metal-organic papers
m1956
Xuet al. [Cu(C15H11N2O2)2(C3H4N2)2]H2O doi:10.1107/S1600536806028509 Acta Cryst.(2006). E62, m1956–m1957
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Bis(5,5-diphenylhydantoinato-j
N
3)bis(1
H
-imid-azole-j
N
3)copper(II) monohydrate
Xing-You Xu,a* Tong-Tao Xu,b He-Ping Ma,aXi-Lan Hucand Da-Qi Wangd
aDepartment of Chemical Engineering, Huaihai
Institute of Technology, Lianyungang 222005, People’s Republic of China,bMaterials
Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People’s Republic of China,cDepartment of Chemical Engineering, Lianyungang Technical College, Lianyungang 222005, People’s Republic of China, anddCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People’s Republic of China
Correspondence e-mail: [email protected]
Key indicators
Single-crystal X-ray study T= 298 K
Mean(C–C) = 0.010 A˚ Rfactor = 0.049 wRfactor = 0.134
Data-to-parameter ratio = 13.7
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
Received 23 June 2006 Accepted 21 July 2006
#2006 International Union of Crystallography All rights reserved
In the title compound, [Cu(C15H11N2O2)2(C3H4N2)2]H2O, the
CuII ion has a distorted square-planar CuN4 coordination
environment. The crystal structure is stabilized by inter-molecular hydrogen bonding.
Comment
As part of an ongoing investigation of CuII complexes, we
report here the structure of the title CuIIcomplex, (I).
The molecular structure of (I) is shown in Fig. 1. The CuII
ion has a distorted square-planar CuN4 coordination
geometry, formed by two 5,5-diphenylhydantoin and two
imidazole ligands. The N5—Cu1—N7 bond angle of 166.2 (3)
indicates the degree of distortion (Table 1). The dihedral angle between the imidazole rings is 87.0 (6).
The solvent water molecule links with the complex
mol-ecule via O—H O hydrogen bonding, and intermolecular
N—H O hydrogen bonding occurs between neighbouring
complex molecules (Table 2); these interactions stabilize the crystal structure of (I).
Experimental
To a stirred methanol solution (20 ml) of 5,5-diphenylhydantoin (1 mmol) and Cu(CH3COO)22H2O (1 mmol) was added dropwise a
methanol solution (10 ml) of imidazole (1.0 mmol) at room temperature. After stirring for 3 h at 320 K, the solution was filtered. Single crystals of (I) were obtained from the filtrate after 10 d.
Crystal data
[Cu(C15H11N2O2)2(C3H4N2)2]H2O
Mr= 720.24
Orthorhombic,P212121
a= 8.615 (2) A˚
b= 16.576 (3) A˚
c= 24.680 (4) A˚
V= 3524.4 (12) A˚3
Z= 4
Dx= 1.357 Mg m3 MoKradiation
= 0.67 mm1
T= 298 (2) K Prism, red
Data collection
Bruker APEX area-dectector diffractometer
’and!scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
Tmin= 0.784,Tmax= 0.930
18479 measured reflections 6182 independent reflections 3915 reflections withI> 2(I)
Rint= 0.061
max= 25.0
Refinement
Refinement onF2 R[F2> 2(F2)] = 0.049
wR(F2) = 0.134
S= 0.97 6182 reflections 451 parameters
H-atom parameters constrained
w= 1/[2
(Fo2) + (0.0594P)2 + 1.5734P]
whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001
max= 0.53 e A˚3
min=0.38 e A˚ 3
Absolute structure: Flack (1983), 2664 Friedel pairs
[image:2.610.316.567.73.235.2]Flack parameter: 0.52 (2)
Table 1
Selected geometric parameters (A˚ ,).
Cu1—N1 1.974 (4)
Cu1—N3 1.969 (4)
Cu1—N5 1.971 (5)
Cu1—N7 1.990 (5)
N3—Cu1—N5 91.10 (17)
N3—Cu1—N1 174.78 (17)
N5—Cu1—N1 93.71 (18)
N3—Cu1—N7 87.41 (18)
N5—Cu1—N7 166.2 (2)
N1—Cu1—N7 88.40 (19)
Table 2
Hydrogen-bond geometry (A˚ ,).
