• No results found

1 (3 Bromo 2 thien­yl) 3 (4 but­oxy­phen­yl)prop 2 en 1 one

N/A
N/A
Protected

Academic year: 2020

Share "1 (3 Bromo 2 thien­yl) 3 (4 but­oxy­phen­yl)prop 2 en 1 one"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2007). E63, o1201–o1203 doi:10.1107/S1600536807005144 Butcheret al. C

17H17BrO2S

o1201

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(3-Bromo-2-thienyl)-3-(4-butoxyphenyl)-prop-2-en-1-one

Ray J. Butcher,a* H. S.

Yathirajan,bB. V. Ashalatha,cB. Narayanacand B. K. Sarojinid

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA,bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, c

Department of Chemistry, Mangalore University, Mangalagangotri 574 199, India, anddDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India

Correspondence e-mail: raymond.butcher@nrl.navy.mil

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.032

wRfactor = 0.079

Data-to-parameter ratio = 22.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 29 January 2007 Accepted 31 January 2007

#2007 International Union of Crystallography All rights reserved

The title compound, C17H17BrO2S, forms centrosymmetric dimers linked by weak C—H O hydrogen bonding gener-ating anR2(10) ring. The dihedral angle between the thienyl and benzene rings is 5.79 (10).

Comment

Among several organic compounds reported for nonlinear optical (NLO) properties, chalcone derivatives are materials for their excellent blue light transmittance and good crystal-lizability. They provide a necessary configuration to show NLO properties, with two planar rings connected through a conjugated double bond (Gotoet al., 1991; Uchidaet al., 1998; Sarojiniet al., 2006). Substitution on either of the phenyl rings greatly influences the non-centrosymmetric crystal packing. It is speculated that in order to improve the activity, more bulky substituents should be introduced to increase the spontaneous polarization of non-centrosymmetric crystals (Fichou et al., 1988). The molecular hyperpolarizability is strongly influ-enced not only by the electronic effect but also by the steric effect of the substituent (Cho et al., 1996). We have recently reported the crystal structures of 1-(3-bromothiophene-2-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one and 1-(3-bromothiophene-2-yl)-3-(6-methoxy-2-naphthyl) prop-2-en-1-one (Butcher, Yathirajan, Narayana et al., 2007; Butcher, Yathirajan, Ashalantha et al., 2007a). In continuation of our work on chalcones (Butcher, Yathirajan, Sarojiniet al., 2006; Butcher, Yathirajan, Anilkumar et al., 2006a,b; Butcher, Yathirajan, Ashalathaet al., 2007b), the present paper reports the crystal structure of the title compound, (I), C17H17BrO2S.

(2)

chalcone derivatives, the chalcone backbone is twisted [dihe-dral angle between the thienyl and phenyl rings is 5.79 (10)].

In previously reported compounds, crystallization occurred in a non-centrosymmetric space group (Butcher, Yathirajan, Sarojini et al., 2006; Butcher, Yathirajan Anilkumar et al., 2006a,b; Butcher, Yathirajan, Narayanaet al., 2007; Butcher, Yathirajan, Ashalathaet al., 2007a,b). However, in the present instance the title compound has crystallized in a centrosym-metric space group. There is weak C—H O hydrogen bonding between C7 and O1, forming centrosymmetric dimers generating anR2(10) ring.

Experimental

2-Acetyl-3-bromothiophene (10 g, 0.048 mol) in methanol (50 ml) was mixed with 4-butoxybenzaldehyde (8.3 g, 0.048 mol) and the mixture was treated with 10 ml of a 30% aqueous potassium hydroxide solution at 278 K. The reaction mixture was then brought to room temperature and stirred for 4 h. The precipitated solid was filtered off and washed with water, dried and recrystallized from acetone (yield 75%, m.p. 349 K). Analysis for C17H17BrO2S: found

(calculated): C 55.79 (55.90), H 4.62 (4.69), S 8.67 (8.78)%.

