• No results found

Pure Bending – Multiple Materials & Plastic Bending

N/A
N/A
Protected

Academic year: 2021

Share "Pure Bending – Multiple Materials & Plastic Bending"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

!"#$%&

!"#$%&

'()*+(*),- /0+1,23+4 5

'()*+(*),- /0+1,23+4 5

Todd Coburn

Todd Coburn

Cal Poly Pomona

Cal Poly Pomona

!"#$ &$'()'*+

!"#$ &$'()'*+

,"-.)/-$ ,0.$#)0-1 2 3'$-01.)4

,"-.)/-$ ,0.$#)0-1 2 3'$-01.)4

 5 &267

 5 &267

890/.$# :;: .< :;=

890/.$# :;: .< :;=

LECTURE LECTURE

07

07

!"#$%&

!"#$%&

Chart by Todd Coburn. Chart by Todd Coburn.

Bending

Bending

of

of

Composite Sections

Composite Sections

!"#$%&

!"#$%&

Chart by Todd Coburn. Chart by Todd Coburn.

>$?)$@+ A"'(0B$'.0-1 <C

>$?)$@+ A"'(0B$'.0-1 <C

D

D

-01.)4 &$'()'*

-01.)4 &$'()'*

•• CoConsnsididerer aa ststraraigightht bebeamam susubjbjecectetedd toto benbendidingng…… •• TTh eh e sst rt ra ia inn a ta t a na nyy p op ossi ti ti oi onn yy c ac ann

 be

 be written…written…

0 0  L  L !  !  "  " ==

•• AA clclososerer lolookok atat ththee dedefoformrmatatioionn o

off tthhee bbeeaamm aass aa ffuunnccttiioonn ooff R  R    provides…  provides… •• WWee c ac ann s es eee t ht ha ta t……  R  R  L  L  y  y 0 0 = = !  !   R  R  y  y  L  L00 == !  !  •• SSoo……  R  R  y  y = = !  ! 

•• ThThee foforcrcee onon ananyy elelememenentalstrtalstripip ofof mamateteririalal isis…… P  P ii==!  !  iiAAii

•• ItItss momomenmentt ababouttheoutthe neneututrarall axiaxis…s… M  M ii== P  P ii y yii==!  !  ii A Aiiyyii ii ii ii ii total 

total   M  M   A Ayy

 M 

 M  =="" ==""!  !  

•• SothetotSothetotalmomalmomenentt isis……

•• FoForr momomenmentsts inin ththee elelasastiticc rarangnge…e…"  "  ii==E E ii !  ! ii

•• CoCombmbinininingg wiwithth ourstrourstraiain…n…

 R  R  y  y  E   E  ii ii ii== !   !   • • InInsesertrtiningginintotoouourrtototatallmomomementnt&&rereararrarangngining…g… !!!! "" ## $$ $$ %% && ' ' = =  R  R  y  y  A  A  E   E   M   M  ii ii ii total  total  2 2 • • N oN ot it in gn gI=I=!!AA i iyyii22isisththeemomomementntofofininerertitia,a,ififEEisisconconststanant…t…  R R  E   E   I   I   M   M total total  = =

•• CoCombmbinininingg wiwith…th… ii yyii

 R  R  E   E  = = !  

!   …&…& rearrarearranging…nging…

 I   I   y  y  M   M total total ii ii== !   !   W Wee find…find…

 I   I   y  y  M   M total total maxmax max max== !   !   max max  y  y  I   I   M   M  all all  all  all  !   !   = = $ $

!"#$%&

!"#$%&

Chart by Todd Coburn. Chart by Todd Coburn.