D—H A D—H H A D A D—H A
N2—H2 O4i 0.86 2.13 2.950 (5) 158
N4—H4 O2ii
0.86 2.02 2.827 (5) 156
N6—H6 O3iii
0.86 1.88 2.720 (7) 164
N8—H8 O5iv
0.86 1.94 2.787 (7) 167
O5—H1 O4 0.85 1.90 2.714 (6) 160
O5—H3 O2 0.85 1.89 2.665 (6) 152
Symmetry codes: (i) xþ1;y1 2;zþ
3
2; (ii) xþ1;yþ 1 2;zþ
3 2; (iii)
x1 2;yþ
3
2;zþ2; (iv)xþ1;y;z.
H atoms were positioned geometrically, with C—H = 0.93 and N— H = 0.86 A˚ , and refined in riding mode, withUiso(H) = 1.2Ueq(C,N). A
solvent-accessible void of 46 A˚3 was found in the final difference Fourier map but no solvent molecule could be located there.
Data collection:SMART(Bruker, 2003); cell refinement:SAINT (Bruker, 2003); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.
This work was supported by the Key Laboratory of Marine Biotechnology of Jiangsu Province.
References
Bruker (2003).SAINT(Version 6.45a) andSMART(Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983).Acta Cryst.A39, 876–881.
Sheldrick, G. M. (1997a).SHELXS97andSHELXL97. University Go¨ttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2002).SADABS. Version 2.03. University of Go¨ttingen, Germany.
Figure 1
[image:2.610.46.295.291.351.2]supporting information
sup-1
Acta Cryst. (2006). E62, m1956–m1957
supporting information
Acta Cryst. (2006). E62, m1956–m1957 [https://doi.org/10.1107/S1600536806028509]
Bis(5,5-diphenylhydantoinato-
κ
N
3)bis(1
H
-imidazole-
κ
N
3)copper(II)
monohydrate
Xing-You Xu, Tong-Tao Xu, He-Ping Ma, Xi-Lan Hu and Da-Qi Wang
Bis(5,5-diphenylhydantoinato-κN3)bis(1H-imidazole-κN3)copper(II) monohydrate
Crystal data
[Cu(C15H11N2O2)2(C3H4N2)2]·H2O Mr = 720.24
Orthorhombic, P212121
Hall symbol: p 2ac 2ab
a = 8.615 (2) Å
b = 16.576 (3) Å
c = 24.680 (4) Å
V = 3524.4 (12) Å3 Z = 4
F(000) = 1492
Dx = 1.357 Mg m−3
Mo Kα radiation, λ = 0.71073 Å Cell parameters from 3376 reflections
θ = 2.5–19.6°
µ = 0.67 mm−1 T = 298 K Prism, red
0.38 × 0.21 × 0.11 mm
Data collection
Bruker APEX area-dectector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
Tmin = 0.784, Tmax = 0.930
18479 measured reflections 6182 independent reflections 3915 reflections with I > 2σ(I)
Rint = 0.061
θmax = 25.0°, θmin = 1.5° h = −10→10
k = −15→19
l = −29→27
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.049 wR(F2) = 0.134 S = 0.97 6182 reflections 451 parameters 0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
