0.137

S = 1.00 5733 reflections 391 parameters 23 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0346P)2 + 5.8586P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.27 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o771–o773

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Cl1 0.43782 (8) 0.80691 (8) 0.69036 (7) 0.0893 (5) Cl2 0.47839 (6) 0.45098 (8) 0.70143 (7) 0.0780 (4)

F1 0.3810 (2) 0.1456 (2) 0.7135 (2) 0.0854 (13) 0.889 (7) F2 0.3500 (2) 0.1972 (3) 0.61772 (16) 0.0862 (13) 0.889 (7) F3 0.43873 (15) 0.2508 (2) 0.6664 (3) 0.0944 (15) 0.889 (7) F1′ 0.3497 (14) 0.1399 (10) 0.6851 (16) 0.0854 (13) 0.111 (7) F2′ 0.3879 (18) 0.2357 (19) 0.6139 (6) 0.0862 (13) 0.111 (7) F3′ 0.4357 (9) 0.2228 (19) 0.7102 (15) 0.0944 (15) 0.111 (7) F4 0.43392 (13) 0.4391 (2) 0.49788 (14) 0.0879 (9)

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o771–o773

H11 0.3817 0.3974 0.6154 0.041* C12 0.36031 (18) 0.5238 (2) 0.64957 (16) 0.0339 (8) C13 0.3193 (2) 0.5992 (2) 0.63739 (18) 0.0430 (9) H13 0.2752 0.5911 0.6188 0.052* C14 0.3415 (2) 0.6855 (3) 0.65190 (18) 0.0499 (10) H14 0.3123 0.7345 0.6439 0.060* C15 0.4066 (2) 0.6987 (3) 0.67808 (19) 0.0519 (11) C16 0.4484 (2) 0.6267 (3) 0.6930 (2) 0.0558 (11) H16 0.4923 0.6357 0.7117 0.067* C17 0.42455 (19) 0.5400 (3) 0.67980 (19) 0.0455 (10) C18 0.29313 (18) 0.4288 (2) 0.56575 (17) 0.0343 (8) C19 0.22324 (18) 0.4495 (2) 0.55945 (17) 0.0379 (9) C20 0.31368 (19) 0.4140 (2) 0.49830 (17) 0.0395 (9)

C21 0.14216 (12) 0.4666 (2) 0.46044 (14) 0.0445 (10) 0.890 (3) C22 0.10802 (16) 0.54774 (18) 0.47243 (15) 0.0602 (13) 0.890 (3) H22A 0.1271 0.5897 0.5023 0.072* 0.890 (3) C23 0.04542 (17) 0.5661 (2) 0.43977 (18) 0.0809 (18) 0.890 (3) H23A 0.0226 0.6204 0.4478 0.097* 0.890 (3) C24 0.01697 (13) 0.5034 (3) 0.39513 (17) 0.0845 (18) 0.890 (3) H24A −0.0249 0.5157 0.3733 0.101* 0.890 (3) C25 0.05112 (17) 0.4223 (2) 0.38315 (15) 0.0823 (18) 0.890 (3) H25A 0.0321 0.3803 0.3533 0.099* 0.890 (3) C26 0.11372 (16) 0.40385 (18) 0.41580 (16) 0.0649 (14) 0.890 (3) H26A 0.1366 0.3496 0.4078 0.078* 0.890 (3) C21′ 0.13739 (13) 0.4455 (2) 0.46265 (14) 0.0445 (10) 0.110 (3) C22′ 0.12820 (12) 0.5092 (2) 0.41146 (13) 0.0602 (13) 0.110 (3) H22B 0.1653 0.5454 0.3980 0.072* 0.110 (3) C23′ 0.06361 (16) 0.5188 (2) 0.38042 (12) 0.0809 (18) 0.110 (3) H23B 0.0575 0.5614 0.3462 0.097* 0.110 (3) C24′ 0.00821 (13) 0.4647 (3) 0.40056 (18) 0.0845 (18) 0.110 (3) H24B −0.0350 0.4711 0.3798 0.101* 0.110 (3) C25′ 0.01739 (16) 0.4010 (3) 0.4517 (2) 0.0823 (18) 0.110 (3) H25B −0.0197 0.3649 0.4652 0.099* 0.110 (3) C26′ 0.08198 (19) 0.3914 (2) 0.48280 (17) 0.0649 (14) 0.110 (3) H26B 0.0881 0.3489 0.5170 0.078* 0.110 (3) C27 0.3832 (2) 0.3873 (3) 0.4734 (2) 0.0586 (12)

O3 0.2460 (2) 0.5942 (2) 0.81243 (16) 0.0661 (10) H3A 0.231 (2) 0.647 (3) 0.800 (2) 0.091 (18)* H3B 0.239 (3) 0.585 (4) 0.853 (3) 0.11 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o771–o773

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o771–o773

Geometric parameters (Å, º)

