• No results found

Bis(5,5 di­phenyl­hydantoinato κN3)bis­­(1H imidazole κN3)copper(II) monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis(5,5 di­phenyl­hydantoinato κN3)bis­­(1H imidazole κN3)copper(II) monohydrate"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1956

Xuet al. [Cu(C

15H11N2O2)2(C3H4N2)2]H2O doi:10.1107/S1600536806028509 Acta Cryst.(2006). E62, m1956–m1957

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis(5,5-diphenylhydantoinato-j

N

3

)bis(1

H

-imid-azole-j

N

3

)copper(II) monohydrate

Xing-You Xu,a* Tong-Tao Xu,b He-Ping Ma,aXi-Lan Hucand Da-Qi Wangd

aDepartment of Chemical Engineering, Huaihai

Institute of Technology, Lianyungang 222005, People’s Republic of China,bMaterials

Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China,cDepartment of Chemical Engineering, Lianyungang Technical College, Lianyungang 222005, People’s Republic of China, anddCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People’s Republic of China

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.010 A˚ Rfactor = 0.049 wRfactor = 0.134

Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 23 June 2006 Accepted 21 July 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, [Cu(C15H11N2O2)2(C3H4N2)2]H2O, the

CuII ion has a distorted square-planar CuN4 coordination

environment. The crystal structure is stabilized by inter-molecular hydrogen bonding.

Comment

As part of an ongoing investigation of CuII complexes, we

report here the structure of the title CuIIcomplex, (I).

The molecular structure of (I) is shown in Fig. 1. The CuII

ion has a distorted square-planar CuN4 coordination

geometry, formed by two 5,5-diphenylhydantoin and two

imidazole ligands. The N5—Cu1—N7 bond angle of 166.2 (3)

indicates the degree of distortion (Table 1). The dihedral angle between the imidazole rings is 87.0 (6).

The solvent water molecule links with the complex

mol-ecule via O—H O hydrogen bonding, and intermolecular

N—H O hydrogen bonding occurs between neighbouring

complex molecules (Table 2); these interactions stabilize the crystal structure of (I).

Experimental

To a stirred methanol solution (20 ml) of 5,5-diphenylhydantoin (1 mmol) and Cu(CH3COO)22H2O (1 mmol) was added dropwise a

methanol solution (10 ml) of imidazole (1.0 mmol) at room temperature. After stirring for 3 h at 320 K, the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.

Crystal data

[Cu(C15H11N2O2)2(C3H4N2)2]H2O

Mr= 720.24

Orthorhombic,P212121

a= 8.615 (2) A˚

b= 16.576 (3) A˚

c= 24.680 (4) A˚

V= 3524.4 (12) A˚3

Z= 4

Dx= 1.357 Mg m3 MoKradiation

= 0.67 mm1

T= 298 (2) K Prism, red

(2)

Data collection

Bruker APEX area-dectector diffractometer

’and!scans

Absorption correction: multi-scan

(SADABS; Sheldrick, 2002)

Tmin= 0.784,Tmax= 0.930

18479 measured reflections 6182 independent reflections 3915 reflections withI> 2(I)

Rint= 0.061

max= 25.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.049

wR(F2) = 0.134

S= 0.97 6182 reflections 451 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0594P)2 + 1.5734P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.53 e A˚3

min=0.38 e A˚ 3

Absolute structure: Flack (1983), 2664 Friedel pairs

[image:2.610.316.567.73.235.2]

Flack parameter: 0.52 (2)

Table 1

Selected geometric parameters (A˚ ,).

Cu1—N1 1.974 (4)

Cu1—N3 1.969 (4)

Cu1—N5 1.971 (5)

Cu1—N7 1.990 (5)

N3—Cu1—N5 91.10 (17)

N3—Cu1—N1 174.78 (17)

N5—Cu1—N1 93.71 (18)

N3—Cu1—N7 87.41 (18)

N5—Cu1—N7 166.2 (2)

N1—Cu1—N7 88.40 (19)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H2 O4i 0.86 2.13 2.950 (5) 158

N4—H4 O2ii

0.86 2.02 2.827 (5) 156

N6—H6 O3iii

0.86 1.88 2.720 (7) 164

N8—H8 O5iv

0.86 1.94 2.787 (7) 167

O5—H1 O4 0.85 1.90 2.714 (6) 160

O5—H3 O2 0.85 1.89 2.665 (6) 152

Symmetry codes: (i) xþ1;y1 2;zþ

3

2; (ii) xþ1;yþ 1 2;zþ

3 2; (iii)

x1 2;yþ

3

2;zþ2; (iv)xþ1;y;z.