w = 1/[σ2(F
o2) + (0.0594P)2 + 1.5734P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max = 0.001
Δρmax = 0.53 e Å−3
Δρmin = −0.38 e Å−3
Special details
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x y z Uiso*/Ueq
Cu1 0.58596 (8) 0.69500 (4) 0.85289 (2) 0.0434 (2)
N1 0.5636 (6) 0.5773 (2) 0.86204 (16) 0.0444 (11)
N2 0.5427 (5) 0.4479 (2) 0.83651 (16) 0.0480 (13)
H2 0.5134 0.4065 0.8181 0.058*
N3 0.6159 (5) 0.8104 (3) 0.83714 (14) 0.0385 (10)
N4 0.6543 (5) 0.9285 (2) 0.79484 (17) 0.0410 (12)
H4 0.6542 0.9639 0.7694 0.049*
N5 0.4273 (7) 0.7204 (3) 0.90784 (17) 0.0580 (13)
N6 0.3015 (9) 0.7253 (5) 0.9838 (2) 0.106 (3)
H6 0.2695 0.7116 1.0155 0.127*
N7 0.7812 (7) 0.6745 (3) 0.8120 (2) 0.0610 (15)
N8 1.0276 (7) 0.6759 (3) 0.7900 (3) 0.088 (2)
H8 1.1254 0.6862 0.7916 0.106*
O1 0.7063 (6) 0.5611 (2) 0.93947 (17) 0.0708 (13)
O2 0.4388 (5) 0.5458 (2) 0.78171 (14) 0.0527 (11)
O3 0.7520 (5) 0.8341 (2) 0.91491 (15) 0.0615 (12)
O4 0.5168 (4) 0.83038 (19) 0.75082 (14) 0.0478 (10)
O5 0.3464 (5) 0.6992 (3) 0.77890 (19) 0.0871 (15)
H1 0.4009 0.7346 0.7628 0.131*
H3 0.3829 0.6541 0.7686 0.131*
C1 0.6410 (7) 0.5345 (3) 0.9003 (2) 0.0502 (16)
C2 0.5074 (7) 0.5248 (3) 0.8233 (2) 0.0414 (13)
C3 0.6355 (6) 0.4433 (3) 0.8852 (2) 0.0425 (14)
C4 0.5571 (7) 0.3977 (3) 0.9304 (2) 0.0424 (14)
C5 0.4007 (9) 0.3859 (4) 0.9305 (3) 0.078 (2)
H5 0.3431 0.4030 0.9008 0.094*
C6 0.3249 (10) 0.3496 (5) 0.9732 (4) 0.095 (3)
H6A 0.2178 0.3427 0.9720 0.114*
C7 0.4058 (11) 0.3240 (4) 1.0165 (3) 0.079 (2)
H7 0.3551 0.2990 1.0452 0.094*
C8 0.5592 (11) 0.3348 (4) 1.0181 (2) 0.077 (2)
H8A 0.6159 0.3174 1.0479 0.093*
C9 0.6344 (8) 0.3722 (4) 0.9748 (2) 0.070 (2)
H9 0.7412 0.3798 0.9765 0.084*
C10 0.7951 (8) 0.4098 (4) 0.8708 (2) 0.0520 (16)
C11 0.9198 (9) 0.4582 (4) 0.8620 (3) 0.077 (2)
H11 0.9109 0.5136 0.8671 0.093*
C12 1.0618 (10) 0.4254 (7) 0.8452 (4) 0.103 (3)
H12 1.1469 0.4590 0.8400 0.124*
C13 1.0758 (11) 0.3457 (7) 0.8366 (3) 0.093 (3)
H13 1.1700 0.3243 0.8251 0.111*
C14 0.9535 (11) 0.2972 (6) 0.8445 (3) 0.096 (3)
H14 0.9631 0.2421 0.8384 0.115*
C15 0.8122 (9) 0.3287 (4) 0.8620 (3) 0.076 (2)
supporting information
sup-3
Acta Cryst. (2006). E62, m1956–m1957
C16 0.6971 (7) 0.8568 (3) 0.8710 (2) 0.0435 (14)
C17 0.5881 (7) 0.8548 (3) 0.79071 (19) 0.0351 (11)
