• No results found

THE I M P L E ME N T A T I O NO F THE L I B O R MA R K E TM O D E L

N/A
N/A
Protected

Academic year: 2020

Share "THE I M P L E ME N T A T I O NO F THE L I B O R MA R K E TM O D E L"

Copied!
103
0
0

Loading.... (view fulltext now)

Full text

(1)

THE IMPLEMENTATION OF

THE LIBOR MARKET MODEL

Massimo Morini

University of Milan Bicocca and

IMI Bank

Risk Training

INTEREST RATE MODELLING

Practical calibration and implementation techniques

New York, May 16, 2005

(2)

OVERVIEW

Introducing the Libor Market Model

The LMM and the Swap market Model

Pricing swaptions with MC or approximations

Some points on correlation modelling

Reducing model dimension

Calibration, diagnostics and practical cases

Pricing Examples:

Finding exact formulas: In advance swaps and caps

Finding approximations: ZC swaptions and CMS

Tenor issues: Interpolation and Bridging techniques

Early exercise: LSMC for the LMM

(3)
(4)

Interest rates

The money-market account B (t) accrues at the instan-taneous spot rate r (t):

dB (t) = r (t)B (t)dt

so investing 1 at time 0 we have at t B (t) = eR0tr(s)ds

With B (t) define the stochastic discount factor from date

T to date t:

D (t, T) = B (t)

B (T) = e

RtT r(s)ds.

With D(t, T) define the price at t of a security paying 1 at T, the T-maturity zero-coupon bond:

P (t, T) = EQt [D(t, T)1] = EQt h

e−RtT r(s)ds i

.

With P (t, T) define the (simply compounded) spot Libor rate L(t, T) with maturity T

[1 + L(t, T)τ(t, T)] = 1

P(t, T)

and the forward Libor rate F(t;S, T) with expiry S and maturity T:

(5)

Interest Rate Swap

At every instant Ti in Tα+1, . . . , Tβ the fixed leg pays

τiK,

whereas the floating leg pays

τiL(Ti1, Ti).

The discounted payoff at t for the payer of the fixed leg is:

β

X

i=α+1

D(t, Ti)τi(L(Ti1, Ti) K).

The price is

SwapΠt =

β

X

i=α+1

P(t, Ti)τi(F(t, Ti−1, Ti) K)

= P(t, Tα) P(t, Tβ)

β

X

i=α+1

[P(t, Ti)τiK].

The Swap rate (fair K) is

Sα,β(t) = PP(t, Tβ α) P(t, Tβ)

i=α+1 P(t, Ti)τi

(6)

A Cap is an interest rate swap where each exchange payment is executed only if it has positive value. The discounted payoff is

β

X

i=α+1

D(t, Ti)τi(L(Ti1, Ti) K)+.

A Swaption is an option on a swap contract as whole, with exercise date Tα. The discounted payoff is

D(t, Tα) 

β

X

i=α+1

P(Tα, Ti)τi(F(Tα;Ti1, Ti) K) 

+

.

D(t, Tα)

β

X

i=α+1

(7)

Cap Market Black Formula

CapΠ = EQ

β

X

i=α+1

D(0, Ti)τi(L(Ti1, Ti) K)+ 

=

β

X

i=α+1

EQ£D(0, Ti)τi(L(Ti1, Ti) K)+¤

| {z }

CapletΠ

.

Treating D(0, Ti) as a deterministic discount factor

CapletΠ = EQ£D(0, Ti)τi(F(Ti1;Ti1, Ti) K)+¤ = P(0, Ti)τiEQ £(F(Ti1;Ti1, Ti) K)+¤.

Assuming driftless lognormal dynamics for F(t;Ti1, Ti)

dF(t;Ti−1, Ti) = σF(t;Ti−1, Ti)dWt

leads to

CapletΠ = P(0, Ti)τiBlack

³

F(0;Ti1, Ti), K, σpTi1

´

Black(F, K, v) = F N(d1(F, K, v)) K N(d2(F, K, v))

d1(F, K, v) =

ln(KF ) + 12v2

v , d2(F, K, v) =

(8)

Change of Numeraire

(Ω,F, P,F)

Given a probability measure QN1 P and a numeraire N1t,

QN1 is the measure associated with N1t if the price of any tradable asset Xt expressed in terms of N1t is a martingale

under QN1, i.e.

Xt N1t

= EN1 ·

XT N1T

¯ ¯ ¯ ¯Ft

¸

.

Theorem (Geman et al.) : if QN1 is a measure associated with N1t, given a different numeraire N2t there exists a measure

QN2 equivalent to QN1 such that QN2 is associated to N2t.

Xt = EN1

·

N1t

N1T XT ¯ ¯ ¯ ¯Ft

¸

= EN2 ·

N2t

N2T XT ¯ ¯ ¯ ¯Ft

¸

.

Therefore we can price a payoff using a convenient numeraire: Π (Xt) = EQt

h

e−RtT r(s)dsΠ (XT) i

= B (t)EQt ·

Π (XT)

B (T) ¸

= N2tENt 2 ·

Π (XT)

N2T ¸

(9)

In case N2t = P (t, T) the associated probability measure is

the T-forward measure QT and Π (Xt) = β (0, t)EQ

·

1

β (0, T)Π (XT) ¸

= P (t, T)ET ·

1

P (T, T)Π (XT) ¯ ¯ ¯ ¯ Ft

¸

= P (t, T)ET [Π (XT)| Ft].

Caplet Black Formula by Change of Numeraire

CapletΠ = EQ £D(0, Ti)τi(F(Ti1;Ti1, Ti) K)+¤ Take numeraire P(t, Ti)

CapletΠ = P(0, Ti)ETi £τ

i(F(Ti−1;Ti−1, Ti) K)+

¤

,

F(t;Ti−1, Ti) = 1

τi

·

P(t, Ti−1)

P(t, Ti) 1 ¸

.

N2tXt = P(t, Ti)1

τi

·

P(t, Ti−1)

P(t, Ti) 1 ¸

= P(t, Ti−1)1

τi

1

τiP(t, Ti),

which is the price of a tradable asset, so F(t;Ti1, Ti) is a martingale. Assuming lognormality

(10)

The Libor Market Model

The set {T0, . . . , TM} of expiry-maturity dates is the tenor

structure with the corresponding year fractions 0, . . . , τM}. We model the simply compounded forward rates Fk(t) resetting at Tk1 (expiry) and with maturity Tk. Qk is the Tk

-forward probability measure associated to P (t, Tk). We know Fk(t) is a martingale under Qk.