H atoms were positioned geometrically, with C—H = 0.93 and N— H = 0.86 A˚ , and refined in riding mode, withUiso(H) = 1.2Ueq(C,N). A

solvent-accessible void of 46 A˚3 was found in the final difference Fourier map but no solvent molecule could be located there.

Data collection:SMART(Bruker, 2003); cell refinement:SAINT (Bruker, 2003); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

This work was supported by the Key Laboratory of Marine Biotechnology of Jiangsu Province.

References

Bruker (2003).SAINT(Version 6.45a) andSMART(Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Sheldrick, G. M. (1997a).SHELXS97andSHELXL97. University Go¨ttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2002).SADABS. Version 2.03. University of Go¨ttingen, Germany.

Figure 1

[image:2.610.46.295.291.351.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, m1956–m1957

supporting information

Acta Cryst. (2006). E62, m1956–m1957 [https://doi.org/10.1107/S1600536806028509]

Bis(5,5-diphenylhydantoinato-

κ

N

3

)bis(1

H

-imidazole-

κ

N

3

)copper(II)

monohydrate

Xing-You Xu, Tong-Tao Xu, He-Ping Ma, Xi-Lan Hu and Da-Qi Wang

Bis(5,5-diphenylhydantoinato-κN3)bis(1H-imidazole-κN3)copper(II) monohydrate

Crystal data

[Cu(C15H11N2O2)2(C3H4N2)2]·H2O Mr = 720.24

Orthorhombic, P212121

Hall symbol: p 2ac 2ab

a = 8.615 (2) Å

b = 16.576 (3) Å

c = 24.680 (4) Å

V = 3524.4 (12) Å3 Z = 4

F(000) = 1492

Dx = 1.357 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3376 reflections

θ = 2.5–19.6°

µ = 0.67 mm−1 T = 298 K Prism, red

0.38 × 0.21 × 0.11 mm

Data collection

Bruker APEX area-dectector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 2002)

Tmin = 0.784, Tmax = 0.930

18479 measured reflections 6182 independent reflections 3915 reflections with I > 2σ(I)

Rint = 0.061

θmax = 25.0°, θmin = 1.5° h = −10→10

k = −15→19

l = −29→27

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.049 wR(F2) = 0.134 S = 0.97 6182 reflections 451 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0594P)2 + 1.5734P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.53 e Å−3

Δρmin = −0.38 e Å−3

Special details

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cu1 0.58596 (8) 0.69500 (4) 0.85289 (2) 0.0434 (2)

N1 0.5636 (6) 0.5773 (2) 0.86204 (16) 0.0444 (11)

N2 0.5427 (5) 0.4479 (2) 0.83651 (16) 0.0480 (13)

H2 0.5134 0.4065 0.8181 0.058*

N3 0.6159 (5) 0.8104 (3) 0.83714 (14) 0.0385 (10)

N4 0.6543 (5) 0.9285 (2) 0.79484 (17) 0.0410 (12)

H4 0.6542 0.9639 0.7694 0.049*

N5 0.4273 (7) 0.7204 (3) 0.90784 (17) 0.0580 (13)

N6 0.3015 (9) 0.7253 (5) 0.9838 (2) 0.106 (3)

H6 0.2695 0.7116 1.0155 0.127*

N7 0.7812 (7) 0.6745 (3) 0.8120 (2) 0.0610 (15)

N8 1.0276 (7) 0.6759 (3) 0.7900 (3) 0.088 (2)

H8 1.1254 0.6862 0.7916 0.106*

O1 0.7063 (6) 0.5611 (2) 0.93947 (17) 0.0708 (13)

O2 0.4388 (5) 0.5458 (2) 0.78171 (14) 0.0527 (11)

O3 0.7520 (5) 0.8341 (2) 0.91491 (15) 0.0615 (12)

O4 0.5168 (4) 0.83038 (19) 0.75082 (14) 0.0478 (10)

O5 0.3464 (5) 0.6992 (3) 0.77890 (19) 0.0871 (15)

