• No results found

[N,N,N′ Tris(3 amino­prop­yl) N′ (3 ammonio­prop­yl)ethane 1,2 di­amine]copper(II) tris­­(perchlorate)

N/A
N/A
Protected

Academic year: 2020

Share "[N,N,N′ Tris(3 amino­prop­yl) N′ (3 ammonio­prop­yl)ethane 1,2 di­amine]copper(II) tris­­(perchlorate)"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m1802

Zhanget al. [Cu(C

14H37N6)](ClO4)3 doi:10.1107/S1600536806025839 Acta Cryst.(2006). E62, m1802–m1804

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

[

N

,

N

,

N

000

-Tris(3-aminopropyl)-

N

000

-(3-ammonio-propyl)ethane-1,2-diamine]copper(II)

tris(perchlorate)

Han-Ping Zhang,aYi-Zhi Li,b Hong Zhou,a,cZhi-Quan Pana* and Cheng-Gang Wanga

aHubei Key Laborartory of Novel Chemical

Reactions & Green Chemical Technology, Wuhan Institute of Chemical Technology, Wuhan 430073, People’s Republic of China, bCoordination Chemistry Institute, State Key

Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People’s Republic of China, andcCollege of Chemistry and Molecular Science of Wuhan University, Wuhan 430072, People’s Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.007 A˚ Disorder in solvent or counterion

Rfactor = 0.060

wRfactor = 0.146

Data-to-parameter ratio = 11.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 29 June 2006 Accepted 4 July 2006

#2006 International Union of Crystallography All rights reserved

In the title complex, [Cu(C14H37N6)](ClO4)3, the Cu II

atom adopts a slightly distorted trigonal bipyramidal coordination and one amino group in the complex is protonated. The Cu— N bond distances in the equatorial plane are in the range 2.074 (4)–2.173 (4) A˚ . Two N atoms occupy the axial positions with Cu—N contacts of 2.048 (3) and 2.056 (3) A˚ . All of the perchlorate anions are disordered. In the crystal structure, there are many N—H O intermolecular hydrogen bonds between cations and anions, forming a three-dimensional network.

Comment

Polyamines have become a rapidly growing area of research due to their potential in performing programmed tasks such as molecular recongnition and transfer (Wagnon et al., 1989), supramolecular self-assembly (Rodriguez et al., 2003) and mimics of metalloenzyme active sites (Jitsukawaet al., 2001), while their strong coordination ability with most metals and high thermal stability lead to the convenient formation of a variety of molecular complexes (Jiang et al., 2003), giving polyamines many practical applications in softening water, industrial cleaning, detoxifying drugs, separation and extrac-tion (Jooet al., 2003). Up to the present, many linear primary amines have been synthesized, but few polyamines with branched chains of primary amines have been reported.

In order to understand better the interaction of metal– polyamines, a hexaamine complex, (I), was obtained by reaction between N,N,N0,N0

(2)
[image:2.610.45.299.68.258.2]

2.074 (4)–2.173 (4) A˚ . Atoms N4 and N5 occupy the axial positions with Cu—N4 and Cu—N5 distances of 2.048 (3) and 2.056 (3) A˚ , respectively. There are many N—H O inter-molecular hydrogen bonds betwen cations and anions in the crystal stucture, forming a three-dimensional network (Table 1).

Experimental

N,N,N0,N0-Tetrakis(3-aminopropyl)ethane-1,2-diamine (L) was first synthesized by the reaction between diaminoethane and acrylonitrile, followed by hydrogenation. The title copper(II) complex was obtained by reaction ofLand copper(II) perchlorate. To an ethanol solution (20 ml) containingL(0.4617 g, 1.6 mmol) was added drop-wise an ethanol solution (15 ml) containing CuCl2 (0.5438 g,

3.2 mmol) with stirring at room temperature. After an ethanol solu-tion (10 ml) of NaClO4(1.0 g, 82 mmol) had been added, a blue solid

was formed which was filtered off and dried in air. Blue needle-shaped crystals were obtained by slow evaporation of a 78% ethanol solution at room temperature.