The Libor Market Model assumes for each Fk (t) under Qk:

dFk(t) = σk(t)Fk(t) dZkk(t), t Tk1,

where Zk is an M-dimensional Wiener process, the instanta-neous correlation is matrix ρ, and σk(t) is the

instanta-neous volatility function.

If σk(t) is bounded, we have a unique strong solution

Fk(T) = Fk(0) exp ½

Z T

0

σk(t)2

2 dt + Z T

0

σk(t)dZk(t).

¾

| {z }

∼N

µ

R0T σk(2t)2dt, R0T σk(t)2dt

Therefore Fk(T) is lognormally distributed under Qk, and recalling the MGF of N ¡µ, σ

(11)

Change of Numeraire for dynamics

Start from M-dimensional X under QN1 associated with N1 dXk = µNk 1()dt + σ|{z}¯k ()

(0 0 ...σk...0 0)

dZN1,

with ZN1 M-dimensional with instantaneous correlation ρ.

The drift µN2 of X under QN2 associated with N2 is

µNk 2 = µNk 1 σ¯k ()ρVecDiffCoeff

µ

ln N1 N2

.

In the LMM, changing from Qk to Qi, i < k, we have

N1 N2 =

P (t, Tk) P (t, Ti) =

P(t, Tk) P(t, Tk−1)

P(t, Tk−1) P(t, Tk−2) · · ·

P(t, Ti+1) P(t, Ti) =

k Y

j=i+1

P(t, Tj)

P(t, Tj−1)

=

k Y

j=i+1

1

1 +τjFj(t)

,

so NN12 is expressed in terms of rates in the LMM.

LMM Dynamics of Fk(t) under Qi, k 6= i

i < k, t Ti :

dFk(t) = σk(t)Fk(t)

k X

j=i+1

ρk,jτjσj(t)Fj(t)

1 + τjFj(t)

dt + σk(t)Fk(t)dZk(t)

i > k, t Tk−1 :

i

(12)

Few remarks on the tenor structure of a Libor Market Model

Nested rates. The tenor structure we describe does not include nested

forward rates, such as

Fk(t) = F(t;Tk−1, Tk), Fk+1(t) = F(t;Tk, Tk+1), F(t) := F(t;Tk−1, Tk+1). In fact, assuming Ti are 6-month spaced, we have

Fk(t) = 1 0.5

·

P(t, Tk−1) P(t, Tk)

1

¸

, Fk+1(t) = 1 0.5

·

P(t, Tk) P(t, Tk+1)

1

¸

F(t) = 1 1

·

P(t, Tk−1) P(t, Tk+1)

1

¸

= P(t, Tk−1) P(t, Tk)

P(t, Tk) P(t, Tk+1)

1

= Fk(t) + Fk+1(t)

2 +

Fk(t)Fk+1(t)

4

If Fk and Fk+1 are lognormal under their measures, F cannot be so.

Overlapping rates. Tenor structure does not include overlapping rates

such as

F(t;Tk−1, Tk+1), F(t;Tk, Tk+2)

In fact for the dynamics of F(t;Tk, Tk+2) under Qk+1 we need

P (t, Tk+2)

P (t, Tk+1) =

1

1 + τk+2F(t;Tk+1, Tk+2). and for the dynamics of F(t;Tk−1, Tk+1) under Qk we need

P (t, Tk+1) P (t, Tk) =

1

1 + τk+1F(t;Tk, Tk+1).

(13)

Volatility Structures General Piecewise Constant (GPC)

σk(t) = σk,ε(t), with ε(t) = i if Ti2 < t Ti1.

t (0, T0] (T0, T1] (T1, T2] . . . (TM2, TM1]

F1(t) σ1,1 - - . . .

-F2(t) σ2,1 σ2,2 - . . .

-... . . . . . . . . . . . . . . .

FM(t) σM,1 σM,2 σM,3 . . . σM,M

Constant structure

σk(t) = sk

Separable piecewise constant (SPC)

σk(t) = σk,ε(t) := Φkψk(ε(t)1)

Linear exponential (LE)

σk(t) = Φkψ(Tk1 t;a, b, c, d) = Φk

³

[a(Tk1 t) + d]e−b(Tk−1−t) + c

´

(14)

Cap Calibration

With

CapletΠ = P(0, Ti)τiBlack(F(0;Ti−1, Ti), K, vi),

vi = σipTi1.

If σi(t) is the instantaneous volatility of Fi (t) in the LMM, ensure

RTi−1

0 σi(t)2dt = vi2

For GPC:

vi =

sZ

Ti−1 0

σ2

i,ε(t) dt =

v u u tXi

j=1

(Tj1 Tj2)σ2 i,j.

For σk(t) = sk:

vi = sipTi1 t.

For SPC:

vi = v u u tΦ2

i i

X

j=1

τj2,j1ψi2j+1 .

(15)

The Swap Market Model

Recall the swaption payoff

D(t, Tα)(Sα,β(Tα) K)+

β

X

i=α+1

P(Tα, Ti)τi. Consider the numeraire

Cα,β (t) =

β

X

i=α+1

P(t, Ti)τi

and the associated probability measure, called the swap measure. Assuming lognormality of Sα,β(t) under this mea-sure,

dSα,β(t) = σα,β(t)Sα,β(t) dWtα,β,

one recovers exactly the Black formula for swaptions:

SwaptionΠt = Cα,β (t)Black

Sα,β(t), K,

sZ

t

σα,β(s)2ds

(16)

Swap-Forward rates relationships

First recall that, with k > i P(t, Tk)

P(t, Ti) =

P(t, Tk)

P(t, Tk1)

P(t, Tk1)

P(t, Tk2) · · ·

P(t, Ti+1)

P(t, Ti) = = Qk

j=i+1

P(t, Tj)

P(t, Tj1) =

k

Q

j=i+1

1

1 + τjFj(t).

