• No results found

3 (1H Indol 3 yl) 2 [3 (4 meth­oxy­benzo­yl)thio­ureido]propionic acid

N/A
N/A
Protected

Academic year: 2020

Share "3 (1H Indol 3 yl) 2 [3 (4 meth­oxy­benzo­yl)thio­ureido]propionic acid"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o1025–o1027 doi:10.1107/S1600536806004065 Ngahet al. C

20H19N3O4S

o1025

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

3-(1

H

-Indol-3-yl)-2-[3-(4-methoxybenzoyl)-thioureido]propionic acid

Nurziana Ngah, Najihah Dariman and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.071 wRfactor = 0.139

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 27 January 2006 Accepted 2 February 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C20H19N3O4S, the 3-methylene-1H -indole unit is nearly planar with a dihedral angle of 2.69 (2)

between the rings. The crystal structure is stabilized by intermolecular N—H O, N—H S, O—H S and C— H O hydrogen bonds, forming a two-dimensional network approximately parallel to the (011) plane.

Comment

The title compound, (I), is isostructural with 2-[3-(4-methoxybenzoyl)thioureido]-3-phenylpropionic acid meth-anol solvate, (II) (Ngahet al., 2005). The molecule maintains thecis–transconfiguration with respect to the positions of the 3-(1H-indole-3-yl)propionic acid and 4-methoxybenzoyl groups relative to the C S bond across their C9—N2 and C9—N1 bonds, respectively (Fig. 1).

The N3—C18 [1.360 (5)] and N3—C19 [1.355 (5) A˚ ] bonds in the indole ring system are slightly shorter than the corre-sponding ones [N1—C1 = 1.377 (4) and N1—C8 = 1.369 (4) A˚ ] in 2-(2-acetamido-5-methylbenzoyl)-1H-indole (Ravishankar

et al., 2005). Other bond lengths and angles (Table 1) are in normal ranges (Allenet al., 1987) and comparable to those in (II).

The central carbonylthiourea (C8/C9/N1/N2/O2/S1) and 4-methoxyphenyl (C1–C6/O1/C7) units are not planar with puckering amplitudes, QT, of 0.146 (1) and 0.143 (2) A˚ (Cremer & Pople, 1975). RingsA(C12/C13/C18/N3/C19) and

B(C13—C18) in the 3-methylene-1H-indole system are each planar and they are nearly coplanar, with a dihedral angle of 2.69 (2). RingAhas a pseudo-twofold axis running through

(2)

inter-molecular hydrogen bonds (Table 2), forming a two-dimen-sional network approximately parallel to the (011) plane (Fig. 2).

Experimental

Equimolar solutions of 4-methoxybenzoyl isothiocyanate (9.65 g, 0.05 mol) and dl-tryptophan (9.65 g, 0.05 mol) in acetone (50 ml)

were mixed and refluxed for 5 h. The mixture was filtered into a beaker containing some ice cubes. The resulting brown precipitate was washed with cold acetone–distilled water before drying and kept in a desiccator (yield 15.4 g, 78%; m.p. 474.6–476.4 K). Recrystalli-zation from chloroform yielded colorless single crystals suitable for X-ray analysis.

Crystal data

C20H19N3O4S

Mr= 397.44

Orthorhombic,Pbcn a= 18.247 (4) A˚ b= 14.083 (3) A˚ c= 14.736 (3) A˚ V= 3787.0 (14) A˚3

Z= 8

Dx= 1.394 Mg m

3

MoKradiation Cell parameters from 781

reflections

= 1.8–25.0

= 0.20 mm1

T= 298 (2) K Block, colorless 0.190.160.15 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin= 0.962,Tmax= 0.970 18371 measured reflections

3343 independent reflections 2772 reflections withI> 2(I) Rint= 0.043

max= 25.0

h=21!19 k=13!16 l=17!17

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.071

wR(F2) = 0.139

S= 1.26 3343 reflections 255 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0428P)2 + 2.2534P]

whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.22 e A˚

3

min=0.22 e A˚

[image:2.610.46.293.255.441.2]

3

Table 1

Selected geometric parameters (A˚ ,).

