• No results found

Samsoeum water extract attenuates allergic airway inflammation via modulation of Th1/Th2 cytokines and decrease of iNOS expression in asthmatic mice

N/A
N/A
Protected

Academic year: 2020

Share "Samsoeum water extract attenuates allergic airway inflammation via modulation of Th1/Th2 cytokines and decrease of iNOS expression in asthmatic mice"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H A R T I C L E

Open Access

Samsoeum water extract attenuates allergic

airway inflammation via modulation of Th1/Th2

cytokines and decrease of iNOS expression in

asthmatic mice

Woo-Young Jeon

1

, In-Sik Shin

1,2,3

, Hyeun-Kyoo Shin

1

and Mee-Young Lee

1*

Abstract

Background:Samsoeum has long been used in Korea and other Asian countries as a traditional medicine to treat various diseases. In the present study, we investigated the antiasthma effect of the herbal medicine Samsoeum water extract (SSEW) using an in vivo ovalbumin (OVA)-induced asthmatic model.

Methods:Female BALB/c mice were sensitized by an intraperitoneal injection of OVA and subsequently challenged with nebulized OVA. We investigated the number of inflammatory cells, the production of Th1/Th2 cytokines and chemokine in bronchoalveolar lavage fluid (BALF), histological changes in lung tissue, the infiltration of inflammatory cells and hyperplasia of goblet cells in lung tissue, the levels of immunoglobulin E (IgE) in BALF and plasma, and the expression of inducible nitric oxide synthase (iNOS) in lung tissue.

Results:Our findings indicated that SSEW decreased the accumulation of inflammatory cells (particularly, eosinophil and neutrophil) and regulated the balance in the production of Th1/Th2 cytokines and chemokine in BALF. Moreover, SSEW suppressed the level of IgE in BALF and plasma, and inhibited the infiltration of inflammatory cells, hyperplasia of goblet cells, and the expression of iNOS in lung tissue.

Conclusions:Collectively, these results suggest that, because of its anti-inflammatory and antiasthma properties, SSEW may be useful in reducing airway inflammation in the treatment of allergic asthma.

Keywords:Samsoeum, Asthma, Inflammatory cells, Th1/Th2 cytokines, iNOS

Background

Allergic asthma is a chronic inflammatory disease of the airway that is characterized by airway inflammation, in-tense eosinophilia, lymphocyte infiltration, and mucus overproduction [1]. Allergen-specific CD4+T cells play a pivotal role in the development of asthma [2]. Th1 cells allergies are caused by characteristic immunoresponses to allergens, primarily mediated by Th2 cells. Th2 cells synthesize high levels of interleukin 4 (IL-4), IL-5, and IL-13, which leads to the release of allergen-specific im-munoglobulin E (IgE) and the production of mediators from mast cells [3]. It has largely been aceepted that an

imbalance between Th1 and Th2 cells leads to the clin-ical expression of this allergic disease [4]. Spinaet al. re-ported that the pathophysiology of asthma is related to a Th1/Th2 cell imbalance in the airways [5]. Because asthma is associated with decreased Th2 responses, en-hanced Th1 responses may suppress the development of allergic airway inflammation.

Lung inflammation in allergic asthma is induced by a cascade of reactions involving several mediators, inclu-ding nitric oxide (NO). NO plays an essential role in regulating airway function and in the pathophysiology of inflammatory airway diseases. NO is synthesized from L-arginine by NO synthase (NOS), which exists in three isoforms: neuronal NOS (nNOS: NOS-1), endothelial NOS (eNOS: NOS-3), and inducible NOS (iNOS: NOS-2). It is now known that each of these isoforms may be * Correspondence:cozy11@kiom.re.kr

1

Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yusung-gu, Daejeon 305-811, Republic of Korea Full list of author information is available at the end of the article

(2)

expressed in a variety of tissues and cell types [6]. How-ever, iNOS is induced after exposure to proinflammatory cytokines and is expressed in epithelial and inflammatory cells of the airway [7]. Several studies have suggested that the downregulation of iNOS expression inhibits airway in-flammation in an asthmatic model [8,9].