H1 0.4009 0.7346 0.7628 0.131*

H3 0.3829 0.6541 0.7686 0.131*

C1 0.6410 (7) 0.5345 (3) 0.9003 (2) 0.0502 (16)

C2 0.5074 (7) 0.5248 (3) 0.8233 (2) 0.0414 (13)

C3 0.6355 (6) 0.4433 (3) 0.8852 (2) 0.0425 (14)

C4 0.5571 (7) 0.3977 (3) 0.9304 (2) 0.0424 (14)

C5 0.4007 (9) 0.3859 (4) 0.9305 (3) 0.078 (2)

H5 0.3431 0.4030 0.9008 0.094*

C6 0.3249 (10) 0.3496 (5) 0.9732 (4) 0.095 (3)

H6A 0.2178 0.3427 0.9720 0.114*

C7 0.4058 (11) 0.3240 (4) 1.0165 (3) 0.079 (2)

H7 0.3551 0.2990 1.0452 0.094*

C8 0.5592 (11) 0.3348 (4) 1.0181 (2) 0.077 (2)

H8A 0.6159 0.3174 1.0479 0.093*

C9 0.6344 (8) 0.3722 (4) 0.9748 (2) 0.070 (2)

H9 0.7412 0.3798 0.9765 0.084*

C10 0.7951 (8) 0.4098 (4) 0.8708 (2) 0.0520 (16)

C11 0.9198 (9) 0.4582 (4) 0.8620 (3) 0.077 (2)

H11 0.9109 0.5136 0.8671 0.093*

C12 1.0618 (10) 0.4254 (7) 0.8452 (4) 0.103 (3)

H12 1.1469 0.4590 0.8400 0.124*

C13 1.0758 (11) 0.3457 (7) 0.8366 (3) 0.093 (3)

H13 1.1700 0.3243 0.8251 0.111*

C14 0.9535 (11) 0.2972 (6) 0.8445 (3) 0.096 (3)

H14 0.9631 0.2421 0.8384 0.115*

C15 0.8122 (9) 0.3287 (4) 0.8620 (3) 0.076 (2)

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, m1956–m1957

C16 0.6971 (7) 0.8568 (3) 0.8710 (2) 0.0435 (14)

C17 0.5881 (7) 0.8548 (3) 0.79071 (19) 0.0351 (11)

C18 0.7258 (6) 0.9405 (3) 0.8476 (2) 0.0383 (12)

C19 0.9017 (7) 0.9537 (3) 0.8429 (2) 0.0420 (13)

C20 0.9832 (8) 0.9216 (4) 0.8004 (3) 0.0576 (17)

H20 0.9311 0.8942 0.7730 0.069*

C21 1.1425 (9) 0.9297 (5) 0.7982 (3) 0.074 (2)

H21 1.1970 0.9070 0.7694 0.088*

C22 1.2201 (9) 0.9700 (5) 0.8371 (4) 0.086 (3)

H22 1.3273 0.9760 0.8349 0.103*

C23 1.1417 (9) 1.0016 (5) 0.8793 (4) 0.095 (3)

H23 1.1954 1.0287 0.9065 0.114*

C24 0.9797 (8) 0.9942 (4) 0.8827 (3) 0.077 (2)

H24 0.9261 1.0165 0.9118 0.092*

C25 0.6439 (7) 1.0073 (4) 0.8787 (2) 0.0492 (16)

C26 0.6231 (7) 1.0808 (3) 0.8547 (3) 0.0640 (18)

H26 0.6635 1.0900 0.8203 0.077*

C27 0.5430 (9) 1.1417 (4) 0.8807 (4) 0.089 (3)

H27 0.5285 1.1910 0.8635 0.107*

C28 0.4854 (9) 1.1301 (5) 0.9313 (4) 0.088 (3)

H28 0.4319 1.1712 0.9488 0.106*

C29 0.5065 (10) 1.0585 (6) 0.9557 (3) 0.092 (3)

H29 0.4684 1.0505 0.9906 0.110*

C30 0.5845 (9) 0.9965 (4) 0.9296 (2) 0.0692 (18)

H30 0.5967 0.9471 0.9469 0.083*

C31 0.4011 (9) 0.6846 (4) 0.9536 (2) 0.0723 (19)