S1—C9 1.689 (3)

O2—C8 1.213 (3)

O3—C20 1.199 (4)

O4—C20 1.321 (4)

N1—C9 1.379 (4)

N1—C8 1.390 (4)

N2—C9 1.313 (4)

N2—C10 1.448 (4)

N3—C19 1.355 (5)

N3—C18 1.360 (5)

C9—N1—C8 127.6 (2)

C9—N2—C10 123.8 (3)

O2—C8—N1 121.8 (3)

O2—C8—C1 122.6 (3)

N2—C9—N1 117.3 (3)

N2—C9—S1 123.6 (2)

N1—C9—S1 119.1 (2)

N3—C18—C17 129.9 (4)

C19—C12—C13—C18 0.4 (4) C19—N3—C18—C13 1.2 (4) C12—C13—C18—N3 1.0 (4)

[image:2.610.314.564.490.580.2]

C13—C12—C19—N3 0.3 (4) C18—N3—C19—C12 0.9 (4)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C10—H10 S1 0.98 2.64 3.059 (3) 106 N2—H2A O2 0.86 1.95 2.628 (3) 135 N2—H2A O3 0.86 2.37 2.680 (3) 102 N1—H1A O3i

0.86 2.13 2.955 (3) 160

N3—H3A S1ii 0.86 2.64 3.434 (3) 154 O4—H4 S1iii

0.82 2.40 3.219 (3) 173

C2—H2 O3i

0.93 2.44 2.986 (4) 118

C3—H3 O2i 0.93 2.53 3.332 (4) 145

Symmetry codes: (i)x;yþ2;z1

2; (ii)xþ32;yþ32;zþ12; (iii)x;yþ2;zþ12.

H atoms were positioned geometrically, with O—H = 0.82 A˚ , N— H = 0.86 A˚ , and C—H = 0.93, 0.96, 0.97 and 0.98 A˚ for aromatic, methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, withUiso(H) =xUeq(carrier

atom), wherex= 1.5 for methyl and hydroxyl H atoms, andx= 1.2 for all other H atoms.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL,PARST(Nardelli, 1995) andPLATON(Spek, 2003).

organic papers

o1026

Ngahet al. C

20H19N3O4S Acta Cryst.(2006). E62, o1025–o1027

Figure 1

Molecular structure of (I), with the atom numbering scheme. Displace-ment ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.

Figure 2

(3)

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2000).SADABS(Version 2.01),SMART(Version 5.630) andSAINT (Vesion 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354-1358. Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Ngah, N., Jusoh, A. & Yamin, B. M. (2005).Acta Cryst.E61, o4307–o4309. Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A.

& Fun, H. K. (2005).Acta Cryst.E61, o3291–o3293.

Sheldrick, G. M. (1997).SHELXTL.Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

organic papers

Acta Cryst.(2006). E62, o1025–o1027 Ngahet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o1025–o1027

supporting information

Acta Cryst. (2006). E62, o1025–o1027 [https://doi.org/10.1107/S1600536806004065]

3-(1

H

-Indol-3-yl)-2-[3-(4-methoxybenzoyl)thioureido]propionic acid

Nurziana Ngah, Najihah Dariman and Bohari M. Yamin

3-(1H-Indol-3-yl)-2-[3-(4-methoxybenzoyl)thioureido]propionic acid

Crystal data

C20H19N3O4S

Mr = 397.44

Orthorhombic, Pbcn

Hall symbol: -P 2n 2ab

a = 18.247 (4) Å

b = 14.083 (3) Å

c = 14.736 (3) Å

V = 3787.0 (14) Å3

Z = 8

F(000) = 1664

Dx = 1.394 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 781 reflections

θ = 1.8–25.0°

µ = 0.20 mm−1

T = 298 K Block, colorless 0.19 × 0.16 × 0.15 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 83.66 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.962, Tmax = 0.970

18371 measured reflections 3343 independent reflections 2772 reflections with I > 2σ(I)

Rint = 0.043

θmax = 25.0°, θmin = 1.8°

h = −21→19

k = −13→16

l = −17→17

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.071

wR(F2) = 0.139

S = 1.26 3343 reflections 255 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0428P)2 + 2.2534P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.22 e Å−3