Traditional herbal medicines are composed of various components. These components exhibit various thera-peutic effects; thus, mixed herbal medicines are applied to multiple diseases [10]. Samsoeum (known as Shen-su-yin in Chinese) is composed of 12 different crude com-ponents obtained from natural herbs. It is one of the major traditional herbal medicines that are used widely in the treatment of headache, fever, cough and rhinor-rhea caused by cold wind. According to previous studies, Samsoeum has immunomodulating [11] and antiallergic effects [12]. However, there is little information on the mechanism underlying the antiasthmatic effect of Samsoeum. In particular, the inhibitory mechanism of Samsoeum on airway inflammation remains unclear. Therefore, we examined the protective effects of a Samsoeum water extract (SSEW) on the airway inflam-mation induced by ovalbumin (OVA) challenge.

Methods

Preparation of the SSEW

A voucher specimen of Samsoeum (2008-KE28) is avail-able at the Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine. Samsoeum was prepared in our laboratory from a mixture of chopped crude herbs that were purchased from Omniherb (Korea; Geochang, Jecheon, Geumsan, Yeongcheon, and Jeju) and HMAX (China). Professor Je-Hyun Lee of Dongguk University, Gyeongju, Republic of Korea, confirmed the

identity of each crude herb. A decoction of Samsoeum was prepared using a mixture of herbal medicines accord-ing to composition in the laboratory (Table 1). The herbal medicines of Samsoeum were extracted in distilled water at 100°C for 2 h. The extract solution was evaporated to dryness and then frozen to a dry powder (yield, 18.6%).

Animals

Specific pathogen-free female BALB/c mice (6 weeks of age) were purchased from Orient Co. (Seoul, Korea) and used after 1 week of quarantine and acclimatization. Mice were maintained in an animal facility under stan-dard laboratory conditions for 1 week prior to experi-ments, and were provided with water and standard chow ad libitum. All experimental procedures were performed in compliance with the NIH guidelines for the Care and Use of Laboratory Animals and were approved by Korea Institute of Oriental Medicine Institutional Animal Care and Use Committee (Approval number: #10-011). The animal handling followed the dictates of the National Animal Welfare Law of Korea.

OVA-induced allergic asthma

The mice were randomly divided into 5 groups (n = 6 per group): NC (normal control group, PBS sensitization/ challenge), OVA (OVA sensitization/challenge), Mon (OVA sensitization/challenge + oral gavage of 30 mg/kg of mon-telukast), SSEW-100 (OVA sensitization/challenge + oral gavage of 100 mg/kg of SSEW), and SSEW-200 (OVA sensitization/challenge + oral gavage of 200 mg/kg of SSEW).

[image:2.595.57.543.537.733.2]

OVA sensitization and airway challenge were per-formed as described previously [13]. Briefly, mice were sensitized on days 0 and 14 by intraperitoneal injection

Table 1 Crude components of Samsoeum

Scientific name Amount (g) Company of purchase Source

Perillae Herba 3.75 (9.1%) Omniherb Geochang, Korea

Puerariae Radix 3.75 (9.1%) Omniherb Jecheon, Korea

Pinelliae Tuber 3.75 (9.1%) HMAX China

Anthrisci Radix 3.75 (9.1%) HMAX China

Ginseng Radix 3.75 (9.1%) Omniherb Geumsan, Korea

Poria Sclerotium 3.75 (9.1%) Omniherb Yeongcheon, Korea

Aurantii Fructus 2.8125 (6.8%) HMAX China

Platycodonis Radix 2.8125 (6.8%) Omniherb Yeongcheon, Korea

Glycyrrhizae Radix 2.8125 (6.8%) HMAX China

Citri Unshius Pericarpium 2.8125 (6.8%) Omniherb Jeju, Korea

Zingiberis Rhizoma 3.75 (9.1%) Omniherb Yeongcheon, Korea

Zizyphi Fructus 3.75 (9.1%) Omniherb Yeongcheon, Korea

(3)