C18 0.7258 (6) 0.9405 (3) 0.8476 (2) 0.0383 (12)
C19 0.9017 (7) 0.9537 (3) 0.8429 (2) 0.0420 (13)
C20 0.9832 (8) 0.9216 (4) 0.8004 (3) 0.0576 (17)
H20 0.9311 0.8942 0.7730 0.069*
C21 1.1425 (9) 0.9297 (5) 0.7982 (3) 0.074 (2)
H21 1.1970 0.9070 0.7694 0.088*
C22 1.2201 (9) 0.9700 (5) 0.8371 (4) 0.086 (3)
H22 1.3273 0.9760 0.8349 0.103*
C23 1.1417 (9) 1.0016 (5) 0.8793 (4) 0.095 (3)
H23 1.1954 1.0287 0.9065 0.114*
C24 0.9797 (8) 0.9942 (4) 0.8827 (3) 0.077 (2)
H24 0.9261 1.0165 0.9118 0.092*
C25 0.6439 (7) 1.0073 (4) 0.8787 (2) 0.0492 (16)
C26 0.6231 (7) 1.0808 (3) 0.8547 (3) 0.0640 (18)
H26 0.6635 1.0900 0.8203 0.077*
C27 0.5430 (9) 1.1417 (4) 0.8807 (4) 0.089 (3)
H27 0.5285 1.1910 0.8635 0.107*
C28 0.4854 (9) 1.1301 (5) 0.9313 (4) 0.088 (3)
H28 0.4319 1.1712 0.9488 0.106*
C29 0.5065 (10) 1.0585 (6) 0.9557 (3) 0.092 (3)
H29 0.4684 1.0505 0.9906 0.110*
C30 0.5845 (9) 0.9965 (4) 0.9296 (2) 0.0692 (18)
H30 0.5967 0.9471 0.9469 0.083*
C31 0.4011 (9) 0.6846 (4) 0.9536 (2) 0.0723 (19)
H31 0.4468 0.6362 0.9640 0.087*
C32 0.2585 (13) 0.7920 (6) 0.9563 (4) 0.137 (4)
H32 0.1903 0.8321 0.9677 0.165*
C33 0.3348 (10) 0.7883 (5) 0.9091 (3) 0.110 (3)
H33 0.3266 0.8260 0.8813 0.132*
C34 0.9184 (9) 0.7023 (4) 0.8238 (3) 0.0691 (17)
H34 0.9380 0.7368 0.8528 0.083*
C35 0.9550 (10) 0.6300 (4) 0.7528 (4) 0.093 (3)
H35 1.0002 0.6043 0.7233 0.112*
C36 0.8038 (11) 0.6288 (4) 0.7668 (3) 0.087 (2)
H36 0.7264 0.6009 0.7484 0.104*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Cu1 0.0588 (4) 0.0314 (3) 0.0402 (3) −0.0075 (4) 0.0066 (4) 0.0001 (3)
N1 0.061 (3) 0.028 (2) 0.045 (2) −0.009 (2) −0.006 (3) 0.001 (2)
N2 0.066 (3) 0.026 (2) 0.052 (3) −0.004 (2) −0.022 (2) −0.0017 (19)
N3 0.045 (3) 0.038 (2) 0.032 (2) −0.006 (2) −0.0011 (18) 0.000 (2)
N4 0.052 (3) 0.034 (2) 0.037 (2) −0.008 (2) −0.010 (2) 0.006 (2)
N5 0.079 (4) 0.052 (3) 0.043 (3) 0.000 (3) 0.017 (3) 0.009 (2)
N7 0.070 (4) 0.040 (3) 0.073 (4) −0.007 (3) 0.021 (3) −0.006 (3)
N8 0.065 (4) 0.061 (4) 0.138 (5) 0.005 (3) 0.041 (4) 0.000 (4)
O1 0.094 (4) 0.057 (3) 0.062 (3) −0.018 (3) −0.033 (3) −0.006 (2)
O2 0.072 (3) 0.038 (2) 0.047 (2) 0.003 (2) −0.022 (2) 0.0051 (17)
O3 0.080 (3) 0.060 (3) 0.044 (2) −0.008 (2) −0.016 (2) 0.0094 (19)
O4 0.063 (3) 0.038 (2) 0.042 (2) −0.0105 (18) −0.0102 (19) −0.0026 (17)