Crystal data

C17H17BrO2S

Mr= 365.28

Monoclinic,P21=n a= 9.2564 (5) A˚

b= 7.7315 (4) A˚

c= 22.4447 (11) A˚

= 90.727 (1)

V= 1606.14 (14) A˚3

Z= 4

Dx= 1.511 Mg m

3

MoKradiation

= 2.69 mm1

T= 293 (2) K

Triangular fragmen, colorless 0.430.260.12 mm

Data collection

Bruker APEX II CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.609,Tmax= 1.000

(expected range = 0.447–0.734)

16873 measured reflections 4207 independent reflections 3308 reflections withI> 2(I)

Rint= 0.023 max= 28.9

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.032

wR(F2) = 0.079

S= 1.00 4207 reflections 191 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.035P)2

+ 0.6575P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.53 e A˚

3

min=0.53 e A˚

[image:2.610.316.565.70.259.2]

3

Table 1

Selected geometric parameters (A˚ ,).

Br—C3 1.8860 (18) S—C1 1.699 (2) S—C4 1.7276 (17) O1—C5 1.223 (2) O2—C11 1.3597 (19)

O2—C14 1.433 (2) C4—C5 1.478 (3) C5—C6 1.468 (2) C6—C7 1.331 (3) C1—S—C4 92.14 (10)

C4—C3—Br 126.94 (13) C2—C3—Br 118.83 (16) C3—C4—C5 136.74 (16) O1—C5—C6 121.68 (17)

O1—C5—C4 117.57 (16) C6—C5—C4 120.75 (17) C7—C6—C5 120.48 (18) C6—C7—C8 127.48 (17)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C7—H7A O1i

0.93 2.53 3.397 (3) 155

Symmetry code: (i)xþ1;y;z.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C— H distances of 0.96 A˚ andUiso(H) = 1.5Ueq(C), but each group was

allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 A˚ and Uiso(H) = 1.2Ueq(C).

Data collection:APEX2(Bruker, 2006); cell refinement:APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

BKS thanks AICTE, Government of India, for financial assistance through the Career Award for Young Teachers

organic papers

o1202

Butcheret al. C

[image:2.610.44.295.70.153.2]

17H17BrO2S Acta Cryst.(2007). E63, o1201–o1203

Figure 1

The molecular structure of (I), showing the atom-numbering scheme.

Figure 2

[image:2.610.313.565.355.449.2]
(3)

Scheme. RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory for access to their diffractometers.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388.

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2006).APEX2.Version 2.0-2. Bruker AXS Inc., Madison Wisconsin, USA.

Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006a).Acta Cryst.E62, o1633–o1635.

Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006b).Acta Cryst.E62, o1659–o1661.

Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a).Acta Cryst.E63. Submitted.

Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b).Acta Cryst.E63, o1005–o1007.

Butcher, R. J., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2007).Acta Cryst.E63, o30–o32.

Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006).Acta Cryst.E62, o1629–o1630.

Cho, B. R., Je, J. T., Kim, H. S., Jean, S. J., Song, O. K. & Wang, C. H. (1996).

Bull. Korean Chem. Soc.17, 693–695.

Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988).Jpn J. Appl. Phys.27, 429–430.

Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991).J. Cryst. Growth,

108, 688–698.

Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006).J. Cryst. Growth,295, 54–59.

Sheldrick, G. M. (1996).SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998).Mol. Cryst. Liq. Cryst.315, 135–140.

organic papers

Acta Cryst.(2007). E63, o1201–o1203 Butcheret al. C

(4)

supporting information

sup-1 Acta Cryst. (2007). E63, o1201–o1203

supporting information

Acta Cryst. (2007). E63, o1201–o1203 [https://doi.org/10.1107/S1600536807005144]

1-(3-Bromo-2-thienyl)-3-(4-butoxyphenyl)prop-2-en-1-one

Ray J. Butcher, H. S. Yathirajan, B. V. Ashalatha, B. Narayana and B. K. Sarojini

1-(3-Bromo-2-thienyl)-3-(4-butoxyphenyl)prop-2-en-1-one

Crystal data

C17H17BrO2S

Mr = 365.28

Monoclinic, P21/n

a = 9.2564 (5) Å b = 7.7315 (4) Å c = 22.4447 (11) Å β = 90.727 (1)° V = 1606.14 (14) Å3