Crystal data

[Cu(C14H37N6)](ClO4)3

Mr= 651.39 Monoclinic,P21=n a= 9.3315 (11) A˚

b= 18.131 (2) A˚

c= 15.8484 (18) A˚

= 99.092 (2) V= 2647.7 (5) A˚3

Z= 4

Dx= 1.634 Mg m

3

MoKradiation

= 1.19 mm1

T= 298 (2) K Needle, blue

0.300.100.08 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan

14355 measured reflections 5180 independent reflections 4129 reflections withI> 2(I)

Rint= 0.039

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.060

wR(F2) = 0.146

S= 1.05 5180 reflections 464 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.08P)2

+ 1.99P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.48 e A˚ 3

[image:2.610.313.565.209.429.2]

min=0.65 e A˚ 3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H2C O5i

0.90 2.30 3.132 (5) 153

N2—H2C O50i

0.90 2.56 3.407 (18) 158

N6—H6C O5i 0.89 2.51 3.064 (6) 121

N6—H6E O50i

0.89 2.47 2.906 (18) 110

N3—H3C O4ii

0.90 2.38 3.246 (5) 161

N3—H3C O20ii

0.90 2.38 3.058 (12) 132

N2—H2D O100iii

0.90 2.16 2.961 (10) 147

N2—H2D O12iii

0.90 2.44 3.317 (5) 164

N3—H3D O7iii

0.90 2.11 2.979 (5) 162

N3—H3D O70iii

0.90 2.16 2.899 (13) 139

N4—H4C O7iii

0.90 2.45 3.160 (5) 136

N4—H4C O120iii

0.90 2.52 3.310 (10) 146

N4—H4C O12iii

0.90 2.57 3.152 (5) 123

N4—H4D O30iii

0.90 2.05 2.903 (13) 158

N4—H4D O2iii

0.90 2.47 3.250 (5) 146

N6—H6C O10iii

0.89 1.96 2.775 (18) 151

N6—H6C O1iii 0.89 2.25 3.103 (5) 161

N6—H6D O110iv

0.89 1.94 2.823 (10) 169

N6—H6D O10iv

0.89 2.24 2.957 (5) 138

N6—H6D O9iv 0.89 2.42 3.135 (5) 138

N6—H6E O60 0.89 2.08 2.842 (15) 143

N6—H6E O6 0.89 2.14 2.919 (6) 145

Symmetry codes: (i) xþ2;yþ1;zþ2; (ii) xþ2;yþ1;zþ1; (iii)

xþ3 2;y

1 2;zþ

3

2; (iv)xþ1;yþ1;zþ2.

All H atoms were placed in calculated positions, with C—H = 0.89– 0.97 A˚ , and included in the refinement in the riding-model approx-imation, with Uiso(H) = 1.2–1.5Ueq(C,N). All of the perchlorate

anions are disordered. The site-occupancy factors of the perchlorate Cl and O atoms were obtained by setting free variables; the site-occupancy factors of the Cl and O atoms are as follows: 0.852 (6) for Cl1, O1, O2, O3 and O4; 0.148 (6) for Cl10, O10, O20, O30and O40; 0.780 (13) for Cl2, O5, O6, O7 and O8; 0.220 (13) for Cl20, O50, O60, O70 and O80; 0.741 (5) for Cl3, O9, O10, O11 and O12; 0.259 (5) for Cl30, O90, O100, O110and O120.

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

This work was supported by the National Science Found-ation of China (No. 20271039).

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.22) and

SHELXTL(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Jiang, H., Xie, Y. S., Zhou, Z. Y., Xu, X. L. & Liu, Q. L. (2003).J. Coord. Chem.

56, 825–832.

Figure 1

(3)

Joo, D. J., Shin, W. S., Kim, Y. H., Kim, J. H. & Choi, J. H. (2003).Sep. Sci. Tech. 38, 661–678.

Rodriguez, L., Alves, S., Lima, J. C., Parola, A. J. & Pina, F. (2003). J. Photochem. Photobiol. A Chem.159, 253–258.