of 20 μg of OVA emulsified in 2 mg of aluminum hy-droxide in 200 μL of PBS buffer (pH 7.4). On days 21, 22, and 23 after the initial sensitization, mice received an airway challenge with OVA (1%, w/v, in PBS) for 1 h using an ultrasonic nebulizer (NE-U12; Omron Corp., Tokyo, Japan). SSEW was dissolved in PBS and was pre-pared fresh daily before each treatment. SSEW was ad-ministered by gavage to mice at doses of 100 mg/kg or 200 mg/kg once daily from days 18 to 23. Normal- and positive-control mice were administered PBS or Mon (30 mg/kg in PBS) orally, respectively. Mon was de-veloped as a cysteinyl leukotriene (cys-LT)-1 receptor antagonist [14] and was introduced into the market after successful clinical evaluation in patients with aspirin-sensitive asthma, nocturnal exacerbation of asthma, and allergic asthma [15].

After the OVA challenge, bronchoalveolar lavage fluid (BALF) samples were obtained from the mice and proc-essed, and inflammatory cells were counted as described previously [13]. Briefly, mice were sacrificed by intrape-ritoneal injection of pentobarbital (50 mg/kg; Hanlim Pharm. Co., Seoul, Korea) 48 h after the last challenge, and tracheostomy was performed. A schematic diagram of the treatment schedule is shown in Figure 1. To ob-tain BALF, ice-cold PBS (0.5 mL) was infused into the lung and withdrawn via tracheal cannulation three times (total volume, 1.5 mL). The number of total inflamma-tory cells was assessed by counting cells in at least five squares of a hemocytometer after exclusion of dead cells by Trypan blue staining. To determine differential cell counts, 100 μL of BALF was centrifuged onto slides using a cytospin machine (Hanil Science Industrial, Seoul, Korea) (200 g, 4°C, 10 min). The slides were dried and the cells were fixed and stained using the Diff-Quik® staining reagent (B4132-1A; IMEB Inc., Deerfield, IL), according to the manufacturer’s instructions. The super-natant obtained from BALF was stored at−70°C for bio-chemical analysis.

Measurement of the levels of Th1/Th2 cytokines, chemokines, and IgE

The levels of TNF-α, eotaxin, IL-4, IL-5, IL-10, IL-13, and IL-33 in BALF were measured using enzyme-linked im-munosorbent assay (ELISA) kits (BioSource International, Camarillo, CA) according to the manufacturer’s protocols. The detection range of IL-13 is 3.9 pg/mL to 250 pg/mL, and IL-5 is 7.8 pg/mL to 500 pg/mL. The detection ranges of TNF-α and IL-4 are 15.6 pg/mL to 1000 pg/mL, and eotaxin, IL-10 and IL-33 are 31.25 pg/mL to 2000 pg/mL. The levels of total IgE and OVA-Specific in BALF and plasma were measured using ELISA. Microtiter plates were coated with anti-IgE antibodies (anti-mouse IgE; 10 g/mL; Serotec, Oxford, UK) in PBS-Tween 20, and in-cubated with BALF or plasma. The plates were then washed four times, and 200 μL of O-phenylenediamine dihydrochloride (Sigma-Aldrich, St. Louis, MO) was added to each well. The plates were incubated for 10 min in the dark and the absorbance was then measured at 450 nm.

Lung tissue histopathology

After BALF samples were obtained, lung tissue was fixed in 10% (v/v) neutral-buffered formalin. Tissues were em-bedded in paraffin, sectioned at a 4 μm thickness, and stained with hematoxylin and eosin stain (H&E) solution (hematoxylin, Sigma MHS-16, and eosin, Sigma HT110-1-32) and periodic acid–Schiff (PAS) (IMEB Inc., San Marcos, CA) to estimate inflammatory cell accumulation and mucus production, respectively. Quantitative analysis for airway inflammation and mucus secretion was eva-luated using a MetaMorph Offline version 7.7.0.0 image analysis software (Molecular Devices Inc., Sunnyvale, CA, USA).