H31 0.4468 0.6362 0.9640 0.087*

C32 0.2585 (13) 0.7920 (6) 0.9563 (4) 0.137 (4)

H32 0.1903 0.8321 0.9677 0.165*

C33 0.3348 (10) 0.7883 (5) 0.9091 (3) 0.110 (3)

H33 0.3266 0.8260 0.8813 0.132*

C34 0.9184 (9) 0.7023 (4) 0.8238 (3) 0.0691 (17)

H34 0.9380 0.7368 0.8528 0.083*

C35 0.9550 (10) 0.6300 (4) 0.7528 (4) 0.093 (3)

H35 1.0002 0.6043 0.7233 0.112*

C36 0.8038 (11) 0.6288 (4) 0.7668 (3) 0.087 (2)

H36 0.7264 0.6009 0.7484 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cu1 0.0588 (4) 0.0314 (3) 0.0402 (3) −0.0075 (4) 0.0066 (4) 0.0001 (3)

N1 0.061 (3) 0.028 (2) 0.045 (2) −0.009 (2) −0.006 (3) 0.001 (2)

N2 0.066 (3) 0.026 (2) 0.052 (3) −0.004 (2) −0.022 (2) −0.0017 (19)

N3 0.045 (3) 0.038 (2) 0.032 (2) −0.006 (2) −0.0011 (18) 0.000 (2)

N4 0.052 (3) 0.034 (2) 0.037 (2) −0.008 (2) −0.010 (2) 0.006 (2)

N5 0.079 (4) 0.052 (3) 0.043 (3) 0.000 (3) 0.017 (3) 0.009 (2)

(6)

N7 0.070 (4) 0.040 (3) 0.073 (4) −0.007 (3) 0.021 (3) −0.006 (3)

N8 0.065 (4) 0.061 (4) 0.138 (5) 0.005 (3) 0.041 (4) 0.000 (4)

O1 0.094 (4) 0.057 (3) 0.062 (3) −0.018 (3) −0.033 (3) −0.006 (2)

O2 0.072 (3) 0.038 (2) 0.047 (2) 0.003 (2) −0.022 (2) 0.0051 (17)

O3 0.080 (3) 0.060 (3) 0.044 (2) −0.008 (2) −0.016 (2) 0.0094 (19)

O4 0.063 (3) 0.038 (2) 0.042 (2) −0.0105 (18) −0.0102 (19) −0.0026 (17)

O5 0.090 (4) 0.044 (2) 0.128 (4) 0.004 (3) 0.040 (3) 0.003 (3)

C1 0.063 (5) 0.040 (3) 0.048 (3) −0.012 (3) −0.016 (3) −0.001 (3)

C2 0.050 (4) 0.030 (3) 0.045 (3) −0.007 (3) −0.002 (3) −0.001 (3)

C3 0.046 (4) 0.041 (3) 0.040 (3) −0.008 (3) −0.011 (3) 0.005 (3)

C4 0.050 (4) 0.030 (3) 0.047 (3) −0.006 (3) −0.002 (3) 0.002 (2)

C5 0.059 (5) 0.087 (5) 0.089 (5) −0.001 (4) −0.003 (4) 0.031 (4)

C6 0.059 (5) 0.111 (7) 0.114 (7) −0.006 (5) 0.017 (5) 0.033 (6)

C7 0.093 (6) 0.067 (5) 0.075 (5) −0.006 (5) 0.027 (5) 0.005 (4)

C8 0.101 (6) 0.084 (5) 0.047 (4) 0.003 (5) −0.007 (4) 0.016 (3)

C9 0.064 (5) 0.093 (5) 0.053 (4) −0.018 (4) −0.008 (3) 0.019 (4)

C10 0.054 (4) 0.062 (4) 0.040 (3) −0.004 (3) −0.008 (3) 0.009 (3)

C11 0.055 (4) 0.083 (5) 0.094 (5) −0.010 (5) −0.011 (5) 0.014 (4)

C12 0.067 (6) 0.134 (8) 0.108 (6) 0.002 (6) −0.007 (6) 0.018 (6)

C13 0.066 (5) 0.155 (9) 0.057 (4) 0.011 (7) 0.000 (4) 0.006 (5)

C14 0.102 (7) 0.100 (6) 0.086 (5) 0.048 (6) 0.006 (5) −0.017 (5)