O5 0.090 (4) 0.044 (2) 0.128 (4) 0.004 (3) 0.040 (3) 0.003 (3)
C1 0.063 (5) 0.040 (3) 0.048 (3) −0.012 (3) −0.016 (3) −0.001 (3)
C2 0.050 (4) 0.030 (3) 0.045 (3) −0.007 (3) −0.002 (3) −0.001 (3)
C3 0.046 (4) 0.041 (3) 0.040 (3) −0.008 (3) −0.011 (3) 0.005 (3)
C4 0.050 (4) 0.030 (3) 0.047 (3) −0.006 (3) −0.002 (3) 0.002 (2)
C5 0.059 (5) 0.087 (5) 0.089 (5) −0.001 (4) −0.003 (4) 0.031 (4)
C6 0.059 (5) 0.111 (7) 0.114 (7) −0.006 (5) 0.017 (5) 0.033 (6)
C7 0.093 (6) 0.067 (5) 0.075 (5) −0.006 (5) 0.027 (5) 0.005 (4)
C8 0.101 (6) 0.084 (5) 0.047 (4) 0.003 (5) −0.007 (4) 0.016 (3)
C9 0.064 (5) 0.093 (5) 0.053 (4) −0.018 (4) −0.008 (3) 0.019 (4)
C10 0.054 (4) 0.062 (4) 0.040 (3) −0.004 (3) −0.008 (3) 0.009 (3)
C11 0.055 (4) 0.083 (5) 0.094 (5) −0.010 (5) −0.011 (5) 0.014 (4)
C12 0.067 (6) 0.134 (8) 0.108 (6) 0.002 (6) −0.007 (6) 0.018 (6)
C13 0.066 (5) 0.155 (9) 0.057 (4) 0.011 (7) 0.000 (4) 0.006 (5)
C14 0.102 (7) 0.100 (6) 0.086 (5) 0.048 (6) 0.006 (5) −0.017 (5)
C15 0.082 (5) 0.066 (5) 0.082 (5) 0.008 (4) −0.001 (4) −0.003 (4)
C16 0.049 (4) 0.044 (3) 0.037 (3) −0.006 (3) 0.000 (3) 0.003 (3)
C17 0.037 (3) 0.031 (3) 0.037 (3) 0.004 (3) 0.000 (3) −0.003 (2)
C18 0.045 (3) 0.030 (3) 0.040 (3) −0.004 (2) −0.002 (3) −0.004 (3)
C19 0.043 (3) 0.032 (3) 0.051 (3) −0.004 (3) −0.002 (3) −0.001 (2)
C20 0.061 (5) 0.058 (4) 0.054 (4) −0.002 (3) 0.005 (3) −0.001 (3)
C21 0.059 (5) 0.082 (5) 0.081 (5) 0.011 (4) 0.020 (4) 0.005 (4)
C22 0.044 (5) 0.084 (6) 0.129 (8) −0.002 (4) 0.001 (5) 0.013 (5)
C23 0.054 (5) 0.098 (6) 0.133 (8) −0.013 (5) −0.023 (5) −0.036 (6)
C24 0.056 (5) 0.086 (5) 0.089 (5) −0.011 (4) −0.004 (4) −0.039 (4)
C25 0.043 (4) 0.048 (4) 0.057 (4) −0.004 (3) −0.005 (3) −0.014 (3)
C26 0.074 (5) 0.033 (3) 0.085 (4) −0.004 (3) 0.009 (4) −0.007 (3)
C27 0.075 (6) 0.046 (4) 0.148 (8) −0.005 (4) 0.001 (5) −0.026 (5)
C28 0.058 (5) 0.075 (6) 0.132 (8) 0.008 (4) 0.001 (5) −0.046 (6)
C29 0.084 (6) 0.110 (7) 0.082 (5) 0.008 (6) 0.017 (4) −0.030 (5)
C30 0.073 (5) 0.068 (4) 0.067 (4) 0.008 (5) 0.005 (4) −0.011 (3)
C31 0.084 (5) 0.077 (5) 0.056 (4) −0.008 (5) 0.004 (4) 0.012 (4)
C32 0.158 (10) 0.119 (7) 0.134 (8) 0.056 (8) 0.100 (7) 0.049 (7)
C33 0.134 (8) 0.093 (6) 0.103 (6) 0.044 (6) 0.074 (6) 0.037 (5)
C34 0.070 (5) 0.043 (3) 0.094 (4) 0.001 (4) 0.023 (4) −0.009 (3)
C35 0.093 (7) 0.066 (5) 0.121 (7) −0.006 (4) 0.060 (6) −0.016 (5)