>$?)$@+ A"'(0B$'.0-1 <C

>$?)$@+ A"'(0B$'.0-1 <C

D

D

-01.)4 &$'()'*

-01.)4 &$'()'*

 I   I   y  y  M   M total total maxmax max max== !   !   max max  y  y  I   I   M   M  all all  all  all  !   !   = = 6 6

 !""#$%&'()"

 !""#$%&'()"**

E; E; !-0'$ !-0'$ 1$4.1$4.)<'1 )<'1 #$B0#$B0)' )' /-0'$/-0'$ F; F; G$'*.9 G$'*.9 <C <C -<'*).-<'*)."()'0"()'0- 0- 0H)1 H)1 #$B0)#$B0)'1 '1 "'490"'490'*$('*$( I; I; !-0'$ !-0'$ 1$4.1$4.)<' )<' #$B0#$B0)'1 )'1 /$#/$/$#/$'()4"'()4"-0# -0# .< .< .9$.9$ -<'*)."()'0- 0H)1 -<'*)."()'0- 0H)1 :; :; 3'J/-03'J/-0'$ '$ ()1.<()1.<#.)<' #.)<' <C <C 1$4.1$4.)<' )<' )1 )1 '$*-)*'$*-)*)K-$)K-$ L; L; ,0.$#,0.$#)0- K)0- K$90?$$90?$1 )' 1 )' 0 -)'0 -)'$0#J$$0#J$-01.)-01.)4 B4 B0''$# 0''$# 1< .1< .90.90. M<<N$O1 G0@ P//-)$1 M<<N$O1 G0@ P//-)$1Q );$; Q );$; R S DR S D"" =; =; D'.)#D'.)#$ 1$$ 1$4.)<' 4.)<' 901 901 10B$ 10B$ ,<(",<("-"1 -"1 <C D<C D-01.)-01.)4).T 4).T D;D;

!"#$%&

!"#$%&

Chart by Todd Coburn. Chart by Todd Coburn.

D

D

-01.)4 &$'()'*+ ,"-.)/-$ ,0.$#)0-1

-01.)4 &$'()'*+ ,"-.)/-$ ,0.$#)0-1

•• IInn oouurr oorriiggiinnaall ddeerriivvaattiioonn,, wwee ffoouunndd tthhee mo

momementnt onon ththee sesectctioionn gigivevenn by…by…

•• ReRecacalllliningg frfromom bebefoforere……

 R  R  y  y  E   E  ii ii ii== !   !  

•• WWee cacann ththenwrienwritete……

!! !! "" ## $$ $$ %% && ' ' = =  R  R  y  y  A  A  E   E   M   M  ii ii ii total  total  2 2

•• WWee nnootteedd II==!!AA

iiyyii22wawass ththee momomementnt ofof ininerertitia,a, &&

 proceeded

 proceeded withwith aa constantconstant E.E.

ii  E   E  ii total  total  ii  I  I  E E 

 y  y  M   M  = = !   !   7 7

•• LeLet’t’ss ininststeaeadd dedefifinene IIEE==!!EEiiAAiiyyii22..

 R  R  I   I   M   M   E   E  total  total  11 = = …or… …or…  R  R  y  y  E   E ii ii ii 11 = = !   !  

•• WWee cacann ththenwrienwritete……

ii ii ii  E   E  total  total   y  y  E   E   I   I   M   M  !  !   = =

•• WhWhicichh memeanans…s…

•• I tI t i si s o fo ft et enn c oc on vn ve ne ni ei en tn t t ot o n on or mr ma la li zi zee a la lll EEiivavalulueses toto ononee ofof ththee vavalulueses

(Sa

(Say,Ey,Eref ref =E=Eminmin)) ……

Ref  Ref   E   E   E   E  n n ii ii = =

•• WWee ththendefendefininee IInn==!!nniiAAiiyyii22..

ii n n ii total  total  ii nn  I   I   y  y  M   M  = = !   !  

•• AnAndd ouourr ststreresssseses bebecomcome…e…

•• OrmorOrmoree gegeneneraralllly…y…

( ( )) ii n n ii total  total  ii n n ii nn  I   I   y  y Y  Y   M   M  n n  A  A  P   P  !! + + = = "   "  

!"#$%&

!"#$%&

Chart by Todd Coburn. Chart by Todd Coburn. f  f  Re Re  E   E   E   E  n n ii = = & &

D

D

-01.)4 &$'()'*+ ,"-.)/-$ ,0.$#)0-1

-01.)4 &$'()'*+ ,"-.)/-$ ,0.$#)0-1

Pictures Courtesy of Pearson (Hibbeler’s Mechanics of Materials, 9 Pictures Courtesy of Pearson (Hibbeler’s Mechanics of Materials, 9ththEdition).Edition).

