• No results found

Chloro­(4 methylpiperidine 1 di­thio­carbamato κ2S:S′)(tri­phenyl­phosphine κP)palladium(II)

N/A
N/A
Protected

Academic year: 2020

Share "Chloro­(4 methylpiperidine 1 di­thio­carbamato κ2S:S′)(tri­phenyl­phosphine κP)palladium(II)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m136

Shaheenet al. [Pd(C

7H12NS2)Cl(C18H15P)] doi:10.1107/S1600536805041784 Acta Cryst.(2006). E62, m136–m137

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Chloro(4-methylpiperidine-1-dithiocarbamato-

j

2

S

:

S

000

)-(triphenylphosphine-

j

P

)palladium(II)

Farkhanda Shaheen,a

Muhammad Najam-Ul-Haq,b Klaus Wurst,cAmin Badshaha* and Saqib Alia

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and cInstitute of General, Inorganic and Theoretical Chemistry, Innrain 52a, University of Innsbruck, A-6020 Innsbruck, Austria

Correspondence e-mail: aminbadshah@yahoo.com

Key indicators

Single-crystal X-ray study T= 233 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.026 wRfactor = 0.061

Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, [Pd(C7H12NS2)Cl(C18H15P)], the Pd atom is four-coordinate and exhibits a slightly distorted square-planar geometry.

Comment

Palladium(II) complexes with sulfur and phosphorus donor ligands are of current interest due to their ability to sequester the metal ion (Faraglia et al., 2005), their antitumor activity against leukemic cells (Mital et al., 1989; Tiekink, 2002), and their use as pesticides (Fackler, 2002) and antimicrobial agents (Ronconi et al., 2005), while palladium(II)–phosphine complexes are also important from a catalytic point of view (Crawforth et al., 2005; Tsuji, 1995), e.g. [Pd(PPh3)2(CN)2] (Huaet al., 2001), [Pd(PPh3)2Cl2] (Nicholas, 1987).

In the title compound, (I), the dithiocarbamate ligand acts as a bidentate chelate, coordinating to Pd viaboth S atoms. Atom S2 istransto the chloro ligand and atom S1transto the triphenylphosphine ligand (Fig. 1 and Table 1). The coordin-ation geometry about the Pd atom is distorted square planar and the deviation of the Pd1 atom from the mean plane through the ligand donor atoms is only 0.0103 (4) A˚ .

Experimental

4-Methylpiperidine-1-dithiocarbamic acid (Vogel, 1968) dissolved (0.2 g, 1.14 mmol) in CH2Cl2(10 ml) was added to a suspension of

[PdCl2(PPh3)] (0.5 g, 1.14 mmol) (Kitano et al., 1983) in CH2Cl2

(20 ml). The resulting solution was refluxed for 1 h. Yellow crystals were obtained on slow evaporation of the solvent at room temperature.

Crystal data

[Pd(C7H12NS2)Cl(C18H15P)]

Mr= 578.42

Monoclinic,P21=n a= 10.1668 (3) A˚

b= 13.8325 (4) A˚

c= 17.8608 (4) A˚ = 90.162 (2) V= 2511.79 (12) A˚3

Z= 4

Dx= 1.530 Mg m

3

MoKradiation

Cell parameters from 13105 reflections

= 1.0–26.0 = 1.09 mm1

T= 233 (2) K Prism, yellow 0.20.120.1 mm

(2)

Data collection

Nonius KappaCCD diffractometer ’and!scans

Absorption correction: none 13105 measured reflections 4405 independent reflections 3853 reflections withI> 2(I)

Rint= 0.025

max= 25.0

h=12!12

k=16!16

l=21!21

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.026

wR(F2) = 0.061

S= 1.05 4405 reflections 280 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0201P)2

+ 2.004P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.002

max= 0.39 e A˚

3

min=0.55 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Pd1—P1 2.3009 (7)

Pd1—Cl1 2.3276 (7)

Pd1—S1 2.3274 (7)

Pd1—S2 2.2977 (7)

S1—C1 1.718 (3)

S2—C1 1.735 (3)

N1—C1 1.313 (3)

S2—Pd1—P1 100.32 (2)

S2—Pd1—S1 75.33 (2)

P1—Pd1—S1 175.24 (2)

S2—Pd1—Cl1 166.37 (3)

P1—Pd1—Cl1 93.29 (2)

S1—Pd1—Cl1 91.08 (3)

C1—S1—Pd1 87.06 (9)

C1—S2—Pd1 87.61 (9)

N1—C1—S1 125.1 (2)

N1—C1—S2 124.99 (19)

S1—C1—S2 109.86 (14)

H atoms were positioned geometrically (C—H = 0.94–0.98 A˚ ) and refined as riding, withUiso(H) = 1.2 or 1.5 timesUeq(C).