(1)

We compute the swap rate setting the swap price to zero:

1) SwapΠt =

β

X

i=α+1

P(t, Ti)τi(F(t, Ti1, Ti) K)

= P(t, Tα) P(t, Tβ) β

X

i=α+1

[P(t, Ti)τiK] = 0,

so that

Sα,β(t) = PP(t, Tβ α) P(t, Tβ)

i=α+1 P(t, Ti)τi

=

1 P(t, Tβ)

P(t, Tα)

Pβ

i=α+1

P(t, Ti)

P(t, Tα)τi

by (1)

=

1Qβj=α+1 1

1 + τjFj(t)

(17)

Swap-Forward rates relationships

...or equivalently

2) SwapΠt =

β

X

i=α+1

P(t, Ti)τi(F(t, Ti1, Ti) K) = 0,

Sα,β(t) =

Pβ

i=α+1 P(t, Ti)τiF(t, Ti−1, Ti)

Pβ

i=α+1 P(t, Ti)τi

=

Pβ

i=α+1

P(t, Ti)

P(t, Tα)τiF(t, Ti−1, Ti) Pβ

i=α+1

P(t, Ti)

P(t, Tα)τi = Pβi=α+1 wi(t) Fi(t)

wi(t) =

τi Qij=α+1 1

1 + τjFj(t)

Pβ

k=α+1 τk

Qk

j=α+1

1

1 + τjFj(t)

(18)

Testing LMM-LSM Consistency

1) Assume Fk’s lognormal under Qk (hypothesis of the Libor

Market Model).

2) Change the measure to see their dynamics under Qα,β

3) Combine them and see which distribution they imply for

Sα,β(t) under Qα,β

4) Check if this distribution of Sα,β(t) under Qα,β is lognormal

(19)

Pricing Swaptions with Montecarlo

SwaptionΠt = = EQ

D(0, Tα) (Sα,β(Tα) K)+

β

X

i=α+1

τiP(Tα, Ti)

= P(0, Tα)

(Sα,β(Tα) K)+ β

X

i=α+1

τiP(Tα, Ti) 

= P(0, Tα)

Ψ (Fα+1(Tα), Fα+2(Tα), . . . , Fβ(Tα))

| {z }

Ψ(F(Tα))

.

Recall the dynamics of Fk under Qi, i < k:

dFk(t) = σk(t)Fk(t)

k

X

j=i+1

ρj,kτjσj(t)Fj(t)

1 + τjFj(t) dt+σk(t)Fk(t)dZk(t). Take logs and discretize

dln Fk(t) = σk(t)

k

X

j=α+1

ρk,jτjσj(t)Fj(t) 1 + τjFj(t)

dt−σk(t)

2

2 dt+σk(t)dZk(t).

ln ¯Fk(t + ∆t) = ln ¯Fk(t) + σk(t) k

X

j=α+1

ρk,j τj σj(t) ¯Fj(t)

1 + τjF¯j(t) ∆t

(20)

Store the ¯Fn(), n = 1, . . . , N (# of scenarios) and compute

SwaptionΠMCt = P(0, Tα) 1

N

N

X

n=1

Ψ £F¯n(Tα.

In the SMM:

dSα,β(t) = σ(α,β) (t)Sα,β(t)dWα,β.

with σ(α,β) deterministic. The Black Volatility is:

vα,β(Tα) =

sZ

0

¡

σ(α,β) (t)¢2 dt

=

sZ Tα

0

(dSα,β(t)) (dSα,β(t))

Sα,β(t)2

(21)

Rebonato ’98 industry LMM Approximated Black Volatility

Sα,β(t) =

β

X

i=α+1

wi(t)Fi(t) =

β

X

i=α+1

wi(0)Fi(t), First

Approx.

dSα,β(t) dSα,β(t) =

β

X

i,j=α+1

wi(0)wj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t)dt

dSα,β(t)dSα,β(t)

Sα,β(t)2

=

Pβ

i,j=α+1 wi(0)wj(0)Fi(t)Fj(t)ρi,jσi(t)σj(t)

³Pβ

i=α+1 wi(0) Fi(t)

´2 dt

=

Pβ

i,j=α+1 wi(0)wj(0)Fi(0)Fj(0)ρi,jσi(t)σj(t)

³Pβ

i=α+1 wi(0) Fi(0)

´2 SecondApprox.

vα,β(Tα)

=

P

β

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j Sα,β(0)2

R Tα

0 σi(t)σj(t)dt

(22)

Correlation Modeling

Properties of correlation 1) ρi,i = 1, i

2) ρi,j = ρj,i, i, j

3) x0ρx 0, ∀x(6= 0) 4) |ρi,j| ≤ 1 i, j

Instantaneous correlation in the LMM can be implied corre-lation (calibrated) or exogenous correlation (estimated). When estimating correlations for LMM, recall that rates

F(t;T0, T1), F(t;T1, T2), F(t;T2, T3). . .

have fixed maturity, so we need discount factors

P(t, T), P(t + 1, T). . . P(t + n, T),

not

P(t, t + Z), P(t + 1, t + 1 + Z). . . P(t + n, t + n + Z).

Historical Forward rates correlation

(23)

Correlations: Parametric Forms

Schoenmakers and Coffey (2000) three-parameter form

ρi,j = exp

·

−|i− j|

µ

β α2

6M 18

¡

i2 + j2 +ij 6i 6j 3M2 + 15M 7¢

+ α1 6M 18

¡

i2 + j2 +ij 3Mi 3Mj + 3i + 3j + 3M2 6M + 2¢

¶¸

.

where the parameters are constrained to be non-negative.

Schoenmakers and Coffey (2000) two-parameter form

ρi,j = exp

·

|i− j|

M 1

µ

lnρ

+ ηi

2 +j2 + ij 3Mi 3Mj + 3i+ 3j + 2M2 M 4

(M 2)(M 3)

¶¸

where ρ = ρ1,M, with: 0 < η < lnρ. Classic, two-parameters exponential form

ρi,j = ρ + (1 ρ) exp[−β|i j|], β 0.

Rebonato (1999b) three-parameter form

(24)

Pivot forms

Rebonato three-parameter form

µ

ρ1,M ρ

1 ρ

¶ =

µ

ρM1,M ρ

1 ρ

(M1)

,

α = ln

µ

ρ1,2 ρ ρM1,M ρ

2 M , β = α ln

µ

ρ1,2 ρ

1 ρ

.

ρ = 0.23551, α = 0.00126, β = 0.26388.

Schoenmakers and Coffey three-parameter form β = ln (ρM−1,M).