Cl1—C15 1.729 (4) C11—C18 1.514 (4) Cl2—C17 1.729 (4) C11—C12 1.532 (5)

F1—C10 1.321 (4) C11—H11 0.9800

F2—C10 1.334 (4) C12—C13 1.388 (5)

F3—C10 1.321 (4) C12—C17 1.390 (5)

F1′—C10 1.307 (9) C13—C14 1.378 (5)

F2′—C10 1.309 (9) C13—H13 0.9300

F3′—C10 1.321 (9) C14—C15 1.368 (5)

F4—C27 1.331 (5) C14—H14 0.9300

F5—C27 1.321 (4) C15—C16 1.366 (5)

F6—C27 1.329 (5) C16—C17 1.389 (5)

O1—C7 1.328 (4) C16—H16 0.9300

O1—H1A 0.8200 C18—C19 1.383 (5)

O2—C19 1.333 (4) C18—C20 1.400 (5)

O2—H2A 0.80 (4) C20—C27 1.477 (5)

N1—N2 1.361 (4) C21—C22 1.3900

N1—C7 1.363 (4) C21—C26 1.3900

N1—C1 1.441 (4) C22—C23 1.3900

N2—C9 1.329 (4) C22—H22A 0.9300

N3—C19 1.359 (4) C23—C24 1.3900

N3—N4 1.360 (4) C23—H23A 0.9300

N3—C21 1.417 (3) C24—C25 1.3900

N3—C21′ 1.450 (3) C24—H24A 0.9300

N4—C20 1.324 (4) C25—C26 1.3900

C1—C6 1.365 (5) C25—H25A 0.9300

C1—C2 1.374 (5) C26—H26A 0.9300

C2—C3 1.392 (5) C21′—C22′ 1.3900

C2—H2 0.9300 C21′—C26′ 1.3900

C3—C4 1.365 (6) C22′—C23′ 1.3900

C3—H3 0.9300 C22′—H22B 0.9300

C4—C5 1.357 (6) C23′—C24′ 1.3900

C4—H4 0.9300 C23′—H23B 0.9300

C5—C6 1.385 (5) C24′—C25′ 1.3900

C5—H5 0.9300 C24′—H24B 0.9300

C6—H6 0.9300 C25′—C26′ 1.3900

C7—C8 1.379 (5) C25′—H25B 0.9300

C8—C9 1.402 (5) C26′—H26B 0.9300

C8—C11 1.513 (5) O3—H3A 0.86 (5)

C9—C10 1.489 (5) O3—H3B 0.82 (5)

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o771–o773

C19—N3—N4 111.2 (3) C13—C14—H14 120.2 C19—N3—C21 129.0 (3) C16—C15—C14 120.4 (4) N4—N3—C21 119.8 (3) C16—C15—Cl1 119.4 (3) C19—N3—C21′ 127.4 (3) C14—C15—Cl1 120.2 (3) N4—N3—C21′ 120.0 (3) C15—C16—C17 119.3 (4) C21—N3—C21′ 13.1 C15—C16—H16 120.3 C20—N4—N3 104.3 (3) C17—C16—H16 120.3 C6—C1—C2 121.1 (4) C16—C17—C12 122.1 (4) C6—C1—N1 121.0 (3) C16—C17—Cl2 117.6 (3) C2—C1—N1 118.0 (4) C12—C17—Cl2 120.3 (3) C1—C2—C3 118.9 (4) C19—C18—C20 103.0 (3) C1—C2—H2 120.6 C19—C18—C11 129.5 (3) C3—C2—H2 120.6 C20—C18—C11 127.5 (3) C4—C3—C2 120.0 (4) O2—C19—N3 117.7 (3) C4—C3—H3 120.0 O2—C19—C18 134.2 (3) C2—C3—H3 120.0 N3—C19—C18 108.0 (3) C5—C4—C3 120.4 (4) N4—C20—C18 113.6 (3) C5—C4—H4 119.8 N4—C20—C27 118.8 (3) C3—C4—H4 119.8 C18—C20—C27 127.7 (3) C4—C5—C6 120.6 (4) C22—C21—C26 120.0 C4—C5—H5 119.7 C22—C21—N3 121.2 (2) C6—C5—H5 119.7 C26—C21—N3 118.8 (2) C1—C6—C5 119.1 (4) C21—C22—C23 120.0