Data collection: COLLECT (Nonius, 1998); cell refinement:

SCALEPACK (Otwinowski & Minor, 1997); data reduction:

DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure:SHELXL97(Sheldrick, 1997a); molecular graphics:SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXL97.

We thank the Institute of Higher Education Commission for financial support of this work.

References

Crawforth, C. M., Burling, S., Fairlamb, I. J. S., Kapdi, A. R., Taylor, R. J. K. & Whitwood, A. C. (2005).Tetrahedron,61, 9736–9751.

Fackler, J. P. (2002).Inorg. Chem.41, 6959–6972.

Faraglia. G., Sitran, S. & Montagner, D. (2005).Inorg. Chim. Acta,358, 971– 980.

Hua, R., Goto, M. & Tanaka, M. (2001).Anal. Sci.17, 469–470.

Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983).Acta Cryst.C39, 1015–1017.

Mital, R., Jain, N. & Srivastava, T. S. (1989).Inorg. Chim. Acta,166, 135–140. Nicholas, P. P. (1987).J. Org. Chem.52, 5266–5272.

Nonius (1998).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Ronconi, L., Maccato, C., Barreca, D., Saini, R., Zancato, M. & Fregona, D. (2005).Polyhedron,24, 521–531.

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Tiekink, E. R. T. (2002).Crit. Rev. Oncol. Hematol.24, 225–248.

Tsuji, J. (1995).Palladium Reagents and Catalysts, pp. 125-525. New York: John Wiley and Sons.

[image:2.610.316.566.73.203.2]

Vogel, A. I. (1968).A Textbook of Practical Organic Chemistry, pp. 499–500. London: ELBS Publication.

Figure 1

(3)

supporting information

sup-1

Acta Cryst. (2006). E62, m136–m137

supporting information

Acta Cryst. (2006). E62, m136–m137 [doi:10.1107/S1600536805041784]

Chloro(4-methylpiperidine-1-dithiocarbamato-

κ

2

S

:

S

)(triphenylphosphine-κ

P

)palladium(II)

Farkhanda Shaheen, Muhammad Najam-Ul-Haq, Klaus Wurst, Amin Badshah and Saqib Ali

S1. Comment

Palladium(II) complexes with sulfur and phosphorus donor ligands are of current interest due to their ability to sequester the metal ion (Faraglia et al., 2005), their antitumor activity against leukaemic cells (Mital et al., 1989; Tiekink, 2002), and their use as pesticides (Fackler, 2002) and antimicrobial agents (Ronconi et al., 2005), while palladium(II)–phosphine complexes are also important from a catalytic point of view (Crawforth et al., 2005; Tsuji, 1995), e.g. [Pd(PPh3)2(CN)2]

(Hua et al., 2001), [Pd(PPh3)2Cl2] (Nicholas, 1987).

In the title compound, (I), the dithiocarbamate ligand acts as a bidentate chelate, coordinating to Pd via both S atoms. Atom S2 is trans to the chloride anion and atom S1 trans to the triphenylphosphine ligand (Fig. 1 and Table 1). The coordination geometry about the Pd atom is distorted square planar and the deviation of the Pd1 atom from the mean plane through the ligand donor atoms is only 0.0103 (4) Å.

S2. Experimental

4-Methylpiperidine-1-dithiocarbamic acid (Vogel, 1968) dissolved (0.2 g, 1.14 mmol) in CH2Cl2 (10 ml) was added to a

suspension of [PdCl2(PPh3)] (0.5 g, 1.14 mmol) (Kitano et al., 1983) in CH2Cl2 (20 ml). The resulting solution was

refluxed for 1 h. Yellow crystals were obtained on slow evaporation of the solvent at room temperature.