α1 = 6 lnρ1,M

(M 1) (M 2)

2 lnρM1,M

(M 2)

4 lnρ1,2

(M 2),

α2 = 6 lnρ1,M

(M 1) (M 2) +

4 lnρM1,M

(M 2) +

2 lnρ1,2

(M 2),

α1 = 0.03923, α2 = 0.03743, β = 0.17897. Schoenmakers and Coffey two-parameter form

ρ = ρ1,M

(25)

Fitting Pivot

MSE 0.108434 0.173554

MSE% 0.25949 0.30890

LMM representations for correlations

Replace

dZ v N(0, ρ dt) by

C dY , with dY v N (0, I dt), CC0 = ρ

so that

C dY v N (0, ρ dt)

and the representation of the dynamics becomes dFk(t) = Fk(tσk(t) dY (t).

with

¯

σk(t) = σk(t)C(k),

(26)

The rank of the correlation matrix

When rank (ρ) = r < M, there exists B

M×r of rank r such that

ρ = BB0

so that

dZ BdY,

where Y is r-dimensional independent multivariate normal. The actual number of independent stochastic factors in the model is

r.

Given ρ, define ∆ the diagonal matrix of its eigenvalues λi in de-creasing order and X the orthogonal matrix of the corresponding eigenvectors. Then we have the spectral decomposition

ρX = X.

ρ = XX−1 = XX0.

Define Λ the diagonal matrix diag ¡√λi

¢

so that ∆ = ΛΛ,

Then

ρ = XΛΛX0 = (XΛ) (XΛ)0 = CC0

If rank (ρ) = r < M, then eliminating the null columns of C

one obtains B

M×r such that ρ = BB

(27)

Rank Reduction Methods:

Eigenvalue zeroing with normalization:

If rank (ρ) = M, then eliminating the columns of C associated to the (M r) smallest eigenvalues of ρ returns a matrix ˜B

M×r

such that

˜

ρ = ˜BB˜0

is the best reduced rank approximation of ρ according to Frobe-nius norm.

In order to recover a correlation matrix one needs to rescale, obtaining ¯ρ

¯

ρij =

qB˜i ˜

BiB˜i0

 

 

˜

Bj0

q ˜

BiB˜i0

(28)

Rank Reduction Methods:

Optimization on angles parameterization (Rebonato and Jackel ’99)

Correlations are parameterized through trigonometric functions of a matrix Θ of angles θ. The parametric form for an M ×M

correlation matrix of rank r M is

A = Br (Br)0 where Br is M × r with ith row

bri,1 = cosθi,1,

bri,k = cosθi,k sinθi,1 · · ·sinθi,k−1, 1 < k < r,

bri,r = sinθi,1 · · ·sinθi,r−1.

i = 1, . . . , M.

Rank reduction can be achieved by the unconstrained optimiza-tion

min

Θ

°

(29)

Rank Reduction Methods:

Eigenvalues zeroing by iteration (Morini and Webber ’03) 1. SET s = 1 AND ρ1 = ρ ;

2. REDUCE THE RANK:

Xs         

λs1 0 0 0 0 0 0 λs2 0 0 0 0 0 0 . . . 0 0 0 0 0 0 λsr 0 0 0 0 0 0 . . . 0 0 0 0 0 0 λsM

        

| {z }

Xs0 ρs V X s          λs

1 0 0 0 0 0

0 λs2 0 0 0 0 0 0 . . . 0 0 0 0 0 0 λsr 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         Xs0

| {z }

˜ ρs

3. RECOVER UNIT DIAGONAL:          ˜

ρs11 ρ˜s12 ρ˜13s ρ˜s14 . . . ρ˜s1M ˜

ρs21 ρ˜s22 ρ˜23s ρ˜s24 . . . ρ˜s2M ˜

ρs31 ρ˜s32 ρ˜33s ρ˜s34 . . . ρ˜s3M ˜

ρs

41 ρ˜s42 ρ˜s43 ρ˜s44 . . . ρ˜s4M

... ... ... ... ... ... ˜

ρs

M1 ρ˜sM2 ρ˜sM3 ρ˜sM4 . . . ρ˜sMM         

| {z }

V         

1 ρ˜s12 ρ˜s13 ρ˜s14 . . . ρ˜s1M ˜

ρs21 1 ρ˜s23 ρ˜s24 . . . ρ˜s2M ˜

ρs31 ρ˜s32 1 ρ˜s34 . . . ρ˜s3M ˜

ρs

41 ρ˜s42 ρ˜s43 1 . . . ρ˜s4M

... ... ... ... [I] ... ˜

ρs

M1 ρ˜sM2 ρ˜sM3 ρ˜sM4 . . . 1

        

| {z }

˜

ρs ρs+1

4. IF STOPPING CONDITION IS TRUE, STOP. ELSE SET

(30)

Terminal correlation

[(Fi() EγFi())(Fj() EγFj())]

p

[(F

i() EγFi())2]

p

[(F

j() EγFj())2]

.

Basic approximation:

T Cij (T) =

RT

0 σi(t)σj(t)ρi,j dt

qR T

0 σi2(t) dt

qRT

0 σj2(t) dt

.

Term structure of volatility

At time Tj

Tj+1 7−→ 1

Tj+1 Tj

R Tj+1

Tj σj+22 (t)dt

Tj+2 7−→ 1

Tj+2 Tj

R Tj+2

Tj σj+32 (t)dt

... ...

TM1 7−→ 1

TM1 Tj

R TM1

(31)

CALIBRATION GOALS

A small calibration error

°

°ΠM (Θ) Π°°

Computational efficiency

Financial reasonableness:

1) Regular instantaneous and terminal correlations

2) Smooth and stable evolution of the term structure of volatilities

3) Implied structures realistic and consistent with market patterns

(32)

1) JOINT CAPS-SWAPTIONS MINIMIZATION CALIBRATION WITH SPC STRUCTURE

CALIBRATION ERRORS

2y 3y 4y 5y 6y 7y 8y 9y 10y 1y -0.71 0.90 1.67 4.93 3.00 3.25 2.81 0.83 0.11 2y -2.43 -3.48 -1.54 -0.70 0.70 0.01 -0.22 -0.45 0.49 3y -3.84 1.28 -2.44 -0.69 -1.18 0.21 1.51 1.57 -0.01 4y 1.87 -2.52 -2.65 -3.34 -2.17 -0.44 -0.11 -0.63 -0.38 5y 1.80 4.15 -1.40 -1.89 -1.74 -0.79 -0.34 -0.07 1.28 7y -0.33 2.27 1.47 -0.97 -0.77 -0.65 -0.57 -0.15 0.19 10y -0.02 0.61 0.45 -0.31 0.02 -0.03 0.01 0.23 -0.30 INSTANTANEOUS CORRELATION