Ref: Hibbeler.

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.6Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.6

Option 1

(2)

!"#$%&

Chart by Todd Coburn. 8

,$.9<(+ &$'()'* P'0-T1)1 <C ,"-.)/-$ ,0.$#)0-1

Basic Tabular Method for Section Properties& Bending Analysis w/ Multiple Materials

Step 2: Compute Section Properties.

Step 1: Idealize & Characterize Section (Break it into slices)

Step 3: Determine loading.

ULooks like top & bottom of section in this case.

UWherever the y is greatest on area..

Step 4: Determine locations of potentially critical stress levels.

Step 5: Determine locations of potentially critical stress levels.

UCalculate Stresses.. Example: ( ) i n i i n i  I  n  y Y   M  n  A  P    f   ! + =

UIdealize segments for material and geometry..

!"#$%&

Chart by Todd Coburn.

DH0B/-$ E+ &26 8<'4$/. P//-)40.)<' :;I

6 9 :

SOLUTION:

• Transform the bar to an equivalent cross section made entirely of brass

• Evaluate the cross sectional properties of the transformed section

• Calculate the maximum stress in the transformed section. This is the correct maximum stress for the brass pieces of the bar.

• Determine the maximum stress in the steel portion of the bar by multiplying the maximum stress for the transformed section by the ratio of the moduli of elasticity.

Bar is made from bonded pieces of steel ( E  s= 29x106 psi) and brass

( E b= 15x106 psi). Determine the

maximum stress in the steel and  brass when a moment of 40 kip*in

is applied.

Fig. 4.22a Composite, sandwich structure cross section.

Chart developed from content provided by McGraw-Hill for [1].

!"#$%&

Chart by Todd Coburn.

DH0B/-$ E+ &26 8<'4$/. P//-)40.)<' :;I V8<'.O(W

6 9 ;

• Evaluate the transformed cross sectional properties

(

)( )

4 3 12 1 3 12 1 in. 063 . 5 in. 3 in. 25 . 2 = = = b h  I  SOLUTION:

• Transform the bar to an equivalent cross section made entirely of brass.

in 25 . 2 in 4 . 0 in 75 . 0 933 . 1 in 4 . 0 933 . 1  psi 10 15  psi 10 29 6 6 = + ! + = = ! ! = = T  b  s b  E   E  n

• Calculate the maximum stresses

(

)( )

ksi 85 . 11 in. 5.063 in. 5 . 1 in. kip 40 4 = ! = =  I   Mc m "   ( ) ( )max 1.933 11.85ksi max ! = = = m  s m b n"   "   "   "   ( ) ( ) 22.9ksi ksi 85 . 11 max max = =  s b !   !  

Fig. 4.22b Bar length and height dimensions.

Chart developed from content provided by McGraw-Hill for [1].

!"#$%&

Chart by Todd Coburn. <=

DH0B/-$ J &26 8<'4$/. P//-)40.)<' :;I VP-.$#'0.$W

Given

Solution Find

U Steel Core with ESt=29 Msi U Bronze Plating with EBz=15 Msi

U M = 40 in-kip U Max Stress in Steel U Max Stress in Bronze

(

)

i n i total  i n i n  I   y Y   M  n  A  P  ! + = "  

!"#$%&

Chart by Todd Coburn. <<

DH0B/-$ F+ M)KK-$# DH0B/-$ =;EX

Picture & Problem Courtesy of Pearson ( Hibbeler’s Mechanics of Materials, 9thEdition).

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.6

 P 4<B/<1).$ K$0B )1 B0($ <C @<<( 0'( #$)'C<#4$( @).9 0

1.$$- 1.#0/ -<40.$( <' ).1 K<..<B 1)($; 3. 901 .9$ 4#<11J

1$4.)<'0- 0#$0 19<@' )' A)*; =5IY

!

; 3C .9$ K$0B )1 1"KZ$4.$(

.< 0 K$'()'* B<B$'. <C F N[;B7 ($.$#B)'$ .9$ '<#B0- 1.#$11

0. /<)'.1

"

0'(

$%

\0N$ D

@

 S EF ]!0 0'( D

1.