Wagnon, B. K. & Jackels, S. C. (1989).Inorg. Chem.28, 1923–1927.

metal-organic papers

m1804

Zhanget al. [Cu(C

(4)

supporting information

Acta Cryst. (2006). E62, m1802–m1804 [https://doi.org/10.1107/S1600536806025839]

[

N

,

N

,

N

-Tris(3-aminopropyl)-

N

-(3-ammoniopropyl)ethane-1,2-diamine]-copper(II) tris(perchlorate)

Han-Ping Zhang, Yi-Zhi Li, Hong Zhou, Zhi-Quan Pan and Cheng-Gang Wang

[N,N,N′-Tris(3-aminopropyl)-N′-(3-ammoniopropyl)ethane-1,2-diamine]copper(II) tris(perchlorate)

Crystal data

[Cu(C14H37N6)](ClO4)3 Mr = 651.39

Monoclinic, P21/n

Hall symbol: -P 2yn

a = 9.3315 (11) Å

b = 18.131 (2) Å

c = 15.8484 (18) Å

β = 99.092 (2)°

V = 2647.7 (5) Å3 Z = 4

F(000) = 1356

Dx = 1.634 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1517 reflections

θ = 2.0–25.3°

µ = 1.19 mm−1 T = 298 K Needle, blue

0.30 × 0.10 × 0.08 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.716, Tmax = 0.911

14355 measured reflections 5180 independent reflections 4129 reflections with I > 2σ(I)

Rint = 0.039

θmax = 26.0°, θmin = 1.7° h = −11→11

k = −21→22

l = −15→19

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.060 wR(F2) = 0.146 S = 1.05 5180 reflections 464 parameters 174 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.08P)2 + 1.99P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.48 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, m1802–m1804

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

(6)

H12B 0.6992 0.3261 0.8561 0.039* C13 0.5780 (5) 0.4094 (3) 0.8958 (3) 0.0357 (9) H13A 0.5916 0.4624 0.9004 0.043* H13B 0.4798 0.4004 0.8672 0.043* C14 0.5954 (5) 0.3770 (3) 0.9838 (3) 0.0457 (11) H14A 0.5283 0.4011 1.0158 0.055* H14B 0.5701 0.3251 0.9794 0.055*

Cl1 0.71595 (18) 0.67798 (9) 0.52118 (10) 0.0392 (15) 0.852 (6) Cl2 0.8357 (3) 0.58682 (11) 0.97950 (15) 0.0387 (13) 0.780 (13) Cl3 0.3691 (2) 0.62631 (9) 0.76560 (13) 0.0347 (6) 0.741 (5) Cl1′ 0.7230 (11) 0.6815 (6) 0.5201 (5) 0.047 (10) 0.148 (6) Cl2′ 0.8301 (12) 0.5897 (4) 0.9852 (7) 0.045 (5) 0.220 (13) Cl3′ 0.3453 (7) 0.6246 (3) 0.7469 (4) 0.049 (3) 0.259 (5) Cu1 0.81160 (5) 0.33207 (3) 0.69232 (3) 0.03006 (16)

N1 0.6472 (4) 0.3829 (2) 0.7475 (2) 0.0379 (8) N2 1.0020 (4) 0.3186 (2) 0.7895 (2) 0.0373 (8) H2C 0.9823 0.3372 0.8390 0.045* H2D 1.0194 0.2701 0.7975 0.045* N3 0.8802 (4) 0.2892 (2) 0.5841 (2) 0.0421 (9) H3C 0.9763 0.2969 0.5878 0.051* H3D 0.8652 0.2402 0.5827 0.051* N4 0.7363 (4) 0.2310 (2) 0.7229 (2) 0.0390 (8) H4C 0.7862 0.1959 0.6998 0.047* H4D 0.7553 0.2255 0.7801 0.047* N5 0.8614 (4) 0.43657 (19) 0.6557 (2) 0.0368 (8) N6 0.7449 (4) 0.3845 (2) 1.0316 (2) 0.0381 (8) H6C 0.8000 0.3482 1.0167 0.057* H6D 0.7425 0.3821 1.0874 0.057* H6E 0.7817 0.4277 1.0192 0.057*

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m1802–m1804

O8′ 0.817 (2) 0.5683 (9) 0.9006 (7) 0.055 (5) 0.220 (13) O9′ 0.3671 (12) 0.5585 (4) 0.7048 (6) 0.064 (5) 0.259 (5) O10′ 0.3219 (12) 0.6821 (5) 0.6873 (6) 0.054 (4) 0.259 (5) O11′ 0.2240 (9) 0.6174 (6) 0.7884 (6) 0.045 (3) 0.259 (5) O12′ 0.4682 (9) 0.6402 (6) 0.8073 (6) 0.058 (4) 0.259 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