Δρmin = −0.22 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o1025–o1027

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o1025–o1027

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0445 (5) 0.0799 (7) 0.0423 (4) −0.0170 (5) 0.0003 (4) 0.0002 (4) O1 0.0536 (14) 0.0729 (17) 0.0584 (14) −0.0101 (13) 0.0106 (12) 0.0123 (13) O2 0.0442 (12) 0.0959 (19) 0.0388 (13) −0.0113 (13) −0.0064 (10) 0.0094 (12) O3 0.0417 (13) 0.0713 (17) 0.0467 (13) −0.0040 (12) 0.0000 (10) −0.0094 (11) O4 0.0525 (14) 0.089 (2) 0.0550 (15) −0.0134 (13) 0.0199 (12) −0.0149 (13) N1 0.0366 (14) 0.0588 (17) 0.0315 (12) −0.0058 (12) 0.0021 (11) 0.0020 (12) N2 0.0349 (13) 0.0575 (17) 0.0369 (14) −0.0060 (12) 0.0010 (11) 0.0012 (12) N3 0.094 (3) 0.062 (2) 0.0538 (19) 0.0031 (19) −0.0131 (18) 0.0062 (16) C1 0.0301 (15) 0.0469 (19) 0.0429 (16) 0.0029 (14) −0.0031 (13) −0.0003 (14) C2 0.0320 (15) 0.052 (2) 0.0454 (17) −0.0013 (15) −0.0005 (14) −0.0042 (15) C3 0.0370 (16) 0.060 (2) 0.0362 (15) 0.0021 (16) 0.0033 (14) −0.0017 (15) C4 0.0364 (17) 0.0503 (19) 0.0499 (18) 0.0027 (15) 0.0039 (14) 0.0052 (16) C5 0.0404 (18) 0.062 (2) 0.057 (2) −0.0125 (16) 0.0001 (16) −0.0070 (18) C6 0.0433 (18) 0.063 (2) 0.0426 (17) −0.0023 (17) −0.0008 (15) −0.0075 (16) C7 0.070 (2) 0.075 (3) 0.059 (2) 0.005 (2) 0.0226 (19) 0.015 (2) C8 0.0349 (16) 0.0496 (19) 0.0416 (18) 0.0017 (15) −0.0002 (13) 0.0019 (14) C9 0.0431 (17) 0.0440 (18) 0.0362 (16) 0.0007 (14) 0.0069 (13) −0.0007 (14) C10 0.0371 (16) 0.061 (2) 0.0391 (16) −0.0088 (15) 0.0041 (14) 0.0023 (16) C11 0.058 (2) 0.063 (2) 0.0431 (18) −0.0233 (18) 0.0107 (16) −0.0066 (17) C12 0.066 (2) 0.0393 (19) 0.0461 (18) −0.0130 (17) 0.0063 (16) 0.0028 (15) C13 0.063 (2) 0.0363 (18) 0.0505 (18) −0.0128 (16) 0.0020 (17) 0.0002 (15) C14 0.072 (2) 0.064 (2) 0.051 (2) −0.010 (2) 0.0091 (18) −0.0002 (18) C15 0.084 (3) 0.074 (3) 0.070 (3) −0.003 (2) 0.025 (2) 0.001 (2) C16 0.069 (3) 0.068 (3) 0.109 (4) 0.000 (2) 0.032 (3) 0.003 (3) C17 0.068 (3) 0.061 (3) 0.096 (3) −0.007 (2) −0.001 (2) 0.010 (2) C18 0.070 (2) 0.039 (2) 0.062 (2) −0.0101 (18) −0.0047 (19) 0.0067 (17) C19 0.087 (3) 0.058 (2) 0.0420 (19) 0.002 (2) 0.0076 (19) 0.0045 (17) C20 0.0397 (18) 0.050 (2) 0.0390 (16) 0.0036 (15) 0.0035 (14) 0.0045 (15)

Geometric parameters (Å, º)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o1025–o1027

N3—C18 1.360 (5) C13—C18 1.402 (5) N3—H3A 0.8600 C14—C15 1.369 (5) C1—C2 1.386 (4) C14—H14 0.9300 C1—C6 1.391 (4) C15—C16 1.391 (6) C1—C8 1.478 (4) C15—H15 0.9300 C2—C3 1.379 (4) C16—C17 1.367 (6) C2—H2 0.9300 C16—H16 0.9300 C3—C4 1.372 (4) C17—C18 1.383 (5) C3—H3 0.9300 C17—H17 0.9300 C4—C5 1.390 (4) C19—H19 0.9300 C5—C6 1.368 (4)

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o1025–o1027

O2—C8—C1 122.6 (3) N3—C19—H19 124.5 N1—C8—C1 115.5 (3) O3—C20—O4 123.9 (3) N2—C9—N1 117.3 (3) O3—C20—C10 124.0 (3) N2—C9—S1 123.6 (2) O4—C20—C10 112.1 (3)