Western blotting

[image:3.595.59.541.573.719.2]

Equal amounts of total lung protein (30μg) were heated at 100°C for 5 min, loaded onto 8% sodium dodecylsulfate

(4)

polyacrylamide gel electrophoresis gels, and elec-trophoresed. The proteins were then transferred to a nitrocellulose membrane (at 100 V for 2 h). The mem-brane was blocked for 1 h with Tris-buffered saline containing 0.05% Tween-20 (TBST) plus 5% skim milk, followed by incubation with anti-iNOS (sc-7271, 1:1000 dilution; Santa Cruz Biotechnology, Santa Cruz, CA) and anti-β-actin (#4967S, 1:1000 dilution; Cell Signaling Technology, Danvers, MA) antibodies over-night at 4°C. The embrane was washed three times with TBST at intervals of 10 min and then incubated with a horseradish peroxidase (HRP)-conjugated se-condary antibody (iNOS: anti-mouse, β-actin: anti-rabbit 1:3000 dilution; Jackson ImmunoResearch, West Grove, PA) for 1 h at room temperature. The membrane was washed three times with TBST at intervals of 10 min and developed using an enhanced chemilu-minescence kit (ECL; Amersham Pharmacia Biotech, Uppsala, Sweden). Then, membrane were photographed and for quantitative analysis, densitometric band values were determined using commercially available ChemiDoc™ XRS+ imaging system (Bio-Rad Laboratories, Hercules, CA, USA).

Statistical analyses

Data are expressed as means ± standard error of the mean (SEM). Statistical significance was determined using ana-lysis of variance (ANOVA) followed by a multiple com-parison test with Bonferroni adjustment. P values < 0.05 or < 0.01 were considered significant.

Results

SSEW reduced the number of inflammatory cells in BALF

To measure inflammatory cells, we counted the number of total cells, lymphocyte, neutrophils, macrophages, and eosinophils in BALF. The levels of inflammatory cells in BALF were significantly elevated in the OVA group compared with the NC group. However, SSEW treat-ment (100 and 200 mg/kg) markedly reduced the num-ber of total cells, neutrophil and eosinophils than in the Mon group, which was a positive-control drug in this study (Figure 2).

SSEW decreased the Th1 cytokine and Th2 chemokine levels in BALF

[image:4.595.55.539.486.677.2]

To investigate the effects of SSEW on the T-cell im-mune response in asthmatic mice, we evaluated the production of Th1-type cytokines and the Th2-type chemokines in BALF. As shown in Figure 3A, the level of TNF-αwas significantly decreased in the OVA group compared with the NC group. However, the Mon group exhibited a significantly increased level of TNF-α com-pared with the OVA group, and the level of TNF-α increased gradually in the SSEW groups (100 and 200 mg/kg) compared with the OVA group in a dose-dependent manner. In contrast, the level of eotaxin was significantly increased in the OVA group compared with the NC group. Finally, the administration of Mon and SSEW (100 and 200 mg/kg) significantly inhibited the level of eotaxin compared with what was observed in the OVA group (Figure 3B).

Figure 2Effect of SSEW on inflammatory cell accumulation in the BALF of OVA-induced mice.BALF was collected 48 h after the last OVA challenge, and the cells were isolated by cytospin and stained with Diff-Quick. NC, normal control group (vehicle); OVA, OVA-induced group (control); Mon, montelukast (30 mg/kg) + OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group. The values represent the mean ± S.E.M (n = 6/group). Significant differences at##P< 0.01 compared with

(5)

SSEW decreased the levels of Th2 cytokines in BALF

To confirm the association between SSEW and Th2 re-sponses in BALF from OVA-induced asthmatic mice, we assessed the levels of Th2-type cytokines in BALF. Figure 4 shows that the OVA group exhibited signifi-cantly elevated levels of Th2-type cytokines, including (A) IL-4, (B) IL-5, (C) IL-10, (D) IL-13, and (E) IL-33, compared with the NC group. However, the SSEW groups (100 and 200 mg/kg) showed significantly de-creased levels of Th2 cytokines compared with the OVA group, similar to the Mon group (Figure 4A–E).