O1′ 0.041 (13) 0.036 (12) 0.052 (16) 0.004 (10) −0.012 (12) 0.019 (12) O2′ 0.033 (12) 0.049 (13) 0.053 (14) 0.002 (9) 0.014 (10) −0.002 (10) O3′ 0.044 (13) 0.035 (11) 0.033 (11) 0.006 (9) 0.016 (9) 0.018 (8) O4′ 0.055 (19) 0.067 (18) 0.061 (19) −0.035 (14) 0.006 (14) −0.028 (15) O5′ 0.060 (12) 0.047 (14) 0.052 (10) −0.014 (9) 0.018 (8) −0.012 (10) O6′ 0.059 (15) 0.029 (14) 0.045 (14) −0.012 (11) 0.006 (11) 0.016 (11) O7′ 0.046 (10) 0.045 (10) 0.066 (15) 0.004 (7) −0.002 (9) 0.002 (9) O8′ 0.066 (14) 0.052 (11) 0.051 (11) 0.025 (9) 0.016 (9) 0.019 (8) O9′ 0.062 (9) 0.055 (9) 0.063 (9) 0.023 (7) −0.021 (7) −0.021 (7) O10′ 0.064 (10) 0.057 (9) 0.042 (7) −0.009 (7) 0.009 (6) 0.011 (6) O11′ 0.054 (8) 0.052 (7) 0.030 (6) −0.009 (6) 0.007 (5) 0.023 (5) O12′ 0.067 (11) 0.050 (8) 0.066 (10) −0.003 (7) 0.037 (9) −0.009 (7)

Geometric parameters (Å, º)

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, m1802–m1804

C10—H10B 0.9700 N2—H2C 0.9000 C11—N1 1.489 (6) N2—H2D 0.9000 C11—H11A 0.9700 N3—H3C 0.9000 C11—H11B 0.9700 N3—H3D 0.9000 C12—N1 1.477 (5) N4—H4C 0.9000 C12—C13 1.530 (5) N4—H4D 0.9000 C12—H12A 0.9700 N6—H6C 0.8900 C12—H12B 0.9700 N6—H6D 0.8900 C13—C14 1.499 (6) N6—H6E 0.8900 C13—H13A 0.9700

(10)