C1—C6—H6 120.5 C21—C22—H22A 120.0

C5—C6—H6 120.5 C23—C22—H22A 120.0

(10)

supporting information

sup-7 Acta Cryst. (2006). E62, o771–o773

F3′—C10—F2 138.1 (13) C23′—C24′—H24B 120.0 F1′—C10—C9 111.0 (13) C24′—C25′—C26′ 120.0 F2′—C10—C9 114.9 (13) C24′—C25′—H25B 120.0 F1—C10—C9 113.5 (3) C26′—C25′—H25B 120.0 F3—C10—C9 113.9 (3) C25′—C26′—C21′ 120.0 F3′—C10—C9 108.0 (12) C25′—C26′—H26B 120.0 F2—C10—C9 110.7 (3) C21′—C26′—H26B 120.0 C8—C11—C18 114.0 (3) F5—C27—F6 106.1 (4) C8—C11—C12 112.7 (3) F5—C27—F4 106.5 (4) C18—C11—C12 111.7 (3) F6—C27—F4 105.0 (4) C8—C11—H11 105.9 F5—C27—C20 113.4 (4) C18—C11—H11 105.9 F6—C27—C20 112.3 (4) C12—C11—H11 105.9 F4—C27—C20 112.8 (4) C13—C12—C17 116.0 (3) H3A—O3—H3B 112 (5) C13—C12—C11 122.9 (3)

(11)

supporting information

sup-8 Acta Cryst. (2006). E62, o771–o773

C8—C9—C10—F1′ −138.0 (15) N3—C21—C22—C23 179.2 (3) N2—C9—C10—F2′ 159.7 (17) C21—C22—C23—C24 0.0 C8—C9—C10—F2′ −14.3 (18) C22—C23—C24—C25 0.0 N2—C9—C10—F1 −3.6 (5) C23—C24—C25—C26 0.0 C8—C9—C10—F1 −177.5 (4) C24—C25—C26—C21 0.0 N2—C9—C10—F3 −126.6 (4) C22—C21—C26—C25 0.0 C8—C9—C10—F3 59.5 (6) N3—C21—C26—C25 −179.2 (3) N2—C9—C10—F3′ −81.4 (16) C19—N3—C21′—C22′ 129.9 (3) C8—C9—C10—F3′ 104.7 (16) N4—N3—C21′—C22′ −65.0 (3) N2—C9—C10—F2 115.1 (4) C21—N3—C21′—C22′ 28.01 (15) C8—C9—C10—F2 −58.8 (5) C19—N3—C21′—C26′ −47.0 (4) C7—C8—C11—C18 −82.1 (4) N4—N3—C21′—C26′ 118.1 (3) C9—C8—C11—C18 104.6 (4) C21—N3—C21′—C26′ −148.95 (13) C7—C8—C11—C12 46.7 (5) C26′—C21′—C22′—C23′ 0.0

C9—C8—C11—C12 −126.7 (4) N3—C21′—C22′—C23′ −177.2 (2) C8—C11—C12—C13 −99.9 (4) C21′—C22′—C23′—C24′ 0.0 C18—C11—C12—C13 30.1 (5) C22′—C23′—C24′—C25′ 0.0 C8—C11—C12—C17 82.8 (4) C23′—C24′—C25′—C26′ 0.0 C18—C11—C12—C17 −147.3 (3) C24′—C25′—C26′—C21′ 0.0 C17—C12—C13—C14 2.3 (5) C22′—C21′—C26′—C25′ 0.0 C11—C12—C13—C14 −175.1 (3) N3—C21′—C26′—C25′ 176.8 (3) C12—C13—C14—C15 1.3 (6) N4—C20—C27—F5 9.9 (6) C13—C14—C15—C16 −3.2 (6) C18—C20—C27—F5 −171.8 (4) C13—C14—C15—Cl1 175.0 (3) N4—C20—C27—F6 −110.5 (4) C14—C15—C16—C17 1.4 (6) C18—C20—C27—F6 67.9 (5) Cl1—C15—C16—C17 −176.7 (3) N4—C20—C27—F4 131.1 (4) C15—C16—C17—C12 2.4 (6) C18—C20—C27—F4 −50.6 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1—H1A···O3 0.82 1.61 2.424 (4) 169 O2—H2A···O1 0.80 (4) 1.89 (4) 2.681 (4) 172 (5) O3—H3A···N2i 0.86 (5) 1.94 (5) 2.802 (4) 177 (5)

O3—H3B···N4ii 0.82 (5) 1.98 (5) 2.792 (4) 169 (5)

Figure

Figure 1

References

Related documents

Registrar, Department of Urology, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, Maharashtra, India. Associate

Knowledge-based WSD methods mainly ex- ploit two kinds of knowledge to disambiguate pol- ysemous words: 1) The gloss, which defines a word sense meaning, is mainly used in Lesk

This situation is more grave while receiving dental or medical treatment as the health professionals might be unaware about the special modes of communication causing

We study the role of labor market mismatch in the adjustment to a trade lib- eralization that results in the o¤shoring of high-tech production.. Our model features

The main contributions of our work, are as fol- lows: 1) We present a novel use for a neural lan- guage modeling approach that leverages shared context between documents within

To assess the effect of exchange rate misalignment on Senegal's economic performance, we estimate the real GDP growth equation explained by misalignment (measured by the BEER

However, in a follow-up experiment using a high-quality sample of high-income consumers, we find debt can no longer be explained by poor cognitive reflection and lack of self

In particular, the baseline 2SLS estimates indicates that one additional year of schooling is causally linked to a 6 percentage point increase in the likelihood of