RESEARCH EXPOSITORY
AND
SURVEY
ARTICLE
SOME
FIXED
POINT ITERATION PROCEDURES
B.E. RHOADESDepartmentofMathematics IndianaUniversity Bloomington, IN 47405
U.S.A.
(Received August 15, 1989)
ABSTRACT.
This paperprovides a survey of iteration procedures that have been used toobtainfixedpoints for maps satisfying a variety ofcontractive conditions. The author does not claim toprovide complete coverageofthe literature, and admits to certain biases in the
theoremsthat arecited herein. Inspite oftheseshortcomings, however, this papershould be
auseful reference for those personsvishingtobecome better acquaintedwiththearea.
KEY
WORDS AND PHRASES.fixedpointiteration.1980 AMS
SUBJECT CLASSIFICATION
CODE. 47H10, 54H251.
ITERATION
PROCEDURES.
The literature abounds with papers which establish fixed points for maps satisfying a
variety ofcontractive conditions. Inmostcasesthe contractive definition isstrongenough,not onlytoguaranteethe existence ofauniquefixedpoint, but alsoto obtainthatfixedpoint by repeatediteration of thefunction.
However,
forcertain kinds of maps, suchas nonexpansivemaps, repeatedfunction iterationneed not converge to a fixed point.
A
nonexpansive map satisfiestheconditionIITx
Tyll <_
]Ix
Yll
foreach pair of points x, yinthespace.A
simple exampleisthefollowing. DefineT(x)
1-xfor0_<
x_<
1. ThenT
isanonexpansive selfmap of[0,1]
withauniquefixedpointatx1/2,
but,ifonechooses as astarting point the valuez a,a
1/2,
then repeatediterationofTyields thesequence{1
-a,a, 1-a,a,...).
In
1953W.R.
Mann[32]
defined the following iteration procedure. LetA
be a lower triangularmatrix withnonnegativeentriesandrowsums 1. Define xn+lT(vr,),
whereVn
E
ankXk"k=O
The mostinterestingcasesof theManniterativeprocessareobtainedby choosingmatrices
A
such thata,+l,k
(1-a,+,,+)a,t,,k
0,1,...,n;n 0,1,2,...,andeither a,, 1 for alln ora,,<
1for alln>
0. Thus,ifonechoosesany sequence{c,}
satisfying(i) co
1,(ii)
0
_<
c,,<
1 forn>
0, and(iii)
c, c, thenthe entriesofA
becomeatn C/t
ank=ck
H
(1-cjl,
k<n.(1.1)
j=k+l
2 B.E. RHOADES
Theabove representation for
A
allowsoneto writetheiterationschemein thefollowing form: x,+,(1
c,.,)x,.,
+
c,.,T(
x,).
One exampleofsuchmatrices is the
Cesaro
matrix,obtainedby choosingc,,1/(n
+
1).
Anotheris
c.
1 for alln>_
O, which correspondsto ordinaryfunctioniteration, commonly calledPicard iteration.Pichard iterationof the function
$1/2
(I
+
T)/2,
is equivalent to theManniterationschemewith
ank
-This matrix isthe Eulermatrixof order 1,and the transformation
SI/
has beeninvestigated byt’]delstein[13]
and Krasnoselskii[30].
Krasnoselskii showedthat,
ifX
isauniformlyconvexBanach space, and
T
is a nonexpansive selfmapofX,
then5’/
converges to a fixed point ofT. Edelsteinshowed that theconditionofuniformconvexity could be weakenedtothatofstrictconvexity.
Pichard iteration of the function
Sx
AI
+
(1
A)T,
0<
<
1, for any functionT,
homogeneousofdegree 1,isequivalent to theManniteration schemewith
This matrix isthe Eulermatrixoforder
(1
A)/A.
Theiterationof5’x
has beeninvestigated by Browder andPetryshrn[7],
Opial[36],
and Schaefer[50].
Mannshowed
that,
ifT
is any continuousselfmapofa closedinterval[a,
b]
withatmostonefixed point, thenhis iterationscheme,with c,,
1/(n
+
1),
converges to thefixedpoint of T. Franks andMarzec
[15]
extendedthisresult to continuous functions possessingmorethanonefixedpointintheinterval.
A
matrixA
iscalledaweightedmeanmatrixifA
isalowertriangularmatrix with nonzero entriesan
p/Pn,
where{p
}
isanonnegative sequence withp0 positiveandPn
Z
p cx,k--0
The author
[42]
extended the above-mentioned result of Franks andMarzec toanycon-tinuousselfmapofaninterval
[a, b],
andA
anyweightedmeanmatrixsatisfying the conditionlim
]an,
an-l,t O.k--0
In
[42]
the author also showed that thematrix definedby(1.1)
isequivalent toaregular weightedmeanmatrix withweightsckp0
k
>
0.H(
)’
Let E
be aBanach space,C
aclosedconvexsubset ofE,
T
acontinuous selfmap ofC.
Mann
[32]
showedthat,
if either of the sequences{xn}
or{vn }
converges, then sodoes theother,
and to thesamelimit, whichis afixedpoint ofT. Dotson
[12],
extendedthisresult to locallyconvexHausdorfflineartopologicalspacesE. Consequently,tousetheMann
iterativeForuniformlyconvexBanachspaces,the followingwasobtainedindependently byBrowder
[6],
Kirk[281,
and Gohde[6].
Let C beaclosed,
bounded,
andconvexsubset ofauniformlyconvex Banachspace,T
anonexpansiveselfmapofC. Then
T
hasafixedpoint.Unfortunatelythe proofs of above theoremarenotconstructive.
A
number of papers have beenwritten to obtainsomekindof sequential convergence for nonexpansivemaps. Mostsuch theoremsarevalidonlyundersomeadditional hypothesis, suchascompactness,andconverge only weakly. Someexamples oftheorems ofthis type appear in[8].