C36 0.102 (7) 0.067 (5) 0.093 (6) −0.014 (5) 0.040 (5) −0.010 (4)
Geometric parameters (Å, º)
Cu1—N1 1.974 (4) C10—C11 1.359 (9)
supporting information
sup-5
Acta Cryst. (2006). E62, m1956–m1957
Cu1—N5 1.971 (5) C11—C12 1.402 (11)
Cu1—N7 1.990 (5) C11—H11 0.9300
N1—C1 1.356 (6) C12—C13 1.343 (11)
N1—C2 1.381 (6) C12—H12 0.9300
N2—C2 1.351 (6) C13—C14 1.340 (11)
N2—C3 1.444 (6) C13—H13 0.9300
N2—H2 0.8600 C14—C15 1.393 (10)
N3—C16 1.334 (6) C14—H14 0.9300
N3—C17 1.383 (6) C15—H15 0.9300
N4—C17 1.351 (6) C16—C18 1.524 (7)
N4—C18 1.455 (6) C18—C25 1.519 (7)
N4—H4 0.8600 C18—C19 1.535 (8)
N5—C31 1.296 (7) C19—C24 1.367 (8)
N5—C33 1.380 (9) C19—C20 1.369 (8)
N6—C31 1.321 (9) C20—C21 1.380 (9)
N6—C32 1.350 (10) C20—H20 0.9300
N6—H6 0.8600 C21—C22 1.348 (10)
N7—C34 1.302 (8) C21—H21 0.9300
N7—C36 1.362 (8) C22—C23 1.348 (11)
N8—C34 1.332 (8) C22—H22 0.9300
N8—C35 1.348 (9) C23—C24 1.403 (10)
N8—H8 0.8600 C23—H23 0.9300
O1—C1 1.203 (6) C24—H24 0.9300
O2—C2 1.234 (6) C25—C26 1.367 (8)
O3—C16 1.240 (6) C25—C30 1.370 (8)
O4—C17 1.229 (6) C26—C27 1.381 (9)
O5—H1 0.8500 C26—H26 0.9300
O5—H3 0.8499 C27—C28 1.356 (11)
C1—C3 1.557 (7) C27—H27 0.9300
C3—C4 1.509 (7) C28—C29 1.344 (11)
C3—C10 1.524 (8) C28—H28 0.9300
C4—C9 1.348 (8) C29—C30 1.387 (9)
C4—C5 1.361 (9) C29—H29 0.9300
C5—C6 1.376 (9) C30—H30 0.9300
C5—H5 0.9300 C31—H31 0.9300
C6—C7 1.345 (11) C32—C33 1.338 (10)
C6—H6A 0.9300 C32—H32 0.9300
C7—C8 1.335 (11) C33—H33 0.9300
C7—H7 0.9300 C34—H34 0.9300
C8—C9 1.395 (9) C35—C36 1.348 (10)
C8—H8A 0.9300 C35—H35 0.9300
C9—H9 0.9300 C36—H36 0.9300
N3—Cu1—N5 91.10 (17) C13—C14—C15 120.5 (8)
N3—Cu1—N1 174.78 (17) C13—C14—H14 119.7
N5—Cu1—N1 93.71 (18) C15—C14—H14 119.7
N3—Cu1—N7 87.41 (18) C10—C15—C14 120.7 (8)
N1—Cu1—N7 88.40 (19) C14—C15—H15 119.6
C1—N1—C2 109.0 (4) O3—C16—N3 125.0 (5)
C1—N1—Cu1 123.3 (4) O3—C16—C18 123.0 (5)
C2—N1—Cu1 125.3 (3) N3—C16—C18 111.8 (4)
C2—N2—C3 112.1 (4) O4—C17—N4 124.7 (4)
C2—N2—H2 124.0 O4—C17—N3 125.1 (4)
C3—N2—H2 124.0 N4—C17—N3 110.2 (4)
C16—N3—C17 107.7 (4) N4—C18—C25 110.8 (4)
C16—N3—Cu1 120.3 (3) N4—C18—C16 98.4 (4)
C17—N3—Cu1 131.2 (3) C25—C18—C16 113.4 (5)
C17—N4—C18 111.7 (4) N4—C18—C19 111.7 (4)
C17—N4—H4 124.1 C25—C18—C19 113.1 (4)
C18—N4—H4 124.1 C16—C18—C19 108.6 (4)
C31—N5—C33 104.7 (6) C24—C19—C20 119.2 (6)