Z = 4

F(000) = 744 Dx = 1.511 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5997 reflections θ = 2.4–28.8°

µ = 2.69 mm−1

T = 293 K

Triangular, colorless 0.43 × 0.26 × 0.12 mm

Data collection

Bruker APEX II CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.609, Tmax = 1.000

16873 measured reflections 4207 independent reflections 3308 reflections with I > 2σ(I) Rint = 0.023

θmax = 28.9°, θmin = 2.4°

h = −12→12 k = −10→10 l = −30→30

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.032

wR(F2) = 0.079

S = 1.00 4207 reflections 191 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.035P)2 + 0.6575P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.53 e Å−3

Δρmin = −0.53 e Å−3

Special details

(5)

supporting information

sup-2 Acta Cryst. (2007). E63, o1201–o1203

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(6)

supporting information

sup-3 Acta Cryst. (2007). E63, o1201–o1203

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Br 0.06141 (15) 0.06961 (16) 0.04523 (12) 0.01870 (11) −0.00228 (9) 0.00636 (10) S 0.0558 (3) 0.0724 (3) 0.0322 (2) −0.0048 (2) −0.0130 (2) 0.0018 (2) O1 0.0616 (10) 0.1062 (13) 0.0458 (8) 0.0325 (9) −0.0154 (7) −0.0173 (8) O2 0.0508 (8) 0.0567 (8) 0.0306 (6) 0.0097 (6) −0.0100 (5) −0.0073 (6) C1 0.0689 (14) 0.0884 (17) 0.0299 (9) −0.0132 (13) −0.0004 (9) −0.0062 (10) C2 0.0558 (12) 0.0735 (14) 0.0391 (10) −0.0044 (10) 0.0077 (9) −0.0082 (9) C3 0.0481 (10) 0.0460 (10) 0.0328 (8) −0.0061 (8) −0.0010 (7) 0.0021 (7) C4 0.0475 (10) 0.0437 (9) 0.0283 (7) −0.0078 (8) −0.0068 (7) 0.0026 (7) C5 0.0484 (11) 0.0497 (11) 0.0325 (8) 0.0036 (8) −0.0072 (7) −0.0027 (7) C6 0.0453 (10) 0.0572 (11) 0.0332 (8) 0.0054 (8) −0.0075 (7) −0.0042 (8) C7 0.0454 (10) 0.0470 (10) 0.0336 (8) 0.0036 (8) −0.0079 (7) −0.0013 (7) C8 0.0433 (9) 0.0390 (9) 0.0311 (8) −0.0006 (7) −0.0042 (7) −0.0009 (7) C9 0.0420 (9) 0.0480 (10) 0.0341 (8) 0.0063 (8) −0.0011 (7) −0.0077 (7) C10 0.0404 (9) 0.0478 (10) 0.0388 (9) 0.0080 (8) −0.0087 (7) −0.0047 (8) C11 0.0411 (9) 0.0384 (9) 0.0308 (8) −0.0009 (7) −0.0056 (7) −0.0019 (7) C12 0.0430 (10) 0.0460 (10) 0.0333 (8) 0.0060 (8) −0.0022 (7) −0.0057 (7) C13 0.0399 (9) 0.0463 (10) 0.0362 (8) 0.0075 (8) −0.0054 (7) −0.0011 (7) C14 0.0469 (11) 0.0690 (13) 0.0337 (9) 0.0054 (10) −0.0038 (8) −0.0082 (9) C15 0.0592 (12) 0.0639 (13) 0.0298 (8) 0.0022 (10) −0.0029 (8) −0.0040 (8) C16 0.0641 (13) 0.0635 (13) 0.0404 (10) −0.0002 (10) −0.0107 (9) −0.0056 (9) C17 0.0818 (18) 0.0851 (18) 0.0546 (13) 0.0037 (14) −0.0275 (13) −0.0118 (12)

Geometric parameters (Å, º)