Halpern[18]
obtained two algorithmsfor obtaining fixed points for nonexpansive maps on Hilbert spaces.In
hisdissertation, Humphreys
[23]
constructed an algorithm which canbeapplied toobtain fixed points for nonexpansivemapsonuniformlyconvexBanachspaces.A
nonexpansivemappingis saidto be asymptotically regularif, for each point x inthe space,lim(T"+lx
T"z)
0.In
1966 Browder and Petryshyn[7]
established the following result.THEOREMI.
([7,
Theorem6]).
LetX
beaBanachspace,T
anonexpansive asymptot-icallyregularselfmap ofX.Suppose
thatT
hasafixedpoint, and thatI- T
mapsbounded closed subsets ofX
intoclosed subsets ofX. Then,for eachz0 EX, {Tnx0
converges toafixedpoint of
T
inX.In
1972 Groetsch[17]
established the following theorem, which removes the hypothesis thatT
beasymptoticallyregular.THEOREM
2.([17,
Corollary3]).
Suppose T
isanonexpansive selfmap ofaclosedconvexsubset
E
ofX
whichhas at leastonefixed point. IfI-
T
mapsbounded closedsubsets ofE
intoclosed subsets ofE,
then the Manniterativeprocedure, with{c,}
satisfyingconditions(i), (ii),
and(iv)
c,,(1
c,,)
oo, convergesstronglytoafixedpoint ofT.Ishikawa
[25]
established the following theorem.THEOREM
3. LetD
beaclosed subset ofaBanachspaceX
and letT
beanonexpansivemapfrom
D
intoacompact subsetofX. ThenT
hasafixed pointinD
and theManniterative process with{c,}
satisfyingconditions(i)- (iii),
and 0_<
c,<
b<
1for all n, convergestoafixedpoint ofT.
For spaces ofdimension higher than one, continuity is not adequate to guarantee
con-vergence toafixed point, either by repeated function iteration, or by some otheriteration
procedure. Therefore it is necessarytoimposesomekindofgrowthconditionon themap. If thecontractivecondition isstrong enough,then themapwillhaveaunique fixed point,which
canbeobtainedby repeatediterationof thefunction. If thecontractive condition isslightly weaker, thensomeotheriterationschemeisrequired. Evenif the fixed pointcanbe obtainedby functioniteration,itisnotwithoutinterestto determine ifotheriteration
procedures
converge tothefixedpoint.A
generalizationofanonexpansive map with at leastonefixed point that ofa quasi-nonexpansive map.A
functionT
isaquasi-nonexpansivemapifithas at leastonefixed point,and,
for eachfixedpointp,[[Tx
-p[[
_<
[Ix
-p[[.
The followingisdue toDotson[12].
THEOREM
4. LetE
beastrictlyconvexBanach space,C
aclosedconvexsubset ofE,
T
acontinuousquasi-nonexpansiveselfmapofCsuch that
T(C)
CK
CC,
whereK
iscompact. Let x0 EC
and consider aMann
iterationprocess such that{c,}
clusters at somepoint in(0,1).
Then the sequences{x,,},
{v,}
convergestronglytoafixed point ofT.
4 B.E. RHOADES
thespace, atleast oneof the followingistrue:
(i)
IlTx
Tyll
<_ ,llx
yll, (ii)
[]Tx
Ty[]
<_/3[[[x
Tx[[
+
]]y- Ty[[],
or(iii)
[[Tx
Ty[[
<_
3’[[Ix
Ty[[
+
[[y-
Tx[[],
where a,/3,3’ arereal nonnegative constantssatisfying a
<
1,/3,3’<
1/2.
Asshownin[52],
T
has a unique fixedpoint, which can be obtainedby repeatediteration of the function. The following resultappears in
[42].
THEOREM5.
([42,
Theorem4]).
LetX
beauniformlyconvexBanachspace,Eaclosedconvexsubset of
X, T
aselfmapofE
satisfyingconditionZ. Then theMann
iterativeprocesswith
{c,}
satisfyingconditions(i),
(ii),
and(iv)
convergestothe fixedpoint ofT.A
generalization of definitionZ
was made by Ciric[11].
A
mapsatisfies condition Cifthereexists a constant k satisfying 0
_<
k<
1 suchthat,
for eachpair of points x,y inthespace,
IlTx
Tyll
<
kmax{llx
ll,
Ilx
TxII,
Ilu
TyII,
II
Tull,
II
In
[42]
theauthorproved thefollowing for Hilbertspaces.THEOREM6.
([42,
Theorem7]).
LetH
beaHilbert space, TaselfmapofH
satisfyingcondition C. Then the Mann iterative process, with
{c,}
satisfying conditions(i)-(iii)
andlimsupc,
<
1 k2 convergestothe fixed point ofT.Chidume
[10]
has extended the above result to gv spaces, p>
2, under the conditionsk2(p-1)<
1 andlimsupc,<(p-1)--k
.
Asnoted earlier,if
T
iscontinuous,then, iftheManniterativeprocess converges,itmust converge toafixedpoint ofT.
IfT
is not continuous, thereis noguarantee
that,evenif theMann
processconverges,itwill converge toafixed point ofT.
Consider,forexample,themapT
definedbyTO T1 0,Tz
1,0<
z<
1. ThenT
isaselfmap of[0,1],
withafixedpointat x 0.
However,
theManniterationscheme,withcn
1/(n
+
1),
0<
0<
1, convergesto1,which isnot afixed point ofT.
A
Inap Tis said tobe strictly-pseudocontractiveifthere existsaconstant k, 0_<
k<
1 suchthat,for all pointsx,y in thespace,[ITx
Tyll
<_
Ilx
y]l
+
kll(I
T)z -(I
T)yII
.
Weshall call denote the class ofall suchmapsby
P2.