S3. Refinement

(4)
[image:4.610.132.481.72.263.2]

Figure 1

The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Chloro(4-methyl piperidine-1-dithiocarbamato-κ2S:S)(triphenylphosphine-κP)palladium(II)

Crystal data

[Pd(C7H12NS2)Cl(C18H15P)] Mr = 578.42

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 10.1668 (3) Å

b = 13.8325 (4) Å

c = 17.8608 (4) Å

β = 90.162 (2)°

V = 2511.79 (12) Å3 Z = 4

F(000) = 1176

Dx = 1.530 Mg m−3

Melting point: 511 K

Mo radiation, λ = 0.71073 Å Cell parameters from 13105 reflections

θ = 1.0–26.0°

µ = 1.09 mm−1 T = 233 K Prism, yellow 0.2 × 0.12 × 0.1 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

13105 measured reflections 4405 independent reflections

3853 reflections with I > 2σ(I)

Rint = 0.025

θmax = 25.0°, θmin = 1.9° h = −12→12

k = −16→16

l = −21→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.026 wR(F2) = 0.061 S = 1.05 4405 reflections 280 parameters 0 restraints

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0201P)2 + 2.004P]

where P = (Fo2 + 2Fc2)/3

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, m136–m137

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full

covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

N1 −0.1669 (2) 0.94259 (16) 1.08327 (12) 0.0402 (5) P1 0.24523 (6) 0.66612 (4) 0.96739 (3) 0.03149 (15) Cl1 0.08028 (8) 0.76177 (6) 0.82152 (4) 0.0596 (2) Pd1 0.078103 (18) 0.776406 (13) 0.951333 (10) 0.03322 (7) S1 −0.08623 (6) 0.89326 (5) 0.94475 (4) 0.03767 (15) S2 0.03484 (7) 0.81516 (5) 1.07391 (4) 0.04116 (16) C1 −0.0866 (2) 0.89244 (18) 1.04094 (14) 0.0367 (6) C2 −0.2678 (3) 1.0079 (2) 1.05191 (15) 0.0452 (7) H2A −0.2691 1.0021 0.9972 0.054* H2B −0.2461 1.0749 1.0647 0.054* C3 −0.4008 (3) 0.9827 (2) 1.08267 (15) 0.0479 (7) H3A −0.4280 0.9199 1.0625 0.057* H3B −0.4646 1.0311 1.0657 0.057* C4 −0.4035 (3) 0.9781 (2) 1.16736 (16) 0.0505 (7) H4 −0.3858 1.0442 1.1861 0.061* C5 −0.2944 (3) 0.9140 (2) 1.19580 (15) 0.0511 (7) H5A −0.2917 0.9176 1.2506 0.061* H5B −0.3138 0.8469 1.1820 0.061* C6 −0.1617 (3) 0.9410 (2) 1.16547 (15) 0.0458 (7) H6A −0.1361 1.0049 1.1843 0.055* H6B −0.0958 0.8940 1.1822 0.055* C7 −0.5388 (3) 0.9489 (3) 1.19575 (19) 0.0666 (9) H7A −0.6045 0.9927 1.1756 0.100* H7B −0.5398 0.9521 1.2500 0.100* H7C −0.5582 0.8835 1.1797 0.100* C8 0.2215 (2) 0.55279 (17) 0.91732 (13) 0.0315 (5) C9 0.0952 (2) 0.51680 (19) 0.90778 (15) 0.0391 (6)

H9 0.0228 0.5524 0.9254 0.047*

(6)