 S F^^ ]!0;

!"#$%&

Chart by Todd Coburn. <%

DH0B/-$ F+ M)KK-$# DH0B/-$ =;EX V8<'.O(W

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.6

_<-".)<'

U `$ @)-- .#0'1C<#B .9$ 1$4.)<' )'.< <'$ B0($ $'.)#$-T <C 1.$$-; U \9$ .#0'1C<#B$( 1$4.)<' )1 01 19<@'; U \9$ -<40.)<' <C .9$ 4$'.#<)( V0-1< '$".#0- 0H)1W7 ( )150 9mm 200 12 = !  "  # $ %  &  = = ww  st  nb b ( )( )( ) ( )( )( ) ( )( ) ( 0.020.15 0.009)( )0.15 0.03638m 15 . 0 009 . 0 095 . 0 150 . 0 02 . 0 01 . 0 = + + = = ! !  A  A  y  y U \9$ B<B$'. <C )'$#.)0 <C .9$ .#0'1C<#B$( 1$4.)<' )1 U P//-T)'* .9$ C-$H"#$ C<#B"-07 .9$ '<#B0- 1.#$11 0. &O 0'($)1 U \9$ '<#B0- 1.#$11 )' .9$ @<<( 0." )1 ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )6 4 2 3 2 3 m 10 358 . 9 03638 . 00 095 . 0 15 . 0 009 . 0 15 . 0 009 . 0 12 1 01 . 0 03638 . 0 02 . 0 15 . 0 02 . 0 15 . 0 12 1 ! = "# $ %& ' ! + + "# $ %& ' ! + = n  I  ( )

( )

( )

( )

10 7.78MPa(Ans) 358 . 9 03638 . 00 2  MPa 6 . 28 10 358 . 9 03638 . 0 17 . 0 2 6 6 ' = = = ! = ! ! C   B "   "  

(

28.56

)

1.71MPa(Ans) 200 12 '= = =  B  B n!   !  

• Therefore,ERef =Est, nst= 1 & nw=Ew/Est,&

 st 

 E   E Ref =

(3)

!"#$%&

Chart by Todd Coburn. <$

DH0B/-$ F+ M)KK-$# DH0B/-$ =;EX VP-.$#'0.$W

Given

Solution Find

U Wood Block with EW=12 GPa

U Steel Plate with ESt=200 GPa U M = 2 kN-m

U Max Stress in Wood U Max Stress in Steel

(

)

i n i total  i n i n  I   y Y   M  n  A  P  ! + = "  

!"#$%&

Chart by Todd Coburn.

DH0B/-$ I+ &$'()'* <C ,"-.)/-$ ,0.$#)0- &$0B1

<6

Given

Find

• Aluminum Section Shown.

 – EAl=10.0Msi

• Titanium Fail Safe Chord.

 – ETi=16.0 Msi

• S tr ess es a t A , B , C , D , E, F.

• Mx=10,000 in-lb.

!"#$%&

Chart by Todd Coburn.

DH0B/-$ I+ &$'()'* <C ,"-.)/-$ ,0.$#)0- &$0B1

<7

1D Solution

!"#$%&

Chart by Todd Coburn. <&

&$'()'* 5 >$)'C<#4$( 8<'4#$.$ &$0B1

Pictures Courtesy of Pearson (Hibbeler’s Mechanics of Materials, 9thEdition).

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.7

conc  st   E   E  n = Basic Procedure:

U Determine Transformation Factor for Steel U Determine Neutral Axis of Transformed Area

( ) ( )' ' 0 2 ' ' !nA d !h = h h b  st 

(solve using quadratic equation) 0 ' ' ' 2 1 2 = ! +nAh nAd  bh  st   st 

U Proceed Using Composite Beam Approach

• Some materials cannot take tension.

• This necessitates additional effort to find the neutral axis.

!"#$%&

Chart by Todd Coburn. <8

&$'()'* 5 >$)'C<#4$( 8<'4#$.$ J DH0B/-$

Picture & Problem Courtesy of Pearson (Hibbeler’s Mechanics of Materials, 9thEdition).