C15 0.082 (5) 0.066 (5) 0.082 (5) 0.008 (4) −0.001 (4) −0.003 (4)

C16 0.049 (4) 0.044 (3) 0.037 (3) −0.006 (3) 0.000 (3) 0.003 (3)

C17 0.037 (3) 0.031 (3) 0.037 (3) 0.004 (3) 0.000 (3) −0.003 (2)

C18 0.045 (3) 0.030 (3) 0.040 (3) −0.004 (2) −0.002 (3) −0.004 (3)

C19 0.043 (3) 0.032 (3) 0.051 (3) −0.004 (3) −0.002 (3) −0.001 (2)

C20 0.061 (5) 0.058 (4) 0.054 (4) −0.002 (3) 0.005 (3) −0.001 (3)

C21 0.059 (5) 0.082 (5) 0.081 (5) 0.011 (4) 0.020 (4) 0.005 (4)

C22 0.044 (5) 0.084 (6) 0.129 (8) −0.002 (4) 0.001 (5) 0.013 (5)

C23 0.054 (5) 0.098 (6) 0.133 (8) −0.013 (5) −0.023 (5) −0.036 (6)

C24 0.056 (5) 0.086 (5) 0.089 (5) −0.011 (4) −0.004 (4) −0.039 (4)

C25 0.043 (4) 0.048 (4) 0.057 (4) −0.004 (3) −0.005 (3) −0.014 (3)

C26 0.074 (5) 0.033 (3) 0.085 (4) −0.004 (3) 0.009 (4) −0.007 (3)

C27 0.075 (6) 0.046 (4) 0.148 (8) −0.005 (4) 0.001 (5) −0.026 (5)

C28 0.058 (5) 0.075 (6) 0.132 (8) 0.008 (4) 0.001 (5) −0.046 (6)

C29 0.084 (6) 0.110 (7) 0.082 (5) 0.008 (6) 0.017 (4) −0.030 (5)

C30 0.073 (5) 0.068 (4) 0.067 (4) 0.008 (5) 0.005 (4) −0.011 (3)

C31 0.084 (5) 0.077 (5) 0.056 (4) −0.008 (5) 0.004 (4) 0.012 (4)

C32 0.158 (10) 0.119 (7) 0.134 (8) 0.056 (8) 0.100 (7) 0.049 (7)

C33 0.134 (8) 0.093 (6) 0.103 (6) 0.044 (6) 0.074 (6) 0.037 (5)

C34 0.070 (5) 0.043 (3) 0.094 (4) 0.001 (4) 0.023 (4) −0.009 (3)

C35 0.093 (7) 0.066 (5) 0.121 (7) −0.006 (4) 0.060 (6) −0.016 (5)

C36 0.102 (7) 0.067 (5) 0.093 (6) −0.014 (5) 0.040 (5) −0.010 (4)

Geometric parameters (Å, º)

Cu1—N1 1.974 (4) C10—C11 1.359 (9)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, m1956–m1957

Cu1—N5 1.971 (5) C11—C12 1.402 (11)

Cu1—N7 1.990 (5) C11—H11 0.9300

N1—C1 1.356 (6) C12—C13 1.343 (11)

N1—C2 1.381 (6) C12—H12 0.9300

N2—C2 1.351 (6) C13—C14 1.340 (11)

N2—C3 1.444 (6) C13—H13 0.9300

N2—H2 0.8600 C14—C15 1.393 (10)

N3—C16 1.334 (6) C14—H14 0.9300

N3—C17 1.383 (6) C15—H15 0.9300

N4—C17 1.351 (6) C16—C18 1.524 (7)

N4—C18 1.455 (6) C18—C25 1.519 (7)

N4—H4 0.8600 C18—C19 1.535 (8)

N5—C31 1.296 (7) C19—C24 1.367 (8)

N5—C33 1.380 (9) C19—C20 1.369 (8)

N6—C31 1.321 (9) C20—C21 1.380 (9)

N6—C32 1.350 (10) C20—H20 0.9300

N6—H6 0.8600 C21—C22 1.348 (10)

N7—C34 1.302 (8) C21—H21 0.9300

N7—C36 1.362 (8) C22—C23 1.348 (11)