ClearlyP2
mappings contain thenonex-pansivemappings,but the classesP2,
C,
andquasi-nonexpansivemappingsare independent. THEOREM 7.([42,
Theorem8]).
LetH
beaHilbert space,E
acompact,convexsubset ofH,
T
aP2
selfmapofE. Then the Mann iteration scheme with{c, }
satisfying conditions(i)-(iii)
and limsupc, c<
1 k,convergesstrongly toafixedpoint ofT.A
pseudocontractive mappingis aP2
mappingwith k 1.Let
P3
denotethe familyof pseudocontractivemappings. Hicks andKubicek[22]
gave anexaxaple ofaP3
mappingwithafixedpoint such that the
Mann
iterativeprocedure, withc,.,1/(n
+
1),
doesnotconverge tothefixedpoint.Ishikawa
[24]
defined the followingiterativeprocedure. Given anyx0 in the space, definex,+,
a,T[nTx,
+
(I
ft,)x,.,]
+
(I
where
{a, }, {/3, }
aresequences of positive numberssatisfyingthe conditions 0<
c,, _</3.<_
1,lim/3. 0, c,,13. oo.
He
thenestablished thefollowing result.THEOREM8. Let
E
beaconvex, compactsubset ofaHilbert spaceH,
T
alipschitzianQihou
[38]
extended the above result tolipschitzian hemicontractive maps.A
hemicon-tractive map is a pseudocontractive map withrespect to afixed point; i.e., if p is any fixedpoint of
T,
andx is anypointinthespace,thenT
satisfiesIITx
pll
<_
IIx
p]l
+
]Ix
Tx]]
.
Neitherthe proof of Qihounor Ishikawacanbe used toestablishasimilarresult for the Manniterativetechnique.In
1968Kannan[27]
introducedacontractivedefinition which did not require continuity of themap. There then followedaspate offixedpoint papers dealingwithfixed points foravariety of mapswhich werenot necessarilycontinuous. For example, maps oftype C and
Z
need not becontinuous. Inanearlier paperthe author[45]
partially ordered manyof these definitions.As
noted above,it has been shown that theMann iterationscheme converges forsomeofthese. Forothercontractive definitionsit isnotpossible todeterminewhetherornot the
Mann
orIshikawaiteration processesconverge.However,
in some eases it is possible to showthat, iftheydo converge, thentheymust convergetoafixed point ofT. The following theorems illustratethis idea.THEOREM
9.([42,
Theorems5,6]).
Let
X
beaBanachspace,T
aselfmapofX,
T
EC orT
EP2.
Let{c,,}
satisfy theconditions(i), (ii),
andboundedawayfromzero. Then,ifthe corresponding Manniteration processconverges,itconvergestoafixedpointofT.THEOREM
10.([46,
Theorem1]).
LetX
beaclosedconvexsubset ofanormed space,T
aselfmapofX
satisfyingthepropertythat there exist constants c, k>
0,0<
k<
1 such that,for each x,yX,
IITx
Ty[[
<_
kmax{cllx
ttll, [ll
Txll
/I[Y
TYH],
Ill
xTyII
+
Ily
TII]}.
Let
{c,,}
satisfyconditions(i), (ii),
and limc,>
0. If theMann iterationscheme converges, thenit convergestoafixedpoint ofT.A
contractivedefinitionwhich isindependent of that of Ciric isthe following, duetoPal andMaiti[37].
For
each pair of pointsinthespace,atleastoneof thefollowingconditionsis satisfied:(i)
[Ix
Tx[[
+
[[y
Ty[[ <_
a[[x
y[[,
1<
ot<
2,(ii)
[Ix
Tx[I
+
I[Y- TYI[
<-
{[[x
Ty]l
+
I[Y- Tzl[
+
xY]I},
1/2
_</3< 2/3,
(iii)
]Ix
Tx]]
+
I]Y
Ty]]
+
]]Tx
Ty]]
<_
7{]Ix
Ty]]
+
]]y
Tx]]},
1_<
7<
3/2,
(iv)
IlTx
Tyll
<_
6max{l]x
Y]I,
[[x
Tx][,
]IY
Ty]],
[]lx
Tyll
+
[[y
Txl[]/2
},
0<
6<
1.Using this demitiontheauthor established thefollowingresult.
TI-ImOIM
ll.([46,
Theorem2]).
LetX
beamanaeh space, aselfmapofX
satisfying the bove contractive definition. Then if theMann
iterationscheme,
with{cn}
satisfying conditions(i), (ii),
andlim,
>
0, converges,itconvergestoafixed point ofT.
Similar results have been established for the Ishikawa procedure.
In
its original form the Ishikawaprocedure does notincludetheMann iteration processbecauseof the condition 0<_
cn
_</3n_<
1.For,
ifthe Ishikawaprocesswere toincludetheMann processas aspecial case, thenonewould have to assigneach/3n
tobe zero, forcing then eachcn
tobezero.In
aneffort to haveanIshikwatypeiterationschemewhichdoesinclude theManniterativeprocess
asaspecial case,someauthorshavemodifiedtheinequalityconditiontoreal 0
_<
n,/3n
_<
1. Thischange
isreflectedinthefollowingtwotheorems.THFOREM
12.([35,
Theorem1.2]).
Let
X
be anormed linearspace, (7aclosedconvex6 B.E. RHOADES
If the Ishikawa iteration scheme, with the
an
bounded away from zero, converges to apoint p,thenp isafixed point ofT.
THEOREM 13.
([40).
LetE
beaclosedconvexsubset ofaBanachspace,X, T
aselfmapof
X
satisfying the condition: thereexists constantsc,k_>
0,0_<
k<
1, such that, for each pair of points z,y inX,
][Tx
Tyl[
kmax{cllx
ll,
[}lx
Txll
/Ily
TYl]],[]I
xTyII
/Ily-
Txll]).