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.7

\9$ #$)'C<#4$( 4<'4#$.$ K$0B 901 .9$ 4#<11J1$4.)<'0- 0#$0

01 19<@'; 3C ). )1 1"KZ$4.$( .< 0 K$'()'* B<B$'. <C

&

S =^

N[UB7 ($.$#B)'$ .9$ '<#B0- 1.#$11 )' $049 <C .9$

1.$$-#$)'C<#4)'* #<(1 0'( .9$ B0H)B"B '<#B0- 1.#$11 )' .9$

4<'4#$.$; \0N$

() 

 S F^^ ]!0 0'(

*+,* 

 S FL ]!0;

!"#$%&

Chart by Todd Coburn. <:

&$'()'* 5 >$)'C<#4$( 8<'4#$.$ J DH0B/-$

Picture & Problem Courtesy of Pearson (Hibbeler’s Mechanics of Materials, 9thEdition).

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.7

_<-".)<'

U \9$ .<.0- 0#$0 <C 1.$$- )1

7 .9"1

U `$ #$a")#$ .9$ 4$'.#<)( .< -)$ <' .9$ '$".#0- 0H)1;

U \9$ B<B$'. <C )'$#.)0 <C .9$ .#0'1C<#B$( 1$4.)<' )1 4<B/".$(

0K<". .9$ '$".#0- 0H)17

( )

( )

 ( )

2 3 3 mm 7856 982 10 25 10 200 '=nA st = =  A

(

)

(

)

mm 90 . 120 ' 0 33 . 20949 ' 37 . 52 ' 0 ' 400 7856 2 ' ' 300 0 ~ 2 = ! = " + = " " =

#

h h h h h h  A  y

(

)(

)

(

)

(

)

2 6 4 2 3 mm 10 67 . 788 9 . 120 400 7856 2 9 . 120 9 . 120 300 9 . 120 300 12 1 ! = " " # $ % % & ' ( + )  *  + , -  .  + =  I 

(

)

2 2 mm 982 5 . 12 2 = = !    st   A 300 400 7856mm2

(4)

!"#$%&

Chart by Todd Coburn. <;

&$'()'* 5 >$)'C<#4$( 8<'4#$.$ J DH0B/-$

Picture & Problem Courtesy of Pearson (Hibbeler’s Mechanics of Materials, 9thEdition).

Ref: Hibbeler. Mechanics of Materials. 9th Edition. Pearson, 2014., Sect. 6.7

_<-".)<'

U P//-T)'* .9$ C-$H"#$ C<#B"-0 .< .9$ .#0'1C<#B$( 1$4.)<'7 .9$

B0H)B"B '<#B0- 1.#$11 )' .9$ 4<'4#$.$ )1

U \9$ '<#B0- 1.#$11 )' $049 <C .9$ .@< #$)'C<#4)'* #<(1 )1

.9$#$C<#$

( ) ( ) ( )  MPa 23 . 21 ) 1000 1 ( 10 67 . 788 1000 1 9 . 120 400 000 , 60 ' (Ans) MPa 920 . 0 ) 1000 1 ( 10 67 . 788 1000 1 9 . 120 000 , 60 4 6 4 4 6 max = ! "  #  $ % &  '  ( = = ! "  #  $ % &  '  = mm m mm mm m mm mm  Nm mm m mm mm m mm  Nm conc conc )   )  

( )

( )

10 21.23 169.84MPa(Ans) 25 10 200 ' 3 3 = !!  "  # $$ %  &  = = conc  st  n'   '   300 400 7856mm2

!"#$%&

Chart by Todd Coburn.

Stress Concentrations

!"#$%&

Chart by Todd Coburn.

_.#$11 8<'4$'.#0.)<'1

6 9 %<

Stress concentrations may occur: • in the vicinity of points where the

loads are applied

 I   Mc  K 

m=

!  

• in the vicinity of abrupt changes in cross section

Fig. 4.24 Stress-concentration factors for flat bars with fillets under pure bending.

Fig. 4.25 Stress-concentration factors for flat bars with grooves (notches) under pure bending.

Maximum stress:

Chart developed from content provided by McGraw-Hill for [1].

!"#$%&

Chart by Todd Coburn.

Plastic Bending

!"#$%&

Chart by Todd Coburn.