C6—C1—C2—C3 −1.0 (5) C10—C11—C12—C19 89.0 (4) C8—C1—C2—C3 179.4 (3) C10—C11—C12—C13 −89.8 (4) C1—C2—C3—C4 −0.5 (5) C19—C12—C13—C14 177.7 (4) C7—O1—C4—C3 1.1 (5) C11—C12—C13—C14 −3.3 (6) C7—O1—C4—C5 −178.4 (3) C19—C12—C13—C18 0.4 (4) C2—C3—C4—O1 −178.3 (3) C11—C12—C13—C18 179.4 (3) C2—C3—C4—C5 1.2 (5) C18—C13—C14—C15 0.9 (5) O1—C4—C5—C6 179.2 (3) C12—C13—C14—C15 −176.1 (4) C3—C4—C5—C6 −0.3 (5) C13—C14—C15—C16 0.1 (6) C4—C5—C6—C1 −1.2 (5) C14—C15—C16—C17 −1.3 (7) C2—C1—C6—C5 1.8 (5) C15—C16—C17—C18 1.4 (6) C8—C1—C6—C5 −178.6 (3) C19—N3—C18—C17 −176.6 (4) C9—N1—C8—O2 1.7 (5) C19—N3—C18—C13 1.2 (4) C9—N1—C8—C1 −175.9 (3) C16—C17—C18—N3 177.1 (4) C2—C1—C8—O2 155.1 (3) C16—C17—C18—C13 −0.3 (6) C6—C1—C8—O2 −24.5 (5) C14—C13—C18—N3 −178.8 (3) C2—C1—C8—N1 −27.4 (4) C12—C13—C18—N3 −1.0 (4) C6—C1—C8—N1 153.0 (3) C14—C13—C18—C17 −0.8 (5) C10—N2—C9—N1 −179.4 (3) C12—C13—C18—C17 177.0 (3) C10—N2—C9—S1 0.9 (4) C13—C12—C19—N3 0.3 (4) C8—N1—C9—N2 −3.0 (5) C11—C12—C19—N3 −178.8 (3) C8—N1—C9—S1 176.7 (2) C18—N3—C19—C12 −0.9 (4) C9—N2—C10—C20 −147.0 (3) N2—C10—C20—O3 −21.3 (4) C9—N2—C10—C11 91.2 (4) C11—C10—C20—O3 101.1 (4) N2—C10—C11—C12 54.7 (4) N2—C10—C20—O4 161.6 (3) C20—C10—C11—C12 −65.5 (3) C11—C10—C20—O4 −76.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C10—H10···S1 0.98 2.64 3.059 (3) 106 N2—H2A···O2 0.86 1.95 2.628 (3) 135 N2—H2A···O3 0.86 2.37 2.680 (3) 102 N1—H1A···O3i 0.86 2.13 2.955 (3) 160

N3—H3A···S1ii 0.86 2.64 3.434 (3) 154

O4—H4···S1iii 0.82 2.40 3.219 (3) 173

C2—H2···O3i 0.93 2.44 2.986 (4) 118

C3—H3···O2i 0.93 2.53 3.332 (4) 145

Figure

Table 1

References

Related documents

Out- siders” to distinguish between the urban dwellers (insid- ers) and rural migrants (outsiders). “Good jobs” vs. “Bad jobs” are also labels used to distinguish between formal

Although the Chaos hypothesis of Brain dynamics ( i.e. The hypothesis that the brain is a dynamical system of very high complexity and that instances of pathogeny in the brain lead

The content to be used in the class instruction was developed and based on the revised KIE 2002 chemistry syllabus, teachers guide, students textbook and other relevant

Pour la nuptialité, comme pour la fécondité, les événe- ments sont publiés dans la définition du pays et les taux selon l'âge atteint dans l'année. En raison de différences

Piarco showed a notably lower response to water content compared to the other soils, whilst Chagaramus which had low BDs showed PR val- ues similar to and even greater than some

Directive on the Coordination of laws, regulations and administrative provisions relating to the freedom of management and investment of funds held by

Taux de disponibilité en énergie : quotient de l'énergie qu'aurait pu produire, pendant la période considérée, la puissance disponible par l'énergie qu'aurait pu produire,

Due to the limited AERONET AOD data that is insufficiently for a statistically significant trend analysis, the annual trends for both MODIS Terra AOD abso- lute values and ÅEA over