C31—N5—Cu1 128.6 (5) C24—C19—C18 120.0 (5)
C33—N5—Cu1 126.2 (4) C20—C19—C18 120.6 (5)
C31—N6—C32 108.2 (6) C19—C20—C21 120.2 (7)
C31—N6—H6 125.9 C19—C20—H20 119.9
C32—N6—H6 125.9 C21—C20—H20 119.9
C34—N7—C36 104.5 (6) C22—C21—C20 120.8 (8)
C34—N7—Cu1 126.4 (5) C22—C21—H21 119.6
C36—N7—Cu1 129.1 (5) C20—C21—H21 119.6
C34—N8—C35 106.6 (7) C23—C22—C21 119.7 (7)
C34—N8—H8 126.7 C23—C22—H22 120.2
C35—N8—H8 126.7 C21—C22—H22 120.2
H1—O5—H3 105.4 C22—C23—C24 120.7 (8)
O1—C1—N1 126.6 (5) C22—C23—H23 119.6
O1—C1—C3 124.3 (5) C24—C23—H23 119.6
N1—C1—C3 109.0 (4) C19—C24—C23 119.3 (7)
O2—C2—N2 125.1 (5) C19—C24—H24 120.3
O2—C2—N1 124.5 (5) C23—C24—H24 120.3
N2—C2—N1 110.4 (5) C26—C25—C30 117.7 (6)
N2—C3—C4 113.2 (4) C26—C25—C18 119.5 (5)
N2—C3—C10 109.0 (4) C30—C25—C18 122.8 (6)
C4—C3—C10 113.2 (5) C25—C26—C27 121.0 (7)
N2—C3—C1 99.5 (4) C25—C26—H26 119.5
C4—C3—C1 108.8 (4) C27—C26—H26 119.5
C10—C3—C1 112.4 (5) C28—C27—C26 120.5 (8)
C9—C4—C5 116.3 (6) C28—C27—H27 119.8
C9—C4—C3 122.4 (6) C26—C27—H27 119.8
C5—C4—C3 121.1 (5) C29—C28—C27 119.3 (8)
C4—C5—C6 122.3 (7) C29—C28—H28 120.3
C4—C5—H5 118.9 C27—C28—H28 120.3
C6—C5—H5 118.9 C28—C29—C30 120.7 (8)
C7—C6—C5 119.9 (8) C28—C29—H29 119.6
C7—C6—H6A 120.0 C30—C29—H29 119.6
C5—C6—H6A 120.0 C25—C30—C29 120.8 (7)
supporting information
sup-7
Acta Cryst. (2006). E62, m1956–m1957
C8—C7—H7 120.2 C29—C30—H30 119.6
C6—C7—H7 120.2 N5—C31—N6 111.8 (7)
C7—C8—C9 119.8 (7) N5—C31—H31 124.1
C7—C8—H8A 120.1 N6—C31—H31 124.1
C9—C8—H8A 120.1 C33—C32—N6 105.4 (8)
C4—C9—C8 122.1 (7) C33—C32—H32 127.3
C4—C9—H9 119.0 N6—C32—H32 127.3
C8—C9—H9 119.0 C32—C33—N5 109.9 (7)
C11—C10—C15 118.0 (7) C32—C33—H33 125.1
C11—C10—C3 122.4 (6) N5—C33—H33 125.1
C15—C10—C3 119.4 (6) N7—C34—N8 112.6 (6)
C10—C11—C12 120.5 (8) N7—C34—H34 123.7
C10—C11—H11 119.7 N8—C34—H34 123.7
C12—C11—H11 119.7 C36—C35—N8 106.4 (7)
C13—C12—C11 120.5 (9) C36—C35—H35 126.8
C13—C12—H12 119.8 N8—C35—H35 126.8
C11—C12—H12 119.8 C35—C36—N7 109.9 (8)
C14—C13—C12 119.7 (9) C35—C36—H36 125.1
C14—C13—H13 120.1 N7—C36—H36 125.1
C12—C13—H13 120.1
Hydrogen-bond geometry (Å, º)
D—H···A D—H H···A D···A D—H···A
N2—H2···O4i 0.86 2.13 2.950 (5) 158
N4—H4···O2ii 0.86 2.02 2.827 (5) 156
N6—H6···O3iii 0.86 1.88 2.720 (7) 164
N8—H8···O5iv 0.86 1.94 2.787 (7) 167
O5—H1···O4 0.85 1.90 2.714 (6) 160
O5—H3···O2 0.85 1.89 2.665 (6) 152