SSEW improved histopathological changes in lung tissue

To analyze the effects of SSEW on the histological fea-tures of asthma, we performed H&E and PAS staining in lung tissues of induced asthmatic mice. OVA-induced lung tissues were characterized by peribronchial and perivascular inflammation caused by leukocyte tration compared with normal lung tissues; most infil-trating inflammatory cells were eosinophils. However, treatment with SSEW (100 and 200 mg/kg) markedly de-creased eosinophil-rich leukocyte infiltration compared with the OVA group (Figure 5A,C). Mucus overproduc-tion caused by goblet cell hyperplasia is characteristic of airway obstruction and airway remodeling. In the OVA group, mucus overproduction was clearly observed as a violet color in lung tissues compared with the NC group. However, administration of SSEW (100 and 200 mg/kg) markedly attenuated the mucus overproduction compared with the OVA group (Figure 5B,D).

SSEW reduced the release of IgE levels in plasma and BALF

Because Th2-type cytokines promote airway inflamma-tion in asthma via the increase in IgE levels, we evalua-ted the levels of IgE in plasma and BALF. As shown in Table 2, the levels of IgE were significantly increased in the OVA group (total IgE in BALF, 3.52 ± 0.36 ng/mL;

total IgE and OVA-specific IgE in plasma, 1073.31 ± 123.77 and 54.57 ± 11.88; P< 0.01) compared with those observed in the NC group. However, SSEW treatment sig-nificantly inhibited the levels of total IgE (SSEW-100 and SSEW-200 in BALF, 2.73 ± 0.59 and 2.56 ± 0.37 ng/mL; SSEW-100 and SSEW-200 in plasma, 793.52 ± 83.49 and 771.48 ± 68.52 ng/mL) and OVA-specific IgE (SSEW-100 and SSEW-200 in plasma, 32.84 ± 15.23 and 45.35 ± 7.67 ng/mL) compared with the OVA group.

SSEW inhibited the expression of iNOS in lung tissue

To assess the association between the expression of the iNOS protein and bronchial asthma, we evaluated iNOS expression by western blotting. iNOS was markedly upregulated in the OVA group compared with the NC group. SSEW treatment (100 and 200 mg/kg) suppressed the upregulation of iNOS in a dose-dependent manner (Figure 6).

Discussion

In the present study, we investigated the anti-inflammatory and anti-asthmatic effects of SSEW in an OVA-induced murine asthma model. OVA-induced mice showed an in-creased number of inflammatory cells, elevated IgE pro-duction, imbalance of Th1/Th2 cytokines and chemokines in BALF, mucus hypersecretion, eosinophil-rich leukocyte infiltration, and increased expression of iNOS in lung tis-sues. However, SSEW treatment increased the level of a Th1 cytokine (TNF-α) and decreased the levels of Th2 cy-tokines (IL-4, IL-5, IL-10, IL-13, and IL-33) and of a chemokine (eotaxin), IgE production, and the number of inflammatory cells (particularly, eosinophils and neutro-phil) in BALF. The administration of SSEW also inhibited mucus overproduction, leukocyte infiltration, and expres-sion of iNOS in lung tissues. First, we demonstrated that SSEW decreased the expression of iNOS in this model.

[image:5.595.59.540.89.200.2]

In traditional herbal medicine, herb mixtures are con-sidered to produce a synergistic effect and a reduction of Figure 3Effect of SSEW on Th1 cytokines and Th2 chemokine the in BALF of OVA-induced mice.Individual data were obtained using ELISA.(A)TNF-αand(B)eotaxin levels. NC, normal control group (vehicle); OVA, OVA-induced group (control); Mon, montelukast (30 mg/kg) + OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group. The values represent the mean ± S.E.M (n = 6/group). Significant differences at##