If theIshikawascheme, with
{an}, {fin}
satisfying theconditions 0<
a_<
a,,_<
1, 0_<
fl,_<
1and limfl, 0, converges toapointp, thenp isafixed point ofT.
In
some theorems ofthistype,the contractivedefinition is weakenoughthat theaprioriexistence ofa fixed point for
T
cannot be assured. Thus the convergence of the iteration procedure also yields the existenceofafixed point.The literature also contains theorems ofthis type for other contractive definitions. In
1988 the author
[47]
provedthat,
formany contractive definitions, eventhoughthe function need not becontinuouseverywhere,it isalwayscontinuousinaneighborhoodofafixed point. Therefore,assuming the convergence of theMann procedureistantamount,insomecases, toassuming theconvergencetoafixedpoint,inlight of the early result ofMann
[32].
Wenowreturntononexpansivemaps.
THEOREM 14.
([1]).
LetK
beaclosedboundedconvexsubset ofaHilbertspaceH,
T
a nonexpansiveselfmapofK. Foreach pointeofK,
theCesarotransform of{T’e}
converges weaklytoafixed point ofT.
If
T
is also an odd map, then Baillon[2]
showed that the convergence of the Cesaro transform of{The}
isstrong. Healsoextendedthe above theorm toL
’
spaces.Wenowmentionsomeresults for othermatrixtransformsof iteratesofT.
THEOREM 15.
([5,
Theorem1]).
LetT
beaHilbert space, Caclosed boundedconvexsubset of
H,
T
anonexpansiveselfmapofC.
Suppose
thatA
isan infinite matrixwith zerocolumn limits and satisfies lim,,
k(a,,,k+l
a,,k)
+
0. Then, for eachx inC,
{
a,.,,T’x}
converges weakly toafixedpoint ofT.
A
sequence x is said to be almost convergent to a limit q iflim,[x,,
+
x,,+l+...
+
x,.,+,_
]/n
q, uniformly inp.An
infinite matrixA
issaid to bestrongly regularifA
assignsa limit toeach almost convergent sequence.
Necessary
and sufficient conditions forA
to be strongly regularwereestablishedbyLorentz[31].
TheseconditionsarethatA
beregular
and alsosatisfy lim,E
la-,*+
a-l
0.A
uniformlyconvexBanachspaceX
hasamodulus ofconvexity$(e)
definedby(5(e)
ink’{1
]Ix
yll/2
IIll
1,IIll
1,I1
yll
},
0<
2.Let
{u,,}
beabounded sequence inaclosedconvexsubset CofX. Definerm(x)
sup{llu.
zll-
n>_ m},
d denote by c,,, the unique point in C with the property thatr,,,(c,,,)
inf{rm(x)’x
EC}.
Thenlimcm
c, andcis called the asymptotic center of{u,,}.
(See,
e.g.[41)
Bruckprovedthefollowingtheorem.
C, A
astrongly regularmatrix, the A-transform ofT"x
convergesweaklytoafixed pointp, which is the asymptoticcentcr of{T’x}.
Schoenberg
[51]
obtainedthefollowingcharacterizationfor nonexpansive mapson aHilbert space.THEOREM
17.([51]).
Let Tbeanonexpansive ofaHilbertspaceH,A
beanonnegativematrixwithrowsums oneandzerocolumn limits,
k----0
Then thefollowingareequivalent;
(a) {S,}
isweakly convergent tothe asymptotic centerzof{T"x}.
(b) {,.,c
isweakly convergent toafixed point forT.
(c)
IfVisaweak limit point of{S,},
thenlim,...oo(Re(T"z
T"+*z,z
Ty))
0(d)
Ifyisaweak limit point of{S,},
then(e)
Each weak limit point of{S,}
is afixedpoint ofT.Thefollowingtheorem establishesafixed point foracontractive definition which includes
nonexpansivemappings.
THEOREM
18.[34].
LetX
be auniformly convex space,K
a nonempty closed and uniformlyconvexsubset ofX,
T
aselfmapofK
satisfyingIITx
Tyl[
<
a(x,
y)llx
Yll +
b(x,
y)llx
b’(x,y)lly
Tyll
+
c(x,y)llx
Tyll
+
c’(x,y)lly
Txll
(1.2)
wherea,b,b’,c’
>
O,(a
+
b+
b’+
c+
c’)(x,y)
<
1, andb’(z,y)
b(y,z),c’(x,y)
c(x,y),
for allx,yinX.
Ifsup
(b+c’)(x,y)
<
1(1.3)
and
inf
IIx
TxlI
0 forsomefiniter thenT
hasafixedpoint inK.
Define
(1.4)
(y)-
a.lly-
T# ell",
n O, 1,2,...,1<
p<co.(1.5)
j=0where
A
isanynormegative triangularmatrixwithrow sumsone, y, e, EK. For
eachndefines
tobethe unique point ofK
where(1.5)
assumes its minimum.THEOREM
19.([48,
Theorem2]).
Let
1<
p<
oo,X
e’,K
a nonempty closed,8 B. IS. RItOADES
THEOREM 20.
([48,
Theorem3]).
Let 1<
p< o,X
gp,
K
a noneinpty closed, bounded, convex subset ofX,
T a quasi-nonexpansive selfmap of Ix’. If each subsequential weaklimit of{s
isafixedpoint ofT,
then{s
converges weakly toafixedpoint ofT.The specialcaseoftheabovetheoremsin which
A
is the Cesaromatrix andT
isnonex-pansive appear in
Beauzamy
andEnflo[4].