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

(33)

TERMINAL CORRELATIONS

10y 11y 12y 13y 14y 15y 16y 17y 18y 19 10y 1.00 0.56 0.27 0.19 0.09 0.21 0.08 -0.10 -0.06 0.37 11y 0.56 1.00 0.61 0.75 0.67 0.68 0.64 0.44 0.42 0.50 12y 0.27 0.61 1.00 0.42 0.71 0.53 0.48 0.43 0.40 0.42 13y 0.19 0.75 0.42 1.00 0.36 0.71 0.50 0.41 0.43 0.34 14y 0.09 0.67 0.71 0.36 1.00 0.32 0.67 0.43 0.40 0.36 15y 0.21 0.68 0.53 0.71 0.32 1.00 0.28 0.59 0.39 0.33 16y 0.08 0.64 0.48 0.50 0.67 0.28 1.00 0.22 0.62 0.30 17y -0.10 0.44 0.43 0.41 0.43 0.59 0.22 1.00 0.17 0.36 18y -0.06 0.42 0.40 0.43 0.40 0.39 0.62 0.17 1.00 0.07 19y 0.37 0.50 0.42 0.34 0.36 0.33 0.30 0.36 0.07 1.00 EVOLUTION OF THE TERM STRUCTURE OF VOLATILITY

0 2 4 6 8 10 12 14 16 18 20

0.1 0.15 0.2 0.25 0.3

today in 3y in 6y in 9y in 12y in 16y

(34)

2) JOINT CAPS-SWAPTIONS MINIMIZATION CALIBRATION WITH LE STRUCTURE AND MORE CONSTRAINTS ON CORRELATIONS

CALIBRATION ERRORS

2y 3y 4y 5y 6y 7y 8y 9y 10y 1y 2.28 -3.74 -3.19 -4.68 2.46 1.50 0.72 1.33 -1.42 2y -1.23 -7.67 -9.97 2.10 0.49 1.33 1.56 -0.44 1.88 3y 2.23 -6.20 -1.30 -1.32 -1.43 1.86 -0.19 2.42 1.17 4y -2.59 9.02 1.70 0.79 3.22 1.19 4.85 3.75 1.21 5y -3.26 -0.28 -8.16 -0.81 -3.56 -0.23 -0.08 -2.63 2.62 7y 0.10 -2.59 -10.85 -2.00 -3.67 -6.84 2.15 1.19 0.00 10y 0.29 -3.44 -11.83 -1.31 -4.69 -2.60 4.07 1.11 0.00

INSTANTANEOUS CORRELATION

(35)

EVOLUTION OF THE TERM STRUCTURE OF VOLATILITY

0 2 4 6 8 10 12 14 16 18 20

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

(36)

The swaption cascade calibration

The analytical swaption cascade calibration assumes

exogenous correlation;

general piecewise constant volatility (GPC):

σ

k

(

t

) =

σ

k,ε(t)

,

ε

(

t

) =

i

if

T

i2

< t

T

i1

.

t (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]

F1(t) σ1,1 - - . . .

-F2(t) σ2,1 σ2,2 - . . .

-... . . . . . . . . . . . . . . .

(37)

The swaption analytical cascade calibration

is based on inverting industry approximate formula

for Black swaption volatility

v

α,β2

.

With GPC the formula reads

β

X

i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j

Tα Sα,β(0)2

α

X

h=0

(Th Th−1)σi,h+1σj,h+1,

w

i

(

t

) =

τ

i

Q

ij=α+1

1

1 +

τ

j

F

j

(

t

)

P

β

k=α+1

τ

k

Q

k

j=α+1

1

1 +

τ

j

F

j

(

t

)

(38)

Black implied volatilities of ATM swaptions on

February 1, 2002:

1 2 3 4 5 6 7 8 9 10

1 17.90 16.50 15.30 14.40 13.70 13.20 12.80 12.50 12.30 12.00

2 15.40 14.20 13.60 13.00 12.60 12.20 12.00 11.70 11.50 11.30

3 14.30 13.30 12.70 12.20 11.90 11.70 11.50 11.30 11.10 10.90

4 13.60 12.70 12.10 11.70 11.40 11.30 11.10 10.90 10.80 10.70

5 12.90 12.10 11.70 11.30 11.10 10.90 10.80 10.60 10.50 10.40

6 12.50 11.80 11.40 10.95 10.75 10.60 10.50 10.40 10.35 10.25

7 12.10 11.50 11.10 10.60 10.40 10.30 10.20 10.20 10.20 10.10

8 11.80 11.20 10.83 10.40 10.23 10.17 10.10 10.10 10.07 10.00

9 11.50 10.90 10.57 10.20 10.07 10.03 10.00 10.00 9.93 9.90

(39)

Cascade Calibration Algorithm

1. Fix s, dimension of the swaption matrix; 2. Set α = 0;

3. Set β = α + 1; 4. Solve in σβ,α+1

Aα,βσβ,α+12 + Bα,βσβ,α+1 + Cα,β = 0,

Aα,β = wβ(0)2Fβ(0)2(Tα Tα−1),

Bα,β = 2

Pβ−1

j=α+1(0)wj(0)Fβ(0)Fj(0)ρβ,j (Tα Tα−1) σj,α+1,

Cα,β = Pβ−i,j=1α+1 wi(0)wj(0)Fi(0)Fj(0)ρi,j Pαh=0(Th Th−1) σi,h+1 σj,h+1 +2Pβ−j=α1+1wβ(0)wj(0)Fβ(0)Fj(0)ρβ,j Pα−h=01(Th Th−1) σβ,h+1 σj,h+1 +wβ(0)2(0)2

Pα−1

h=0(Th Th−1) σβ,h2 +1 Sα,β(0)2 vα,β2 . 5. Set β = β + 1. If β s, go to point 4.

(40)

Extended Cascade Calibration Algorithm

Points 4 and 5 are modified as follows: 4. In case β = s + α set

σβ,α+1 = σβ,α = . . . = σβ,1 for β = s + α.