N8—C34 1.332 (8) C22—H22 0.9300

N8—C35 1.348 (9) C23—C24 1.403 (10)

N8—H8 0.8600 C23—H23 0.9300

O1—C1 1.203 (6) C24—H24 0.9300

O2—C2 1.234 (6) C25—C26 1.367 (8)

O3—C16 1.240 (6) C25—C30 1.370 (8)

O4—C17 1.229 (6) C26—C27 1.381 (9)

O5—H1 0.8500 C26—H26 0.9300

O5—H3 0.8499 C27—C28 1.356 (11)

C1—C3 1.557 (7) C27—H27 0.9300

C3—C4 1.509 (7) C28—C29 1.344 (11)

C3—C10 1.524 (8) C28—H28 0.9300

C4—C9 1.348 (8) C29—C30 1.387 (9)

C4—C5 1.361 (9) C29—H29 0.9300

C5—C6 1.376 (9) C30—H30 0.9300

C5—H5 0.9300 C31—H31 0.9300

C6—C7 1.345 (11) C32—C33 1.338 (10)

C6—H6A 0.9300 C32—H32 0.9300

C7—C8 1.335 (11) C33—H33 0.9300

C7—H7 0.9300 C34—H34 0.9300

C8—C9 1.395 (9) C35—C36 1.348 (10)

C8—H8A 0.9300 C35—H35 0.9300

C9—H9 0.9300 C36—H36 0.9300

N3—Cu1—N5 91.10 (17) C13—C14—C15 120.5 (8)

N3—Cu1—N1 174.78 (17) C13—C14—H14 119.7

N5—Cu1—N1 93.71 (18) C15—C14—H14 119.7

N3—Cu1—N7 87.41 (18) C10—C15—C14 120.7 (8)

(8)

N1—Cu1—N7 88.40 (19) C14—C15—H15 119.6

C1—N1—C2 109.0 (4) O3—C16—N3 125.0 (5)

C1—N1—Cu1 123.3 (4) O3—C16—C18 123.0 (5)

C2—N1—Cu1 125.3 (3) N3—C16—C18 111.8 (4)

C2—N2—C3 112.1 (4) O4—C17—N4 124.7 (4)

C2—N2—H2 124.0 O4—C17—N3 125.1 (4)

C3—N2—H2 124.0 N4—C17—N3 110.2 (4)

C16—N3—C17 107.7 (4) N4—C18—C25 110.8 (4)

C16—N3—Cu1 120.3 (3) N4—C18—C16 98.4 (4)

C17—N3—Cu1 131.2 (3) C25—C18—C16 113.4 (5)

C17—N4—C18 111.7 (4) N4—C18—C19 111.7 (4)

C17—N4—H4 124.1 C25—C18—C19 113.1 (4)

C18—N4—H4 124.1 C16—C18—C19 108.6 (4)

C31—N5—C33 104.7 (6) C24—C19—C20 119.2 (6)

C31—N5—Cu1 128.6 (5) C24—C19—C18 120.0 (5)

C33—N5—Cu1 126.2 (4) C20—C19—C18 120.6 (5)

C31—N6—C32 108.2 (6) C19—C20—C21 120.2 (7)

C31—N6—H6 125.9 C19—C20—H20 119.9

C32—N6—H6 125.9 C21—C20—H20 119.9

C34—N7—C36 104.5 (6) C22—C21—C20 120.8 (8)

C34—N7—Cu1 126.4 (5) C22—C21—H21 119.6

C36—N7—Cu1 129.1 (5) C20—C21—H21 119.6

C34—N8—C35 106.6 (7) C23—C22—C21 119.7 (7)

C34—N8—H8 126.7 C23—C22—H22 120.2

C35—N8—H8 126.7 C21—C22—H22 120.2

H1—O5—H3 105.4 C22—C23—C24 120.7 (8)

O1—C1—N1 126.6 (5) C22—C23—H23 119.6

O1—C1—C3 124.3 (5) C24—C23—H23 119.6

N1—C1—C3 109.0 (4) C19—C24—C23 119.3 (7)

O2—C2—N2 125.1 (5) C19—C24—H24 120.3

O2—C2—N1 124.5 (5) C23—C24—H24 120.3

N2—C2—N1 110.4 (5) C26—C25—C30 117.7 (6)

N2—C3—C4 113.2 (4) C26—C25—C18 119.5 (5)