Weshallnowexaminetwootheriterationmethods forobtainingfixedpoints. Thefirstof theseis dueto Kirk
[29]
and is defined asfollows. Let{x,,}
be any sequence of pointsinthespace. Then theiterationprocedureisdefinedbythe operator
S
a,T’,
(1.6)
’-0
where kisafixedinteger, k
>_
1,a,>_
0, 0,1,2,...,a>
0 and=0
a, 1.For
T
any nonexpansive selfmap ofa convexset, S andT
have the samefixed points.(See
[29].)
LetTbea selfmapofa Banachspace
X
satisfying, for each x,y inX,
IIT:
Tull
<_
mx{ll:
ulI,
[11:
T:II
+ Ilu
TulI]/.,
[11:
Tull + Ilu
T:II]/2}.
(1.7)
In
[41]
it is shown that, ifS satisfies(1.6),
then S andT
have the samefixed points. Thefollowing result is then proved.
THEOREM 21.
([41,
Theorem2]).
LetX
be a uniformly convex Banach space,K
abounded closedconvexsubset of
X,
Taselfmap ofK
which satisfies condition(7),
Sdefinedby
(6).
IfI-
Smapsbounded closed subsets ofK
intoclosedsets, then,for each x0 EK
thesequence
{S"x0 }
convergestoafLxed point ofT
in K.Theotherfixed point iterationprocedureisdefinedby
s=
a, 1,aa+
7 0 for at least oneinteger k.=0
Massa
[33]
has shovnthat,ifTisquasi-nonexpansive, then SandT
have thesamefixedpoints. Hehas also provedthefollowing.
THEOREM22.
([33,
Theorem2]).
LetIfbeaclosedconvexsubset ofauniformlyconvexBanachspace
X,
T
aselfmap ofK
satisfyingIITx
Tull
<_ ,(, u)llx
Yll
+
b(:,
g)(ll:
T:II
+ Ilu
TulI)
+
,:(:,
Y)(II
Tull
+
Ilu
T:II),
where a,b,
c,>_
0,(a
+
2b+
2c)(x,
y)_<
1,inf,yeKb(x, V)
>
0,andT
has atleastonefixed point. Then{S"x
converges to theonlyfixedpoint ofT.2.
RATE OF CONVERGENCE.
There hasbeennosystematicstudy of therateof convergencefor these iteration
proce-dures,
andit isdoubtfulif anyglobalstatementscanbemade,sincethereisnothing about theseiteration proceduresto cause theiranalysis to bedifferent fromthat of other approximation methods.
Theauthor
[44]
obtainedsomeevidenceonthebehaviorof theMann
iterationprocedure for the decreasing functionsf(x)
1xrn,g(x)
(1
z)
for 1_<
rn <: 6 and c,,bisectionmethod,accurate to 10places. Then both theManniterationand Newton-Raphson methodswere employed to find each fixed point to within 8 places, using initial guesses of
x0 .1,.2,...,.9. The author
[43]
also examined thefunctions gform 7, 8,...,29, withaninitial guess ofx0 .9,anda,
,
(n
+
1)
-1/2. In
eachcasetheManniterativeprocedure convergedto afixedpoint(accurate
toeightplaces)
in9-12iterations, whereas the Ishikawamethod required from 38 to 42 iterationsfor the same degree ofaccuracy. For increasing
functionsthe Ishikawamethodisbetter than theMannprocess, but ordinary functioniteration isthebest of all three for increasing functions.
An
examinationof the printout showed that theNewton-Raphsonmethod converges faster than theMann
scheme. This isnot surprising,since theNewton-Raphsonmethod converges quadratically, whereas the Mann process converges linearly.However,
whereas the rate of convergenceofthe Newton-Raphson methodis very sensitive to thestarting point,the rate ofconvergence for theMannprocessappears to be independent of theinitialguess.
3.
STABILITY.
Weshallnowdiscussthe question of stability ofiteration processes,adopting thedefinition
of stability thatappears in
[19].
Let
X
beaBanach space,T
aselfmapofX,
andassumethatxn+lf(T,x,)
definessomeiterationprocedure involving T. For example,
f(T, Xn)
Tz
Suppose
that{
x, converges toafixed pointpofT. Let
{y,}be
anarbitrarysequence inX
anddefineforn 0,1,2, Iflim, 0 implies that lim, y, p, then theiteration procedure
f(T,
x)
issaidto beT-stable. ThefirstresultonT-stable mappingswasprovedbyOstrovskifor the Banachcontractionprinciple.
In
[20]
the authors show that functioniteration isstable foravariety ofcontractivedefinitions. Their best result forfunction iteration isthefollowing.THEOREM
23.([20,
Theorem2]).
LetX
be a complete metric space,T
a selfmap ofX
satisfying thecontractive condition ofZamfirescu. Let p be the fixed point ofT. Letxo
_
K,
set x,+lTxn,n >_
O. Let{y,}
beasequence inX,
and set,
d(y,+l,Ty,)
forn 0,1, 2, Then
<
+
+
0,k=O k-O
where
=max
a,l_,l_7
and
lim y, pif andonlyif lim e
n=0.
For
theManniterationproceduretheirbestresultis thefollowing.THEOREM
24.([20,
Theorem3]).
Le(X,
[[.[[)
beanormed linear space,T
aselfmapofX
satisfyingthe Zamfirescu condition.
Let
x0 EX,
and suppose that thereexistsafixed pointpand z, p, where
{x,}
denotes theMann
iterativeprocedureswiththe{c,}
satisfying(i),
(ii),
and0
<
a<
c.
<
b<
1.Suppose {y.}
isasequenceinX
ande.
IIv,.+-[(1-c.)y.+c.Tv.]II
0 B.E. RHOADES
liP-
Y-+I]
-<
liP-
x-+ll +
(1
a4-a)n+l
[Ix0
2b(1
12-[-a)n+l
[Ix,- Tx,[[
+
(1
a+
=0 =0
where
{
t=max
C,l_fl,
l_7and
n=0,1,2,...,
lim y,, pif andonlyif lim
,,
0.Fortheiterationmethod of Kirk
[29],
they have the following result.THEOREM 25.