The equation to solve is now

A∗α,βσβ,α+12 + Bα,β σβ,α+1 + Cα,β = 0,

A∗α,β = wβ(0)2Fβ(0)2(Tα Tα−1) + wβ(0)2Fβ(0)2Pα−h=01(Th Th−1),

Bα,β = 2Pβ−j=α1+1(0)wj(0)Fβ(0)Fj(0)ρβ,j (Tα Tα−1) σj,α+1

+2Pβ−j=α1+1wβ(0)wj(0)Fβ(0)Fj(0)ρβ,j Pα−h=01(Th Th−1) σj,h+1,

Cα,β = Pβ−i,j=1α+1 wi(0)wj(0)Fi(0)Fj(0)ρi,j

Pα

h=0(Th Th−1) σi,h+1 σj,h+1

(41)

Cascade Calibration: main features

1. Correlation matrix is an exogenous input;

2. Calibration is fast, through closed form formulas; 3. If industry formula is used for pricing, market prices

are fit exactly;

4. Solution is unique given correlation;

5. Induces one-to-one relation between model σ0s

(42)

Cascade Calibration: problems

0.180 - - - -0.155 0.204 - - - -0.129 0.156 0.233 - - - -0.118 0.104 0.166 0.244 - - - -0.109 0.099 0.097 0.161 0.248 - - - - -0.113 0.073 0.078 0.101 0.162 0.263 - - - -0.104 0.098 0.050 0.074 0.113 0.163 0.263 - - -0.094 0.105 -0.094 0.032 0.086 0.097 0.168 0.273 - -0.106 0.079 0.086 0.082 0.068 0.054 0.092 0.176 0.285 -0.101 0.092 0.058 0.103 0.151 -0.032 0.039 0.085 0.163 0.278 0.097 0.092 0.079 0.043 0.030 0.209 -0.038 0.075 0.095 0.185 0.082 0.083 0.083 0.071 0.045 0.062 0.156 -0.010 0.073 0.091 0.074 0.074 0.074 0.074 0.080 0.058 0.094 0.123 -0.016 0.061 0.070 0.070 0.070 0.070 0.070 0.101 0.051 0.082 0.120 -0.021

(43)

Calibration with Re 3 parameter pivot correlation at rank 7 0.179

0.153 0.155

0.144 0.129 0.154

0.144 0.134 0.105 0.156

0.140 0.122 0.112 0.112 0.154

0.143 0.134 0.103 0.101 0.106 0.153

0.143 0.127 0.143 0.088 0.097 0.086 0.144

0.146 0.153 0.128 0.078 0.070 0.098 0.093 0.145

0.157 0.109 0.155 0.160 0.067 0.007 0.101 0.081 0.107

0.136 0.152 0.126 0.123 0.121 0.108 -0.04 0.120 0.077 0.067 Calibration with Re 3 parameter pivot correlation at rank 3

0.179

0.152 0.156

0.131 0.130 0.165

0.123 0.132 0.120 0.164

0.128 0.123 0.120 0.118 0.153

0.141 0.128 0.098 0.101 0.108 0.162

0.144 0.115 0.122 0.082 0.102 0.106 0.159

0.147 0.137 0.106 0.065 0.071 0.110 0.114 0.159

0.156 0.098 0.136 0.131 0.054 0.031 0.119 0.111 0.139

(44)

First columns of correlation matrices of different ranks

-0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20

1 3 5 7 9 11 13 15 17 19

rank 2

rank 4

rank 7

rank 19 (full)

First columns of various configurations of exponential structure

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

a

b

c

d

e

f

(45)

Evolution of the term structure of volatility

1 2 3 4 5 6 7 8 9 10

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

TSV with correlation at rank 2

1 2 3 4 5 6 7 8 9 10

0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

(46)

Terminal correlations with S&C 2 parameter instantaneous cor-relation matrix at rank 2

10 11 12 13 14 15 16 17

10 1.000 0.928 0.895 0.920 0.855 0.846 0.928 0.924 11 0.928 1.000 0.863 0.909 0.933 0.881 0.901 0.923 12 0.895 0.863 1.000 0.916 0.908 0.910 0.878 0.939 13 0.920 0.909 0.916 1.000 0.944 0.931 0.956 0.926 14 0.855 0.933 0.908 0.944 1.000 0.954 0.923 0.928 15 0.846 0.881 0.910 0.931 0.954 1.000 0.937 0.958 16 0.928 0.901 0.878 0.956 0.923 0.937 1.000 0.957 17 0.924 0.923 0.939 0.926 0.928 0.958 0.957 1.000

Terminal correlations with S&C 2 parameter instantaneous cor-relation matrix at rank 10

10 11 12 13 14 15 16 17

(47)

0.08 0.1 0.12 0.14 0.16 0.18 0.2

1 2 3 4 5 6 7 8 9 10

Quoted swaptions

Power

(48)

Endogenous Interpolation Cascade

Calibration Algorithm

(Brigo and Morini 2003)

1. Fix s, dimension of the swaption matrix including non quoted maturities, and set K :=

{k Z : 0 k < s 1, vk,y missing, k < y k + s}

2. Set α = 0;

3. a. If α K, set

σj,m+1 = σj,m = . . . = σj,α+1 =: σj, (2)

α + 1 j s,

m = min{i Z : α < i < s, i /∈ K}. Set γ = α and α = m.

b. If α /∈ K, set γ = α. Set β = α + 1.

4. a. If γ K, solve in σβ (CCA) adjusting for (2). b. If γ /∈ K, solve in σβ,α+1 equation (CCA).

5. Set β = β + 1. If β < s+γ go to point 4. If β = s +γ, set

(49)

February 1, 2002, with historical correlation at full

rank

0.179

0.167 0.140

0.153 0.138 0.138

0.142 0.148 0.130 0.122

0.135 0.131 0.134 0.135 0.109

0.142 0.135 0.106 0.118 0.112 0.109

0.155 0.126 0.145 0.098 0.130 0.087 0.087

0.150 0.141 0.118 0.099 0.103 0.142 0.142 0.087

0.130 0.092 0.136 0.153 0.095 0.122 0.122 0.142 0.087

(50)

May 16, 2000, Brigo and Mercurio (2001)

0.180

0.155 0.204

0.129 0.156 0.233

0.118 0.104 0.166 0.244

0.109 0.099 0.097 0.161 0.248

0.113 0.073 0.078 0.101 0.162 0.248

0.104 0.098 0.050 0.074 0.113 0.219 0.219

0.094 0.105 0.094 0.032 0.086 0.137 0.137 0.219

0.106 0.079 0.086 0.082 0.068 0.075 0.075 0.137 0.219

(51)