N2—C3—C10 109.0 (4) C30—C25—C18 122.8 (6)

C4—C3—C10 113.2 (5) C25—C26—C27 121.0 (7)

N2—C3—C1 99.5 (4) C25—C26—H26 119.5

C4—C3—C1 108.8 (4) C27—C26—H26 119.5

C10—C3—C1 112.4 (5) C28—C27—C26 120.5 (8)

C9—C4—C5 116.3 (6) C28—C27—H27 119.8

C9—C4—C3 122.4 (6) C26—C27—H27 119.8

C5—C4—C3 121.1 (5) C29—C28—C27 119.3 (8)

C4—C5—C6 122.3 (7) C29—C28—H28 120.3

C4—C5—H5 118.9 C27—C28—H28 120.3

C6—C5—H5 118.9 C28—C29—C30 120.7 (8)

C7—C6—C5 119.9 (8) C28—C29—H29 119.6

C7—C6—H6A 120.0 C30—C29—H29 119.6

C5—C6—H6A 120.0 C25—C30—C29 120.8 (7)

(9)

supporting information

sup-7

Acta Cryst. (2006). E62, m1956–m1957

C8—C7—H7 120.2 C29—C30—H30 119.6

C6—C7—H7 120.2 N5—C31—N6 111.8 (7)

C7—C8—C9 119.8 (7) N5—C31—H31 124.1

C7—C8—H8A 120.1 N6—C31—H31 124.1

C9—C8—H8A 120.1 C33—C32—N6 105.4 (8)

C4—C9—C8 122.1 (7) C33—C32—H32 127.3

C4—C9—H9 119.0 N6—C32—H32 127.3

C8—C9—H9 119.0 C32—C33—N5 109.9 (7)

C11—C10—C15 118.0 (7) C32—C33—H33 125.1

C11—C10—C3 122.4 (6) N5—C33—H33 125.1

C15—C10—C3 119.4 (6) N7—C34—N8 112.6 (6)

C10—C11—C12 120.5 (8) N7—C34—H34 123.7

C10—C11—H11 119.7 N8—C34—H34 123.7

C12—C11—H11 119.7 C36—C35—N8 106.4 (7)

C13—C12—C11 120.5 (9) C36—C35—H35 126.8

C13—C12—H12 119.8 N8—C35—H35 126.8

C11—C12—H12 119.8 C35—C36—N7 109.9 (8)

C14—C13—C12 119.7 (9) C35—C36—H36 125.1

C14—C13—H13 120.1 N7—C36—H36 125.1

C12—C13—H13 120.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2···O4i 0.86 2.13 2.950 (5) 158

N4—H4···O2ii 0.86 2.02 2.827 (5) 156

N6—H6···O3iii 0.86 1.88 2.720 (7) 164

N8—H8···O5iv 0.86 1.94 2.787 (7) 167

O5—H1···O4 0.85 1.90 2.714 (6) 160

O5—H3···O2 0.85 1.89 2.665 (6) 152

Figure

Figure 1

References

Related documents

The aim of this study was to find out the preferred methods of modern contraception and to determine the trend of acceptance of contraception in the new

The pur- pose of this article is to examine the impacts of educational mismatches from their both forms and dimensions (match, overeducation, horizontal mismatch and double mismatch)

BEER chrF Char acTER sentBLEU hLEPORa_baseline Y iSi.2 YiSi−2 hLEPORa_baseline sentBLEU CharacTER chrF BEER chrF+ YiSi−0 YiSi−1 EED Y iSi.1 EED BEER ESIM Y iSi.0 chrF.. chrF

The policy indicator is the announced benchmark lending rate change for the benchmark-lending-rate sample, the announced required reserve ratio adjustment for the

The third and fourth variables, central bank’s bills rate ( por ) and money supply ( mon ), are the indicators to represent the monetary policy stance of the Bank of

In Pro- ceedings of the 53rd Annual Meeting of the Associ- ation for Computational Linguistics and the 7th In- ternational Joint Conference on Natural Language Processing (Volume

To show that our model can select sentence parts that are related to domain aspects, we visualize the self-attention results on some tweet examples that are correctly classified by

Later we consider in more details the application to Bitcoin where the hash rates are assumed to be proportional to the number of blocks mined by a miner in a given time period..