H13 0.4132 0.5233 0.8958 0.045* C14 0.2766 (2) 0.62920 (18) 1.06358 (13) 0.0335 (5) C15 0.3009 (3) 0.7012 (2) 1.11688 (14) 0.0406 (6) H15 0.2993 0.7665 1.1025 0.049* C16 0.3272 (3) 0.6771 (2) 1.19037 (15) 0.0484 (7) H16 0.3445 0.7260 1.2256 0.058* C17 0.3281 (3) 0.5820 (3) 1.21221 (15) 0.0539 (8) H17 0.3459 0.5659 1.2623 0.065* C18 0.3031 (3) 0.5104 (2) 1.16079 (16) 0.0519 (7) H18 0.3028 0.4454 1.1761 0.062* C19 0.2780 (3) 0.5334 (2) 1.08619 (14) 0.0407 (6) H19 0.2621 0.4840 1.0512 0.049* C20 0.4055 (2) 0.70710 (17) 0.93396 (14) 0.0351 (6) C21 0.5183 (3) 0.7021 (2) 0.97746 (15) 0.0442 (7) H21 0.5130 0.6805 1.0273 0.053* C22 0.6390 (3) 0.7286 (2) 0.94794 (17) 0.0533 (8) H22 0.7151 0.7255 0.9779 0.064* C23 0.6476 (3) 0.7593 (2) 0.87488 (17) 0.0537 (8) H23 0.7295 0.7771 0.8549 0.064* C24 0.5365 (3) 0.7640 (2) 0.83131 (16) 0.0546 (8) H24 0.5428 0.7842 0.7812 0.066* C25 0.4161 (3) 0.7392 (2) 0.86036 (15) 0.0466 (7) H25 0.3403 0.7440 0.8303 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, m136–m137

C16 0.0413 (16) 0.068 (2) 0.0357 (15) −0.0037 (14) −0.0001 (12) −0.0080 (14) C17 0.0470 (17) 0.084 (2) 0.0302 (15) 0.0038 (16) 0.0000 (12) 0.0063 (15) C18 0.0511 (18) 0.0580 (18) 0.0465 (17) 0.0061 (14) 0.0051 (14) 0.0168 (14) C19 0.0380 (15) 0.0467 (16) 0.0374 (14) 0.0019 (12) 0.0020 (12) 0.0020 (12) C20 0.0387 (14) 0.0296 (13) 0.0371 (14) −0.0049 (11) −0.0013 (11) −0.0010 (10) C21 0.0427 (16) 0.0508 (16) 0.0393 (15) −0.0112 (13) −0.0015 (12) 0.0019 (12) C22 0.0376 (16) 0.070 (2) 0.0527 (18) −0.0169 (14) −0.0039 (13) −0.0014 (15) C23 0.0496 (18) 0.0606 (19) 0.0511 (18) −0.0217 (15) 0.0102 (15) 0.0001 (14) C24 0.0594 (19) 0.0621 (19) 0.0423 (16) −0.0139 (16) 0.0049 (15) 0.0088 (14) C25 0.0454 (16) 0.0550 (17) 0.0395 (15) −0.0070 (13) −0.0035 (13) 0.0072 (13)

Geometric parameters (Å, º)

N1—C6 1.469 (3) C9—C10 1.378 (4)

N1—C2 1.475 (3) C9—H9 0.9400

P1—C14 1.820 (2) C10—C11 1.380 (4)

P1—C8 1.820 (2) C10—H10 0.9400

P1—C20 1.827 (3) C11—C12 1.370 (4)

Pd1—P1 2.3009 (7) C11—H11 0.9400

Pd1—Cl1 2.3276 (7) C12—C13 1.384 (4)

Pd1—S1 2.3274 (7) C12—H12 0.9400

Pd1—S2 2.2977 (7) C13—H13 0.9400

S1—C1 1.718 (3) C14—C19 1.385 (4)

S2—C1 1.735 (3) C14—C15 1.399 (4)

N1—C1 1.313 (3) C15—C16 1.380 (4)

C2—C3 1.502 (4) C15—H15 0.9400

C2—H2A 0.9800 C16—C17 1.371 (4)

C2—H2B 0.9800 C16—H16 0.9400

C3—C4 1.514 (4) C17—C18 1.374 (4)

C3—H3A 0.9800 C17—H17 0.9400

C3—H3B 0.9800 C18—C19 1.393 (4)

C4—C5 1.507 (4) C18—H18 0.9400

C4—C7 1.521 (4) C19—H19 0.9400

C4—H4 0.9900 C20—C21 1.385 (4)

C5—C6 1.503 (4) C20—C25 1.392 (4)

C5—H5A 0.9800 C21—C22 1.387 (4)

C5—H5B 0.9800 C21—H21 0.9400

C6—H6A 0.9800 C22—C23 1.375 (4)

C6—H6B 0.9800 C22—H22 0.9400

C7—H7A 0.9700 C23—C24 1.371 (4)