February 1, 2002, parametric correlation at rank 2

1 2 3 4 5 6 7 8 9 10

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

February 1, 2002, parametric correlation at rank 19

1 2 3 4 5 6 7 8 9 10

(52)

December 10, 2002, historical correlation at rank 2

1 2 3 4 5 6 7 8 9 10

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

October 10, 2003, historical correlation at rank 19

1 2 3 4 5 6 7 8 9 10

(53)

ENDOGENOUS INTERPOLATION

1 2 3 4 5 6 7 8 9 10

1 0.291 0.252 0.228 0.209 0.197 0.185 0.173 0.165 0.159 0.153 2 0.237 0.209 0.193 0.178 0.167 0.158 0.152 0.147 0.143 0.140 3 0.202 0.185 0.172 0.161 0.150 0.144 0.139 0.135 0.132 0.130 4 0.180 0.168 0.157 0.147 0.138 0.133 0.129 0.126 0.123 0.122 5 0.165 0.155 0.143 0.135 0.129 0.125 0.122 0.119 0.117 0.116 6 0.159 0.143 0.135 0.129 0.123 0.120 0.117 0.114 0.112 0.111

7 0.140 0.134 0.127 0.120 0.116 0.113 0.110 0.108 0.107 0.106 8 0.139 0.130 0.122 0.117 0.114 0.110 0.107 0.105 0.104 0.102

9 0.131 0.123 0.117 0.113 0.109 0.105 0.103 0.102 0.100 0.099

(54)

STABILITY

Average

|

σ|

Feb-02 Dec-02 Oct-03

Feb-02

0.000

0.018

0.029

Dec-02

0.018

0.000

0.023

Oct-03

0.029

0.023

0.000

Max

|

σ|

Feb-02 Dec-02 Oct-03

Feb-02

0.000

0.066

0.113

Dec-02

0.066

0.000

0.109

Oct-03

0.113

0.109

0.000

Average

|

v|

Feb-02 Dec-02 Oct-03

Feb-02

0.000

0.009

0.029

Dec-02

0.009

0.000

0.020

Oct-03

0.029

0.020

0.000

(55)

MC TESTS

1 February 2002, 5×6 swaption and Rebonato 3 par. rank 2 correlation: MC volatility MC inf MC sup Approximation

0.108612 0.108112 0.109112 0.109000

Upwardly shifted volatilities:

MC volatility MC inf MC sup Approx. Cal. vol’s ×1.2 0.130261 0.129644 0.130878 0.130800

Cal. vol’s +0.2 0.300693 0.298988 0.302399 0.303820

MC vol (no a.v.) MC inf MC sup Approx. Cal. vol’s +0.2 0.301934 0.299010 0.304861 0.303820

10 December 2002, 10 × 10 swaption, historically estimated correlation at full rank 19:

MC volatility MC inf MC sup Approx. Cal. vol’s 0.094937 0.094512 0.095363 0.095000

Cal. vol’s ×1.2 0.113853 0.113333 0.114372 0.114000

Cal. vol’s +0.2 0.273425 0.272064 0.274788 0.277094

MC vol (no a.v.) MC inf MC sup Approx. Cal. vol’s +0.2 0.273317 0.270865 0.275774 0.277094

Upwardly shifted forward rates:

MC volatility MC inf MC sup Approximation

(56)

INCLUDING CAP MARKET - Annualization

With 0

< S < T < U

, all six-months spaced,

con-sider an

S

×

1 swaption and

S

and

T

-expiry

six-month caplets associated with semi-annual forward

rates

F

1

(

t

) and

F

2

(

t

) with correlation

ρ

(infracorre-lation).

Approximation for constant volatility forward rates:

vSW2

u21(0)vS2caplet+u22(0)vT2caplet+2ρu1(0)u2(0)vScapletvTcaplet,

u1 (t) = 1

F(t) µ

F1(t)

2 +

F1(t)F2(t) 4

u2 (t) = 1

F(t) µ

F2(t)

2 +

F1(t)F2(t)

4

Annualized caplet volatilities

(57)

Implied evolution of term structure of volatility

1 2 3 4 5 6 7 8 9 10 0.05

0.1 0.15 0.2 0.25 0.3

Infra-correlations

(58)

Endogenous Interpolation Cascade

Calibration - Conclusions

1. Calibration is fast, through closed form formulas;

2. If industry formula is used, market prices are fit

exactly;

3. Solution is unique given correlation;

4. One-to-one correspondence model-market

volatilities;

5. Exogenous correlation matrix: regular

instantaneous and terminal correlations;

(59)

Pricing with the Libor Market Model

Pricing with

exact formulas

Example: In-Advance Swaps and Caps

Pricing with

approximations

Example for a tailored approximation: Zero-Coupon

Swaptions

Example for a general approximation: CMS

Pricing with

non-standard-tenor rates

:

(60)

Pricing with exact formulas: In-Advance Swap Plain-Vanilla Swap payoff

β

X

i=α+1

D (0, Ti)τi(F(Ti−1;Ti−1, Ti) K),

In-Advance Swap payoff

β

X

i=α+1

D (0, Ti)τi+1(F(Ti;Ti, Ti+1 ) K).

0

| · · · T|α

Tα+1

|

Tα+2

| · · ·

Tβ

|

Plain Vanilla PS y | y | y |

In-Advance PS | x | x | x

Plain-Vanilla Swap Payments at Ti

τi(F(Ti1;Ti1, Ti) K) = = τi

µ 1

τi

µ

1

P (Ti1, Ti) 1 ¶

K

(61)

In-Advance Swap Payments at Ti

τi+1(F(Ti, Ti, Ti+1) i+1) =

= 1

P (Ti, Ti+1)

1 i+1.

Using Change of Numeraire, the price of a plain vanilla swap is

EQ   β X i=α+1

D (0, Ti)τi(F(Ti1;Ti1, Ti) K)   = = β X i=α+1

EQ[D (0, Ti)τi(F(Ti−1;Ti−1, Ti) K)] =

by CoN

=

β

X

i=α+1

P (0, Ti)Ei [τi(F(Ti1;Ti1, Ti) K)] =

=

β

X

i=α+1

P (0, Ti)τi(F(0; Ti1, Ti) K).