!-01.)4 b$C<#B0.)<'1

6 9 %$

• For any member subjected to pure bending, the strain varies linearly across the section as follows…

m  x c  y !  !  ="

• If the member is made of a linearly elastic material , the neutral axis passes through the section centroid and we write…

 I   My

 x=!

"  

• For a member with vertical & horizontal planes of symmetry & the same tensile & compressive stress-strain relationship, the neutral axis is located at the section centroid & the stress-strain relationship maps the strain distribution from the stress distribution.

Fig. 4.27 Linear strain distribution in beam under pure bending.

Fig. 4.28 Material with nonlinear stress-strain diagram.

Fig. 4.29 Nonlinear stress distribution in member under pure bending.

Chart developed from content provided by McGraw-Hill for [1].

 Recall from ARO326 (Lecture 7)…

 

!"#$%&

Chart by Todd Coburn.

!-01.)4 b$C<#B0.)<'1

6 9 %6

• When the maximum stress is equal to the ultimate strength of the material, failure occurs and the corresponding moment M U is referred to as the

ultimate bending moment .

•  R Bmay be used to determine M of any member made of the same material and with the same cross sectional shape but different dimensions.

• The modulus of rupture in bending, R B, is found

from an experimentally determined value of  M U and a fictitious linear stress distribution.

 I  c  M   F   F   R U   Rb b  B= = =

Fig. 4.29 Nonlinear stress distribution in member under pure bending.

Fig. 4.30 Member stress distribution at ultimate momentM U .

Chart developed from content provided by McGraw-Hill for [1].

(5)

!"#$%&

Chart by Todd Coburn.

,$BK$#1 ,0($ <C 0' D-01.</-01.)4

,0.$#)0-6 9 %7

• Rectangular beam made of an elastoplastic material

moment elastic maximum = = = = ! Y  Y  Y  m m Y   x c  I   M   I   Mc "   "   "   "   "   "  

• If the moment is increased beyond the maximum elastic moment, plastic zones develop around an elastic core. thickness -half  core elastic 1 2 2 3 1 2 3 = ! !  "  # $ $ %  &  '

= Y  y c  y  M   M 

• As the moment increase, the plastic zones expand, and at the limit, the deformation is fully plastic.

shape) section cross on only (depends factor shape moment  plastic 2 3 = = = = Y   p Y   p  M   M  k   M   M 

Fig. 4.33 Bending stress distribution in a beam for: (b) yield impending, M = My, (c) partially

yielded, M > My, and (d) fully

plastic, M = Mp.

Chart developed from content provided by McGraw-Hill for [1].

 Recall from ARO326 (Lecture 7)…

 

!"#$%&

Chart by Todd Coburn.

>$1)("0- _.#$11$1

6 9 %&

• Plastic zones develop in a member made of an elastoplastic material if the bending moment is large enough.

• Since the linear relation between normal stress and strain applies at all points during the unloading phase, it may be handled by assuming the member to be fully elastic.

• Residual stresses are obtained by applying the  principle of superposition to combine the stresses

due to loading with a moment  M (elastoplastic deformation) and unloading with a moment -M  (elastic deformation).

• The final value of stress at a point will not, in general, be zero.

Fig. 4.37 Elastoplastic material stress-strain diagram with load reversal.

Chart developed from content provided by McGraw-Hill for [1].

 Recall from ARO326 (Lecture 7)…

!"#$%&

Chart by Todd Coburn. %8

&$'()'* 5 3'$-01.)4 c !-01.)4

Elastic Bending:  I  c  M  e all  all = !   2 6 bh  M  e all  = 3 12 1 2 bh h  M  e all  !  "  # $ %  &  = all  all  bh  M  e !   2 6 1 = So… Plastic Bending: ( )

[

]

!  "  # $ %  &  = 2 h  A  F   M   p  p ult  ult  4 2 h b all  !   = !  "  # $ %  &  ' ( ) * + , !  "  # $ %  &  = 2 2 h h b  M ult  p -  all  e  p all  ult   M   M  4 6 = =1.5 e  p all  ult   M   M 

k  = for rectangular sections

Plastic Bending Shape Factor:

all  all  bh h b !   !   2 2 6 1 4 = 5 . 1 =

Ref. [2], Fig. 6-48 (a)