C7—H7B 0.9700 C23—H23 0.9400

C7—H7C 0.9700 C24—C25 1.375 (4)

C8—C9 1.388 (3) C24—H24 0.9400

C8—C13 1.390 (3) C25—H25 0.9400

(8)

C14—P1—C8 104.17 (11) C13—C8—P1 121.78 (18) C14—P1—C20 103.97 (11) C10—C9—C8 120.5 (2) C8—P1—C20 102.92 (11) C10—C9—H9 119.8 C14—P1—Pd1 115.54 (8) C8—C9—H9 119.8 C8—P1—Pd1 114.40 (8) C9—C10—C11 120.0 (2) C20—P1—Pd1 114.36 (8) C9—C10—H10 120.0 S2—Pd1—P1 100.32 (2) C11—C10—H10 120.0 S2—Pd1—S1 75.33 (2) C12—C11—C10 120.3 (2) P1—Pd1—S1 175.24 (2) C12—C11—H11 119.9 S2—Pd1—Cl1 166.37 (3) C10—C11—H11 119.9 P1—Pd1—Cl1 93.29 (2) C11—C12—C13 120.0 (2) S1—Pd1—Cl1 91.08 (3) C11—C12—H12 120.0 C1—S1—Pd1 87.06 (9) C13—C12—H12 120.0 C1—S2—Pd1 87.61 (9) C12—C13—C8 120.4 (2) N1—C1—S1 125.1 (2) C12—C13—H13 119.8 N1—C1—S2 124.99 (19) C8—C13—H13 119.8 S1—C1—S2 109.86 (14) C19—C14—C15 118.7 (2) N1—C2—C3 110.2 (2) C19—C14—P1 123.04 (19) N1—C2—H2A 109.6 C15—C14—P1 118.23 (19) C3—C2—H2A 109.6 C16—C15—C14 120.6 (3)

N1—C2—H2B 109.6 C16—C15—H15 119.7

C3—C2—H2B 109.6 C14—C15—H15 119.7

H2A—C2—H2B 108.1 C17—C16—C15 120.2 (3) C2—C3—C4 113.2 (2) C17—C16—H16 119.9

C2—C3—H3A 108.9 C15—C16—H16 119.9

C4—C3—H3A 108.9 C16—C17—C18 120.0 (3)

C2—C3—H3B 108.9 C16—C17—H17 120.0

C4—C3—H3B 108.9 C18—C17—H17 120.0

H3A—C3—H3B 107.7 C17—C18—C19 120.5 (3) C5—C4—C3 110.2 (2) C17—C18—H18 119.7 C5—C4—C7 113.4 (3) C19—C18—H18 119.7 C3—C4—C7 111.3 (3) C14—C19—C18 119.9 (3)

C5—C4—H4 107.2 C14—C19—H19 120.0

C3—C4—H4 107.2 C18—C19—H19 120.0

C7—C4—H4 107.2 C21—C20—C25 118.7 (2) C6—C5—C4 113.1 (2) C21—C20—P1 122.60 (19) C6—C5—H5A 109.0 C25—C20—P1 118.59 (19) C4—C5—H5A 109.0 C20—C21—C22 120.4 (3)

C6—C5—H5B 109.0 C20—C21—H21 119.8

C4—C5—H5B 109.0 C22—C21—H21 119.8

H5A—C5—H5B 107.8 C23—C22—C21 120.1 (3) N1—C6—C5 109.5 (2) C23—C22—H22 120.0

N1—C6—H6A 109.8 C21—C22—H22 120.0

C5—C6—H6A 109.8 C24—C23—C22 119.9 (3)

N1—C6—H6B 109.8 C24—C23—H23 120.1

C5—C6—H6B 109.8 C22—C23—H23 120.1

H6A—C6—H6B 108.2 C23—C24—C25 120.5 (3)

(9)

supporting information

sup-7

Acta Cryst. (2006). E62, m136–m137

C4—C7—H7B 109.5 C25—C24—H24 119.8

H7A—C7—H7B 109.5 C24—C25—C20 120.5 (3)

C4—C7—H7C 109.5 C24—C25—H25 119.8

Figure

Figure 1
Figure 1

References

Related documents