The price of an in-advance swap is

EQ   β X i=α+1

D (0, Ti)τi+1(F(Ti;Ti, Ti+1) K) 

=

β

(62)

Law of Iterated Expectation

E[E[X | FS] | FT] = E[X | FT], T < S

Proposition 1 The current value of the amount XT at T is equivalent to the current value of the accrued amount XT

P (T, S) at S > T :

Et

h

D(t,S) P(T,S)XT

i

= Et

· ET

·

D (t, S)

P (T, S)XT ¸¸

=

= Et ·

ET ·

D (t, T) D (T, S)

P (T, S) XT ¸¸

=

= Et ·

D (t, T)XT

P (T, S) ET [D (T, S)] ¸

=

= Et

·

D (t, T)XT

P (T, S) P (T, S) ¸

(63)

IASΠ = = E   β X i=α+1

D(0, Ti)τi+1(F(Ti;Ti, Ti+1) K) 

=

by def of F

= β X i=α+1 E ·

D(0, Ti)( 1

P (Ti, Ti+1)

1 τi+1K)

¸ = = β X i=α+1 E ·

D(0, Ti)

P (Ti, Ti+1) D(0, Ti) (1 + τi+1K) ¸

=

by Prop 1

= β X i=α+1 E ·

D(0, Ti+1)

P (Ti, Ti+1)2 D(0, Ti) (1 + τi+1K) ¸ = = β X i=α+1 · E µ

D(0, Ti+1)

P (Ti, Ti+1)2 ¶

E(D(0, Ti) (1 + τi+1K)) ¸ = by CoN = β X i=α+1 ·

P(0, Ti+1)Ei+1 µ

1

P (Ti, Ti+1)2

(64)

In terms of forward rates:

IASΠ =

β

X

i=α+1

£

P(0, Ti+1)Ei+1(1 + 2F(Ti;Ti, Ti+1)τi+1+

+F(Ti;Ti, Ti+1)2τi+12

´

P(0, Ti) (1 + τi+1K) i

From the dynamics of F(t;Ti, Ti+1)

dF(t;Ti, Ti+1) = σi+1(t)F(t;Ti, Ti+1) dZi+1(t) via Ito formula

dF(t;Ti, Ti+1)2 = σi+12 (t)F(t;Ti, Ti+1)2 dt

+2σi+1(t)F(t;Ti, Ti+1)2 dZi+1(t) with solution

F(T;Ti, Ti+1)2 :

F(0;Ti, Ti+1)2exp

½Z T

0

−σi+12 (s)ds + Z T

0

2σi+1(s)dZi+1(s) ¾

| {z }

N³R0T −σi2+1(s)ds , R0T 4σ2i+1(s)ds

´

,

(65)

IASΠ=

= Pβi=α+1 £P(0, Ti+1)Ei+1(1 + 2F(Ti;Ti, Ti+1)τi+1+ +F(Ti;Ti, Ti+1)2τi+12 ¢ P(0, Ti) (1 + τi+1K)¤ =

= Pβ

i=α+1

[P(0, Ti+1) (1 + 2τi+1F(0;Ti, Ti+1) + + τi+12 F(0; Ti, Ti+1)2eR0Ti σ2i+1(s)ds

´

P(0, Ti) (1 + τi+1K) i

In-advance cap paying and resetting at Tα+1, . . . , Tβ, with unit notional amount and strike K. The payoff discounted at

t = 0 is

β

X

i=α+1

D(0, Ti)τi+1(Fi+1(Ti) K)+

The price is

IACΠ = E

β

X

i=α+1

D(0, Ti)τi+1(Fi+1(Ti) K)+ 

Applying the same reasoning seen for in-advance swaps we get:

IACΠ = E

β

X

i=α+1

D(0, Ti)( 1

P (Ti, Ti+1)

1 τi+1K)+

  = E   β X

( D(0, Ti) D(0, T ) (1 + τ K))+ 

(66)

IACΠ = E   β X i=α+1 µ

D(0, Ti+1)

P (Ti, Ti+1)2

D(0, Ti+1)

P (Ti, Ti+1)

(1 + τi+1K)

+  = E   β X i=α+1

D(0, Ti+1) ³

(1 + τi+1Fi+1(Ti))2

(1 + τi+1Fi+1(Ti)) (1 + τi+1K))+¤ =

β

X

i=α+1

P(0, Ti+1)τi+1Ei+1 [(1 + τi+1Fi+1(Ti)) (Fi+1(Ti) K)+

¤

=

β

X

i=α+1

P(0, Ti+1)τi+1

©

Ei+1 £(Fi+1(Ti) K)+

¤

+ τi+1Ei+1Fi+1(Ti)2 Fi+1(Ti)K¢+

io

(67)

Pricing with Approximations: ZeroCoupon Swaption

The payoff of a Zero-Coupon Swap is

β

X

i=α+1

D (0, Ti)τiF(Ti1;Ti1, Ti) D (0, Tβ) τα,βK.

The price is

β

X

i=α+1

P (0, Ti)τiF(0;Ti1, Ti) P (0, Tβ)τα,βK =

=

β

X

i=α+1

P (0, Ti)τi

µ 1

τi

µ

P (0, Ti−1)

P (0, Ti) 1 ¶¶

P (0, Tβ)τα,βK

= P (0, Tα) P (0, Tβ) P (0, Tβ)τα,βK

Zero-Coupon Swaption:

D (0, Tα)

β

X

i=α+1

P (Tα, Ti)τiF(;Ti−1, Ti) P (Tα, Tβ)τα,βK

+

References

Related documents

AP: Anterior and posterior; LL: Lumbar lordosis; MRI: Magnetic Resonance Imaging; ODI: Oswestry Disability Index; PI: Pelvic incidence; PSO: Pedicle subtraction osteotomy; PT:

In the prior analysis we found that individuals living in neighborhoods with low levels of social support and high levels of neighborhood stressors such as violence reported

ited access to English language-based communication, infre- quent contact with clinicians familiar with their language and culture, and the challenging experience of working with

Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I

Table 3 Overview of relevant literature in the treatment of Crowe III or IV dysplasia combined with subtrochanteric femoral shortening osteotomy Study Year Hips (n) DDH type

AO: Arbeitsgemeinschaft für Osteosynthesefragen; CMS: Coleman Methodology Scoring; DI: Deep Infection; KOOS: Knee injury and Osteoarthritis Outcome Score; LOE: Level of Evidence;

Methods: Sixteen patients who had undergone unilateral ACL reconstruction were divided into two groups based on the results of manual pivot shift testing: 1) Pivot group; and 2)

Physicians almost universally endorse cancer screening [19]. However, high rates of physician recommendations for screening are not supported by either chart docu- mentation [20]