([20,
Theorem4]).
Let(X,
I1"
II)
be Ba=chspce,T
seifmp ofX
satisfyingtheBanachcontractivecondition
ilT-Tull
<
cllx-vll
forsomeconstant c,0<_
c<
1.Letp bethe fixedpoint of
T,
z0 an arbitrary point ofX. Setk
Xn+l
a,T’x,,
forn 0, 1,2,...,t--0
wherekisaninteger such that k
>_
1,a,>_
0for 0,1, 2,...,k,al>
0,and ke,,
l[,
aiT’Y’ll
forn 0,1,2,....t-’0
Then
i=0 t=O j---0
n 0,1,2,...
and
lim y,, pif and onlyif lim,, 0.
In
arecent paperthe author[49]
hasproved
each of the above theorems foracontractivedefinitionindependent of that ofZamfirescu.
Consider thefollowingcontractivecondition: thereexistsaconstantcsatisfying0
<
c<
1suchthat,for each pair ofpointsx,y in
X,
IITx
Tyll
<
cmax{llx
Vii,
Ilx
TVlI,
IlU
Txll}.
(3.1)
Ourfirstresultisthe following.
THEOREM 26.
([49,
Theorem1]).
Let
(X, d)
bea completemetricspace,T
aselfmap ofX
satisfying(3.1).
Let p be the fixed point ofT.Let
x0 EX
and definex,,+lTx,. Let
{y,,
}
CX. Define e,-,d(y,,+
l,Ty,,).
Thend(p,
yn+<
d(p,
Xn+l+
rrlcn+l-k
d(xk,
Xk+ -1-crt+l
d(xo,
Yo"+
Crt-k
k,where m
1/(1
c),
and lim,-oo pif andonlyif lim,,_o,
0.THEOREM
27.([49,
Theorem2]).
Let(X,
I1"
II)
be a Banachspace,T
aselfmap ofX
satisfying
(3.1),
pthefixedpoint ofT. Let{z,}
denote theMann iterativeprocess withthe{c,}
satisfying(i)- (iii),
lim
II(1
ci+
ccio,
and[xx
(1
c,+
cc, converges .=0i=j+!Let (y,}
CX
and define,,
Ily.+
(1
c.)y.
c,Ty,
ll.
Thenlip-
./,<
lip-i=0i=j+l
H(1
c,+
,:,)11o
uoll +
(1
c,+
cc,)e.,
i=o /=oi=j+
whereit isunderstood that theproductis1 when j n. Then
hm /,,=p ifandonlyif lim e,=0.
Thestabilityresult forKirk iterationshas been extended to thetwoindependent contrac-tivedefinitionsmentioned earlier.
THEOREM
28.([49,
Theorem3]).
LetX
beaBanachspace,T
aselfmap ofX
satisfyingcondition
(3.1).
Let p be the fixed point ofT,
xo
EX,
and define{Z,+l}
as in(1.6).
Let{!/,,
}
CX,
anddefinek
.
Ilu.
,T’u.II
fo. 0, 1,2,Then,
withm1/(1- c),
j=0 i=0 i=0
._
(EiCi)n+l
I1 o
o11/
(o, 0
i=0 j=0 i=0
and lim,,_.o. p if andonlyif lim,-ooe, 0.
THEOREM
29.([49,
Theorem4]).
LetX
beaBanach space,T
aselfmapofX
satisfyingconditionZ.
Let
p be thefixedpointofT,z0EX,
and define{Z,+l}
asin(1.6).
Let
{/,}
CX,
anddefine
k
,,
IIv.
,T’u.II
fo., 0, 1, 2,....12 B.E. RHOADES
Then, with
{
=max a,
1_,1_
7+
t=0 ./=0
vand lim,-oo y, p if andonlyiflim,-.ooe, 0.
Weshallnowprove that theIshikawa iterationprocedure is T-stablefor mapssatisfying
either condition
Z
or(3.1).
THEOREM 30. Let
(X,
I1"
II)
be aBanachspace,T
aselfmap ofX
satisfying(3.1).
Let{x, }
bedefinedbytheIshikawaprocess; i.e.,Xn+
(1 -a.)x.
+a.Tz.,z.
(1
.)x,,
+
.Tx.,
where 0</,,<
1,0<
a<
or.<
1for all n, and the
{a.}
satisfylim.
1-Ii"=l(1-
ai+
cai)
0 andconverges.
Let
{y}
CX,
anddefineThen
r-0
,=0 j=i+l
.--I
E
H
(1-
a.i+
ca:i)i,
t=O
wherem
c/(1
c),
andlim.-oo
y. pif andonlyiflim.-oo
.
0.Proof. Letpbe thefixedpoint ofT. Then
(3.2)
II.+i-vll-<
ll(1
a.)x, +a.Tz,,-vll _< (I-
.)II,,-vll
+
a.llTz.-pll.
IIT,,
Tpll _<
m{ll,,
r’ll,
II,,
TPlI,
II’-
T.II)
II,,
PlI.
I1=.
pll
I1(1
.).
+
$.Tz.pll
-<
(1
.)llz.
pll
+
.IIT.
pll
< (1
/.
+
c/.)11.
pll
-<
I1.
pll.
Therefore
[[z.+,
PI[
-<
(1
a.
+
ca.)[Ix.
p[[,
and{[Izn
p[[}
ismonotone decreasing inn, and soconverges to a limit d
>
0. If d>
0, then, taking the limit as n oo, in the above inequality, yields d_<
(1 -a(1 -c))d <
d, acontradiction. Therefore d 0 and{z.}
converges top. Using
(3.1),
[Ix.
Tx.[[ <
[Ix.
p[[
+
[[Tp
Tx.[[
< (1
+
c)[[x.
p[[,
andlim.