Ref. [2], Fig. 6-48 (b)

Ref. [7], Fig. 6-48 (c) Ref. [7], Fig. 6-48 (d)

Ref. [7], Fig. 6-48 (e) Ref. [7], Fig. 6-48 (f)

 Recall from ARO326 (Lecture 7)…

 

!"#$%&

Chart by Todd Coburn. %:

DH0B/-$ !#<K-$B5 D-01.<J!-01.<

,0.$#)0-Ref: Bruhn. Analysis & Design of Flight Vehicle Structures. 2nd Ed. 1973., Sect. C3.4

Given Solution Find 7075-T6 Al Die Forging U Ftu=75 ksi U Fty= 65 ksi

U Max Elastic Moment

U Max Plastic Moment assuming Elasto-Plasto Material

Elastic Allowable: Elasto-Plasto Assumption:

!"#$%&

Chart by Todd Coburn. %;

DH0B/-$ !#<K-$B5 D-01.<J!-01.< ,$.9<(

Ref: Bruhn. Analysis & Design of Flight Vehicle Structures. 2nd Ed. 1973., Sect. C3.4

Given Solution Find 7075-T6 Al Die Forging U Ftu=75 ksi U Fty= 65 ksi

U Max Elastic Moment

U Max Plastic Moment assuming Elasto-Plasto Material

Elastic Allowable: Elasto-Plasto Assumption:

!"#$%&

Chart by Todd Coburn.

8<'4$/."0- d"$1.)<'1

% 9 $=

What is the maximum stress this section can

withstand?

F

tu

What is the maximum elastic moment this

section can withstand?

M

max_el

= (I/c) F

tu

What is the maximum elasto-plastic moment a

(6)

!"#$%&

Chart by Todd Coburn.

8<'4$/."0- d"$1.)<'1

% 9 $<

If you wish to determine the maximum elasto-plastic

moment this section can withstand, what is the best

way to idealize the thing for computing properties?

Why?

!"#$%&

Chart by Todd Coburn.

D'Z<Te

$%

!"#$%&

Chart by Todd Coburn. $$

>$C$#$'4$1 2 &)K-)<*#0/9T

1. Beer , Johnson, DeWolf, & Mazurek. Mechanics of Materials. 7th Edition. McGraw Hill. 2015.

2. Hibbeler. Mechanics of Materials. 9thEdition. Pearson, 2014.

3. Shanley. Strength of Materials. McGraw-Hill. 1957.

4. Bruhn. Analysis & Design of Flight Vehicle Structures. S.R. Jacobs & Associates. 1973.

5. Peery & Azar. Aircraft Structures. 2ndEdition. McGraw-Hill. 1982.

6. Budynas & Nisbett. Shigley’s Mechanical Engineering Design. 9thEdition.

McGraw Hill. 2011.

7. Roark, Young, Budynas, & Sadegh. Roark’s Formula’s for Stress & Strain, 8thEdition. McGraw Hill. 2012.

8. Ugural & Fenster. Advanced Strength & Applied Elasticity. 4th Edition. Prentice Hall, 2003.

References

Related documents

The original definition is due to Soille and Talbot (2001) in the case of grey level image analysis. If different scales coexist in the same image, this definition may therefore not

Botswana is committed to conservation of its natural resources through the designation of 17% of the land area as protected or conservation areas. The Chobe Forest

Earth Planets Space, 51, 887?896, 1999 Development of Optical Mesosphere Thermosphere Imagers (OMTI) K Shiokawa1, Y Katoh1, M Satoh1, M K Ejiri1, T Ogawa1, T Nakamura2, T Tsuda2, and R

Figure 5.10: Median values of the detection errors when the information was hidden in 3D objects by the SRW algorithm, proposed in [Yang et al., 2017b], using the steganalyzers

Our automation system complies with the rule’s requirements with features like system security, secure data management and reporting, and supports electronic records and

Therefore, even if Apple fails to provide a mobile payment solution, it will still play an important role in the future developments of mobile value-added services

Because plan- ning of oral health care services is dependent on the quality of current local data [18], as part of a larger study to assess the oral health profile of the Chilean