(6)

side effects via the interaction between the various herbs [16]. SSEW is a water extract that consists of Perillae Herba, Puerariae Radix, Pinelliae Tuber, Anthrisci Radix, Ginseng Radix, Poria Sclerotium, Aurantii Fructus, Platycodonis Radix, Glycyrrhizae Radix, Citri Unshius Pericarpium, Zingiberis Rhizoma, and Zizyphi Fructus (Table 1). Among these herbs, earlier studies reported that Perillae Herba, Pinelliae Tuber and Platycodonis

[image:6.595.59.540.88.557.2]

Radix have antiasthmatic effects [17-19]; Puerariae Radix, Poria Sclerotium, and Aurantii Fructus have the anti-inflammatory effects [20-22]; Glycyrrhizae Radix, Zingiberis Rhizoma, and Zizyphi Fructus have antioxidant effects [23-25]; Anthrisci Radix and Citri Unshius Pericar-pium have antiobesity effects [26,27]; and Ginseng Radix has an immunomodulating effect [28]. Accordingly, we predicted that SSEW, which is a mixture of these herbs, Figure 4Effect of SSEW on Th2 cytokines in the BALF of OVA-induced mice. Individual data were obtained using ELISA. (A)IL-4,(B)IL-5,

(C)IL-10,(D)IL-13, and(E)IL-33. NC, normal control group (vehicle); OVA, OVA-induced group (control); Mon, montelukast (30 mg/kg) + OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group. The values represent the mean ± S.E.M (n = 6/group). Significant differences at##

(7)

would have pharmacological effects, including antiasth-matic and anti-inflammatory effects, on OVA-induced air-way inflammation in a murine asthma model.

The infiltration of eosinophils into the airways is a characteristic of asthma, and increased numbers of these cells have been found in BALF. The proinflammatory

[image:7.595.60.537.88.570.2]

mediators derived from eosinophils are major contribu-tors to the inflammation observed in asthma, which in-cludes airway epithelial cell loss and damage, airway dysfunction, and mucus hypersecretion [29]. Our results demonstrated that the administration of SSEW signifi-cantly reduced the number of eosinophil-rich leukocytes Figure 5Effect of SSEW on airway inflammation and airway goblet cell hyperplasia in the lung tissues of OVA-induced mice.Lung tissues were stained with(A)H&E solution and(B)PAS. The panel is magnified (200 ×). Representative photomicrographs of lung sections are shown. Yellow arrows indicated as airway inflammation and mucus production.(C)Inflammation and(D)mucus production index were determined using an image analyzer, respectively. NC, normal control group (vehicle); OVA, OVA-induced group (control); Mon, montelukast (30 mg/kg) + OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group. The values represent the mean ± S.E.M (n = 3/group). Significant differences at##P< 0.01 compared with the NC group. Significant differences at **P< 0.01 compared with the

(8)

and neutrophil in BALF. Histopathological examination of lung tissues paralleled the results of the analysis of the cell count in BALF. In support of these results, histopathological findings revealed that SSEW treatment markedly attenuated the number of infiltrated inflamma-tory cells and mucus hyperproduction of goblet cells in lung tissues. Eosinophils regulate the allergen-dependent Th2 immune responses mediated by dendritic cells and T lymphocytes and attenuate Th1 responses [30]. Hence, the imbalance of Th1/Th2 cell responses plays an

[image:8.595.57.543.101.196.2]

important part in the development of asthma, and in-duces different immune responses and immunologically dysregulated states. Th1 cells produce proinflammatory cytokines; among them, TNF-α is a potent multifunc-tional cytokine and a chemoattractant for neutrophils and eosinophils [31]. In our experiments, SSEW treat-ment significantly increased the reduced levels of TNF-α by OVA induction. Th2 cells play an important role in the initiation and progression of allergic diseases, inclu-ding asthma. Th2 cytokines (IL-4, IL-5, IL-10, IL-13, and Table 2 Effect of SSEW on IgE levels in BALF and plasma

Groups BALF Plasma

Total IgE (ng/mL) Total IgE (ng/mL) OVA-specific IgE (ng/mL)