(7)

supporting information

sup-4 Acta Cryst. (2007). E63, o1201–o1203

C1—S—C4 92.14 (10) O2—C11—C10 115.59 (15) C11—O2—C14 117.81 (14) C12—C11—C10 119.66 (15) C2—C1—S 112.59 (15) C13—C12—C11 119.11 (16) C2—C1—H1A 123.7 C13—C12—H12A 120.4 S—C1—H1A 123.7 C11—C12—H12A 120.4 C1—C2—C3 111.6 (2) C12—C13—C8 122.00 (16) C1—C2—H2A 124.2 C12—C13—H13A 119.0 C3—C2—H2A 124.2 C8—C13—H13A 119.0 C4—C3—C2 114.22 (18) O2—C14—C15 108.58 (16) C4—C3—Br 126.94 (13) O2—C14—H14A 110.0 C2—C3—Br 118.83 (16) C15—C14—H14A 110.0 C3—C4—C5 136.74 (16) O2—C14—H14B 110.0 C3—C4—S 109.47 (13) C15—C14—H14B 110.0 C5—C4—S 113.76 (14) H14A—C14—H14B 108.4 O1—C5—C6 121.68 (17) C16—C15—C14 114.66 (17) O1—C5—C4 117.57 (16) C16—C15—H15A 108.6 C6—C5—C4 120.75 (17) C14—C15—H15A 108.6 C7—C6—C5 120.48 (18) C16—C15—H15B 108.6 C7—C6—H6A 119.8 C14—C15—H15B 108.6 C5—C6—H6A 119.8 H15A—C15—H15B 107.6 C6—C7—C8 127.48 (17) C15—C16—C17 112.37 (19) C6—C7—H7A 116.3 C15—C16—H16A 109.1 C8—C7—H7A 116.3 C17—C16—H16A 109.1 C13—C8—C9 117.90 (15) C15—C16—H16B 109.1 C13—C8—C7 119.28 (16) C17—C16—H16B 109.1 C9—C8—C7 122.82 (16) H16A—C16—H16B 107.9 C10—C9—C8 120.80 (17) C16—C17—H17A 109.5 C10—C9—H9A 119.6 C16—C17—H17B 109.5 C8—C9—H9A 119.6 H17A—C17—H17B 109.5 C9—C10—C11 120.52 (16) C16—C17—H17C 109.5 C9—C10—H10A 119.7 H17A—C17—H17C 109.5 C11—C10—H10A 119.7 H17B—C17—H17C 109.5 O2—C11—C12 124.76 (16)

(8)

supporting information

sup-5 Acta Cryst. (2007). E63, o1201–o1203

O1—C5—C6—C7 −0.1 (3) C11—O2—C14—C15 179.85 (17) C4—C5—C6—C7 −179.53 (18) O2—C14—C15—C16 −67.0 (2) C5—C6—C7—C8 −178.95 (18) C14—C15—C16—C17 −172.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C7—H7A···O1i 0.93 2.53 3.397 (3) 155

Figure

Figure 2

References

Related documents

(2017) Nonlinear Optical Properties of Novel Polypyrrole Derivatives Bearing Different Aromatic Segments.. This work is licensed under the Creative Commons Attribution

With the abundant expressions of the “hand” phrases, we can infer that: it is the wide use of our hands in routine works, human beings formed the semantic lex- icon of “hand” in

Furthermore, the cost-effectiveness of policies promoting shallow renovation with a strong share of renewables in the supply mix was proved to be inferior to a scenario with

Therefore, the results also suggest that the exter- nal adsorption factors such as solute concentration, temperature and vibrating rate for effect of mass transfer diffusion

After the replication of the benchmark economy, this model was applied to perform types of counterfactual policy experiments. First set of scenarios consisted of increasing rates

overall peer diversity always increases the probability of an upper second or first class degree. In terms of effect size, these results suggest between

Avant que les pays membres puissent faire suffisamment con- fiance dans les normes réglemen- taires des autres Etats pour renoncer à leur propre contrôle lorsque

To address the issue of ongoing viral replication in patients on current ART regimens, we compared single HIV p6, protease, and reverse transcriptase (p6-PR-RT) sequences