[Ix.
Tx.[[
0.Note
alsothatx.
-
pimpliesz.
p, andhence[[z.
Tz.[[
O.For
any x,yinX,[[Tx-
Ty[[
<_
m[[x-Tx[[
+
c[[x-
y[[,
wheremc/(1
-c).
ThusIlu.+,
pll
<
I1.+
vii
+
I1(1
.).
+
a,.,Tz.(1
c.)y.
a.T[(1
/.)y,,
+
Z.Tu.]II
+
.
But
SO
and
(3.2)
followsbyinduction.An
infinitematrixA
iscalled multiplicative if theA-limitofaconvergentsequenceisequal tosomeconstantmultipleof thelimit of the sequence. If thematrix haszero columlimitsand finite norm, then the multiplieristhelimit oftherow sums.
Returning to the proof of thetheorem, suppose that
,,
0. LetA
denote the lower triangularmatrixwithnonzeroentries a,. mc,0,a.k ma._k
11
(1
trj+
coL/),
k<
n. j=k+lThen,
sinceIlz,,
Tz.[[
O,
[]z.
Tz.[[
O,
dA
ismultiplicative, therighthdsideof
(3.2)
tends tozero n,
d p.Suppo
.
p.0
e.
fly.+,
(I
a.)y.
a.T[(l
$.)y.+
D.T.]II
Uy.+,
p]]
+
(1
a.)][y.
p[[
+
a.][T[(l
.)y.
+
.ry.]
rp[]
14 B.E. RHOADES
THEOREM 31. Let
(X,
II
]l)
bea Banachspace,T
aselfmap ofX
satisfying conditionZ. Let
{
z,},
y,},
,
},
a,,}, {
,,
be asinTheorem30. Thenn--1
E
2a,_,H
(I
cU
+
f%)l]z,-
T:r.,ll
+
2a,,]]z,,
t=0
E
2a,,_,(1
%+
6%)1]z,
Tz,[
+
,,+
t=0 j--t+l
,=0
and lim,_y, pif andonlyiflim,-_.oe,, 0.
The proofis similarto that of Theorem1andwill therefore beomitted.
Thefollowingestablishesastability theorem for
Massa’s
iterationprocedure.THEOREM
32.([49,
Theorem5]).
LetT
satisfy the Banachcontractionprinciple. Let x0EX,
and defineZn+lSZ,,
whereSsatisfies(1.8).
Let{y,,}
CX,
and defineThen
,=0 j=0 i=0
and lim,,--.oo y,, pif andonlyif lim,..,oo
,
0.Weconcludewitharesultonstability for nonexpansivemaps. D. deFigureiredo
[26,
p.230]
establishedthefollowingresult.THEOREM
33. LetH
beaHilbert spaceand C a dosed, bounded, and convex subsetin
H
containing 0. IfT
isany nonexpansiveselfmapofC,
then,foranyz0 inC,
the sequence{z, }
definedbyX
T:
x,,_,n1,2,...and T,,x
---Tx,
"
converges
strongly
toafixed pointofT.
THEOREM
34.([19,
Theorem2]).
Let
x0EX,
where(X,
I1"
II)is
nomedlinear space.Suppose
thatTisanonexpansive selfmap ofX. Let,r(.+l)
n+
1f(T, xn)
Xn+ *n+l gn, n 0, 1,2,...whereTn+lx
n+2
Tx.
REFERENCES
[1] BAILLON,
J.B. Un
theoreme detype ergodicpourlescontractionsnonlineairesdansunspace de Hilbert,
C.R.
Acad. Sci. Paris 280(1975),
1511-1514.[2] BAILLON,
J.B. Quelques proprietes de convergence asymptotique pour les semigroupes decontractionsimpaires,C.R.
Acad. Sci. Paris 283(1976),
75-78.[3]
BAILLON,
J.B.
Asymptotic behavior of iterated non-linear contractions inL
p spaces,C.R. AcadSet. Paris 286
(1978),
157-159.[4]
BEAUZAMY,
B. andENFLO,
P. Theoreme de pointfixe et d’approximation, Ark.fur
Math. 23(1985),
19-34.[5]
BREZIS,
H.
andBROWDER,
F.E.
Nonlinearergodictheorems,
BullAmer.
Math. Soc.[6] BROWDER,
F.E. Nonexpansive operators ina Bausch space, Proc. Nat. Acad. Sci.v.s.A.
4(1965),
1041-1044.[7]
BROWDER,
F.E. andPETRYSHYN,
W.V.Thesolutionbyiterationofnonlinearfunc-tionalequations inBausch spaces,Bull Amer. Math. Soc. 72
(1966),
571-575.[8] BROWDER,
F.E. andPETRYSHYN, W.V.
Construction offixed points ofnonlinearmappingsinHilbert space,
J.
Math. Anal Appl. 20(1967),
197-228.[9]
BRUCK,
R. On
thealmost-convergence
ofiteratesofanonexpansivemappingin Hilbertspace and thestructureof the weakw-limit set,Israel
J.
Math. 29(1978),
1-16.[10]
CHIDUME,
C.E.
Fixedpointiterationsforcertainclasses ofnonlinearmappings,Appli-cable Analysis 27
(1988),
31-45.[11]
CIRIC,
L.B.
Generalized contractions and fixed-pointtheorems,
Publ. L’lnst. Math.(Beograd)
12(1971),
19-26.[12]
DOTSON
Jr.,
W.G.
On the Mann iterativeprocess, Trans.Amer.
Math. Soc. 149(170),
-7.[13]
EDELSTEIN,
M.A
remarkonatheorem ofM.A.
Krasnoselski,Amer.
Math. Monthlyra
(la),
0-0.[14]
EDELSTEIN,
M.The constructionofanasymptotic centerwithafixed-pointproperty, BullAmer.