C8—C7—H7A 107.7 N4—Cu1—N5 173.04 (15) N5—C7—H7A 107.7 N4—Cu1—N3 91.33 (16) C8—C7—H7B 107.7 N5—Cu1—N3 89.92 (15) N5—C7—H7B 107.7 N4—Cu1—N1 89.65 (15) H7A—C7—H7B 107.1 N5—Cu1—N1 85.71 (14) C7—C8—C9 116.4 (4) N3—Cu1—N1 148.41 (15) C7—C8—H8A 108.2 N4—Cu1—N2 90.22 (15) C9—C8—H8A 108.2 N5—Cu1—N2 96.19 (15) C7—C8—H8B 108.2 N3—Cu1—N2 102.67 (15) C9—C8—H8B 108.2 N1—Cu1—N2 108.90 (14) H8A—C8—H8B 107.4 C12—N1—C1 112.4 (4) N2—C9—C8 112.6 (4) C12—N1—C11 109.0 (3) N2—C9—H9A 109.1 C1—N1—C11 109.4 (4) C8—C9—H9A 109.1 C12—N1—Cu1 108.6 (2) N2—C9—H9B 109.1 C1—N1—Cu1 111.0 (3) C8—C9—H9B 109.1 C11—N1—Cu1 106.2 (3) H9A—C9—H9B 107.8 C9—N2—Cu1 114.6 (3) C11—C10—N5 111.6 (4) C9—N2—H2C 108.6 C11—C10—H10A 109.3 Cu1—N2—H2C 108.6 N5—C10—H10A 109.3 C9—N2—H2D 108.6 C11—C10—H10B 109.3 Cu1—N2—H2D 108.6 N5—C10—H10B 109.3 H2C—N2—H2D 107.6 H10A—C10—H10B 108.0 C4—N3—Cu1 113.8 (3) C10—C11—N1 111.3 (4) C4—N3—H3C 108.8 C10—C11—H11A 109.4 Cu1—N3—H3C 108.8 N1—C11—H11A 109.4 C4—N3—H3D 108.8 C10—C11—H11B 109.4 Cu1—N3—H3D 108.8 N1—C11—H11B 109.4 H3C—N3—H3D 107.7 H11A—C11—H11B 108.0 C3—N4—Cu1 115.3 (3) N1—C12—C13 118.1 (3) C3—N4—H4C 108.5 N1—C12—H12A 107.8 Cu1—N4—H4C 108.5 C13—C12—H12A 107.8 C3—N4—H4D 108.5 N1—C12—H12B 107.8 Cu1—N4—H4D 108.5 C13—C12—H12B 107.8 H4C—N4—H4D 107.5 H12A—C12—H12B 107.1 C6—N5—C7 110.3 (3) C14—C13—C12 113.1 (4) C6—N5—C10 108.7 (3) C14—C13—H13A 109.0 C7—N5—C10 107.4 (3) C12—C13—H13A 109.0 C6—N5—Cu1 110.6 (3) C14—C13—H13B 109.0 C7—N5—Cu1 115.3 (3) C12—C13—H13B 109.0 C10—N5—Cu1 104.2 (2) H13A—C13—H13B 107.8 C14—N6—H6C 109.5 N6—C14—C13 113.2 (4) C14—N6—H6D 109.5 N6—C14—H14A 108.9 H6C—N6—H6D 109.5 C13—C14—H14A 108.9 C14—N6—H6E 109.5 N6—C14—H14B 108.9 H6C—N6—H6E 109.5 C13—C14—H14B 108.9 H6D—N6—H6E 109.5

(11)

supporting information

sup-8

Acta Cryst. (2006). E62, m1802–m1804

C1—C2—C3—N4 65.6 (5) N5—Cu1—N2—C9 −34.6 (3) N3—C4—C5—C6 −63.1 (5) N3—Cu1—N2—C9 56.7 (3) C4—C5—C6—N5 64.1 (6) N1—Cu1—N2—C9 −122.1 (3) N5—C7—C8—C9 66.8 (6) C5—C4—N3—Cu1 65.4 (4) C7—C8—C9—N2 −72.2 (5) N4—Cu1—N3—C4 117.3 (3) N5—C10—C11—N1 52.3 (5) N5—Cu1—N3—C4 −55.8 (3) N1—C12—C13—C14 157.8 (4) N1—Cu1—N3—C4 25.8 (5) C12—C13—C14—N6 55.7 (5) N2—Cu1—N3—C4 −152.2 (3) C13—C12—N1—C1 −55.0 (5) C2—C3—N4—Cu1 −64.3 (5) C13—C12—N1—C11 66.4 (5) N3—Cu1—N4—C3 −96.4 (3) C13—C12—N1—Cu1 −178.3 (3) N1—Cu1—N4—C3 52.1 (3) C2—C1—N1—C12 −57.6 (5) N2—Cu1—N4—C3 161.0 (3) C2—C1—N1—C11 −178.9 (4) C5—C6—N5—C7 66.6 (5) C2—C1—N1—Cu1 64.3 (4) C5—C6—N5—C10 −175.9 (4) C10—C11—N1—C12 84.6 (5) C5—C6—N5—Cu1 −62.1 (5) C10—C11—N1—C1 −152.1 (4) C8—C7—N5—C6 −171.9 (4) C10—C11—N1—Cu1 −32.2 (4) C8—C7—N5—C10 69.9 (5) N4—Cu1—N1—C12 74.2 (3) C8—C7—N5—Cu1 −45.7 (5) N5—Cu1—N1—C12 −111.0 (3) C11—C10—N5—C6 74.8 (4) N3—Cu1—N1—C12 166.2 (3) C11—C10—N5—C7 −165.9 (4) N2—Cu1—N1—C12 −15.9 (3) C11—C10—N5—Cu1 −43.1 (4) N4—Cu1—N1—C1 −49.9 (3) N3—Cu1—N5—C6 50.9 (3) N5—Cu1—N1—C1 124.9 (3) N1—Cu1—N5—C6 −97.8 (3) N3—Cu1—N1—C1 42.1 (4) N2—Cu1—N5—C6 153.6 (3) N2—Cu1—N1—C1 −140.0 (3) N3—Cu1—N5—C7 −75.1 (3) N4—Cu1—N1—C11 −168.7 (3) N1—Cu1—N5—C7 136.2 (3) N5—Cu1—N1—C11 6.1 (3) N2—Cu1—N5—C7 27.6 (3) N3—Cu1—N1—C11 −76.7 (4) N3—Cu1—N5—C10 167.5 (3) N2—Cu1—N1—C11 101.2 (3) N1—Cu1—N5—C10 18.8 (3) C8—C9—N2—Cu1 55.9 (4) N2—Cu1—N5—C10 −89.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H2C···O5i 0.90 2.30 3.132 (5) 153