Math. Soc. 78(1972),
206-208.[15]
FRANKS,
R.L.
andMARZEC,
R.P.A
theoremonmean-value iterations, Proc.Amer.
Math.
Soc.
30(1971),
324-326.[16]
GOHDE,
D. ZumPrinzip derkontraktivenAbbildung,Math. Nachr. 30(1965),
251-258.[17]
GROETSCH,
C.W.A
note on segmenting Mann iterates,J.
Math. Anal Appl. 40(7),
[18] HALPERN,
B.
Fixed points ofnonexpandingmaps,Butt.
Amer. Math.Soc.
7’3(1967),
957-961.[19]
HARDER,
A.M.
andHICKS,
T.L.
A
stableiterationprocedurefor nonexpansivemap-pings, Math. Japonica33
(1988),
687-692.[20] HARDER,
A.M.
andHICKS,
T.L. Stabilityresultsforfixedpoint iterationprocedures, Math. Japonica33(1988),
693-706.[21] HARDER,
A.M.
andHICKS,
T.L.
Fixed point theory and iterationprocedures, IndianJ. Pure
AIII.
Math. 19(1988),
17-26.[22]
HICKS,
T.L.
andKUBICEK,
J.D. On
theMann
iterationprocessinaHilbert space,J.
Math. Anal. Appl. 59
(1977),
498-504.[23]
HUMPHREYS,
M.
Algorithms for fixed points of nonexpansiveoperators, Ph.D.Disser-tation, University ofMissouri-Rolla
(1980).
[24]
ISHIKAWA,
S. Fixed points bya new iterationmethod. Proc. Amer. Math. Soc. 44(1974),
147-150.[25]
ISHIKAWA,
S.
Fixed points and iteration ofanonexpansivemappinginaBanach space,16 B.E. RHOADES
[26]
ISTRATESCU,
V.I. Fixed PointTheory, Dordrecht, Holland, D. Reidel,(1981).
[27]
KANNAN,
R. Someresultsonfixedpoints, Bull. Calcutta Math. Soc. 10(1968),
71-76.[28]
KIRK,
W.A.A
fixed pointtheorem for mappingswhichdonotincrease distance, Amer.Math. Monthly72
(1965),
1004-1006.[29]
KIRK,
W.A. Onsuccessiveapproximationsfor noncxpansivemappingsinBanachspaces,GlasgowMath. J. 12
(1971),
6-9.[30]
KRASNOSELSKII,
M.A.
Tworemarksonthemethodof successiveapproximations, pehi Mat. Nauk. 10,(1955)
no. 1(63),
123-127.[31] LORENTZ,
G.G. A
contribution tothe theory of divergent series,ActaMath. 80(1948),
167-190.
[32]
MANN,
W.R. Mean value methods in iteration, Proc. Amer. Math. Soc. 4(1953),
506-510.
[33]
MASSA,
S.Convergence
ofaniterativeprocess for a class of quasi-nonexpansivemap-pings, Boll.
U.M.L
51-A(1978),
154-158.[34]
MASSA,
S.andROUX,
D.A
fixedpoint theorem forgeneralizednonexpansive mappings, Boll. U.M.L 15-A(1978),
624-634.[35] NAIMPALLY,
S.A. andSINGH,
K.L.Extensionsofsomefixed point theorems ofRhoades,
J. Math. Anal. Appl. 96(1983),
437-446.[36]
OPIAL,
Z.
Weakconvergenceof thesequenceofsuccessiveapproximationsfor nonexpan-siremappings, Bull. Math. Soc. 73(1967),
591-597.[37]
PAL,
T.K.
andMAITI,
M. Extensions of fixedpoint theorems of Rhoades and Ciric, Proc. Amer. Math. Soc. 64(1977),
283-286.[38]
QIHOU,
L. Onthe Naimpally and Singh’s open questions, J. Math. Anal. Appl. 124(1987),
157-164.[39]
QIHOU,
L. The convergence theorems of thesequenceofIshikawa iteratesfor hemicon-tractivemappings, J. Math. Anal. Appl. 148(1990),
55-62.[40]
QIHOU,
L. The convergence theorems of the sequence of Ishikawa iterates forquasi-contractivemappings, J. Math. Ana’,. Appl. 146
(1990),
301-305.[41]
RAY,
B.K.
andRHOADES,
B.E.A
classif fixedpointtheorems, Math. SeminarNotes
7
(1979),
477-489.[42]
RHOADE$, B.E.Fixedpointiterationsusinginfinitematrices,Trans.
Amer. Maih.oc.
196
(1974),
161-175.[43]
RHOADES,
B.E. Commentsontwo fixedpointiterationmethods,J.
Math. Anal. Appl.56
(1976),
741-750.[44]
RHOADES,
B.E.
Fixedpoint iterationsusinginfinite matrices,III,
Fixed Points, Algorithmsand Applications(1977),
AcademicPress Inc.
337-347.[45]
RHOADES,
B.E.A
comparisonof contractivedefinitions, Trans. Amer. Math.Soc.
226(V),
[46]
RHOADES,
B.E.
Extensionsofsomefixedpoint theorems ofCiric,Maiti, andPal,
Math. SeminarNotes6(1978),
41-46.[47]
RHOADES,
B.E.
Contractive definitions and continuity,Contemporary
Math. 72(1988),
233-245.
[48]
RHOADES, B.E.
Fixedpointiterationsof generalized nonexpansive mappings,J.
Math. Anal. Appl. 130(1988),
564-576.[49]
RHOADES,
B.E.
Fixed point theorems and stability results for fixed point iterationprocedures,IndianJ.
Pure
Appl. Malh. 21(1990),
1-9.[50]
SCHAEFER,
H. Uber die Methode sukzessiver Approximation, Jber. Deutsch.Math.-Verein59