N2—H2C···O5′i 0.90 2.56 3.407 (18) 158

N6—H6C···O5i 0.89 2.51 3.064 (6) 121

N6—H6E···O5′i 0.89 2.47 2.906 (18) 110

N3—H3C···O4ii 0.90 2.38 3.246 (5) 161

N3—H3C···O2′ii 0.90 2.38 3.058 (12) 132

N2—H2D···O10′iii 0.90 2.16 2.961 (10) 147

N2—H2D···O12iii 0.90 2.44 3.317 (5) 164

N3—H3D···O7iii 0.90 2.11 2.979 (5) 162

N3—H3D···O7′iii 0.90 2.16 2.899 (13) 139

N4—H4C···O7iii 0.90 2.45 3.160 (5) 136

N4—H4C···O12′iii 0.90 2.52 3.310 (10) 146

N4—H4C···O12iii 0.90 2.57 3.152 (5) 123

(12)

N4—H4D···O2iii 0.90 2.47 3.250 (5) 146

N6—H6C···O1′iii 0.89 1.96 2.775 (18) 151

N6—H6C···O1iii 0.89 2.25 3.103 (5) 161

N6—H6D···O11′iv 0.89 1.94 2.823 (10) 169

N6—H6D···O10iv 0.89 2.24 2.957 (5) 138

N6—H6D···O9iv 0.89 2.42 3.135 (5) 138

N6—H6E···O6′ 0.89 2.08 2.842 (15) 143 N6—H6E···O6 0.89 2.14 2.919 (6) 145

Figure

Table 1Hydrogen-bond geometry (A˚ , �).

References

Related documents

The Emotion- Lines dataset contains conversations from Friends TV show transcripts (Friends) and real chatting logs (EmotionPush), where every dialogue utterance is labeled

profit rates increase for higher values of tu , though this relationship tends to flatten for scenarios where firms give more importance to the capacity utilization rate than to

We use two proxies of Financial Inclusion: the overall rate of demographic penetration of financial services (DemoF) that represents the access and the available supply of

Despite the unstable features of the series, the good news are that our in-sample and out-of- sample results are roughly consistent in providing evidence of a

رﺎﻣﺛﺗﺳﻻا ﻊﯾوﻧﺗﻟا تارﯾﻐﺗﻣ نأ ﺞﺋﺎﺗﻧﻟا نﻣ ﺢﺿﺗﯾ يدﺎﺻﺗﻗﻻا بﻧﺎﺟﻟا نﻣ ﺎﻣأ ، ﺎﯾﺋﺎﺻﺣإ ﻲﻓ لﺛﻣﺗﺗ رﺋازﺟﻟا ﻲﻓ يدﺎﺻﺗﻗﻻا وﻣﻧﻟا ﻰﻠﻋ ةرﺛؤﻣﻟا

The lagged independent variables are the growth rate of real GDP, GDP per capita, inflation, domestic credit extended to the private sector/GDP, the exchange rate regime, the

This study will analyse the impacts of a monetary policy shock (i) in Pakistan on macroeconomic variables, including demand-side output components of private

We report the results for four experiments in this pa- per: i) the results of using the IDF stoplist over a ba- sic stoplist, ii) the results of our approach using dif- ferent