NC 1.95 ± 10.63 262.95 ± 107.60 < 0

OVA 3.52 ± 0.36## 1073.31 ± 123.77## 54.57 ± 11.88##

Mon 2.24 ± 0.50** 636.29 ± 102.28** 33.32 ± 10.35**

SSEW-100 2.73 ± 0.59* 793.52 ± 83.49** 32.84 ± 15.23*

SSEW-200 2.56 ± 0.37** 771.48 ± 68.52** 45.35 ± 7.67

NC, normal control group (vehicle); OVA, OVA-induced group (control); Mon, montelukast (30 mg/kg) + OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group. The values represent the mean ± S.E.M. (n = 6 in each group). Significant differences at##

P< 0.01 compared with the NC group. Significant differences at *P< 0.05 and **P< 0.01 compared with the OVA-induced group.

Figure 6Effect of SSEW on iNOS expression in lung tissues of OVA-induced mice.Lung tissues were homogenized and iNOS protein expression was determined using western blot analysis.(A)Expression of iNOS in the lung tissue.(B)Relative ratio: The relative levels of iNOS expression (normalized toβ-actin) were quantified. NC, normal control group (vehicle); OVA, OVA-induced group (control); Mon, montelukast (30 mg/kg) + OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group. The values represent the mean ± S.E.M (n = 3/group). Significant differences at##P< 0.01 compared with the NC group. Significant differences at

[image:8.595.58.539.383.666.2]
(9)

IL-33) and chemokine (eotaxin) induce airway inflam-matory responses, such as infiltration of inflaminflam-matory cells, eosinophil activation, IgE production, and mucus hypersecretion [32]. Our findings indicate that SSEW administration significantly decreased the increased Th2-type cytokines and chemokine production. Several studies have shown that modulation of Th1/Th2 cytokines can inhibit airway inflammation in OVA-induced mice [33,34]. Therefore, these findings suggest that SSEW at-tenuates airway inflammation through the modulation of the Th1/Th2 balance.

IgE, which is a key target for the development of anti-asthma strategies, is one of the most important factors in the progression of allergic reactions. Previous studies have indicated that anti-IgE treatment may be effective in allergic diseases [13,35]. In our study, SSEW treat-ment significantly reduced the increase in the levels of IgE (total IgE and OVA-specific IgE) that was related to the development of allergic reactions. These results sug-gest that SSEW is an effective agent in the treatment of allergic asthma.

Excessive NO contributes to the pathogenesis of air-way inflammation, cellular injury, and tissue damage in the lung. iNOS caused by NO production is well known for its potential role in inducing airway diseases, inclu-ding asthma. iNOS production is increased in asthmatic lung tissues and several types of inflammatory cells [36]. Previous studies have shown that iNOS expression is closely related to the recruitment of inflammatory cells in airways, including eosinophils and neutrophils [9]. In the present study, the expression of the iNOS protein was intensely increased in lung tissues of OVA-induced mice. In contrast, SSEW markedly decreased the overex-pression of iNOS induced by OVA in a dose-dependent manner. These findings indicate that SSEW may atte-nuate the infiltration of inflammatory cells via the downregulation of iNOS expression. Taken together, our results suggest that SSEW exerts potent antiasthmatic and anti-inflammatory effects by suppressing proinflam-matory cytokines and mediators related to eosinophils.

Conclusion

In summary, our results suggest that SSEW plays a pivotal role in OVA-induced airway inflammation by reducing the number of inflammatory cells (particularly, eosinophil and neutrophil), inflammatory cells infiltration, IgE levels, mucus production, and iNOS protein expression, and modulating Th1/Th2 cytokines. These findings suggest that SSEW has the potential to alleviate airway inflamma-tion in the treatment of allergic asthma because of its anti-asthma and anti-inflammatory properties.

Competing interests

The authors declare that they have no competing interests.

Authors’contributions

WYJ, HKS and MYL participated in the design of the data analyses and manuscript preparation. WYJ and ISS conducted the assays and analyses. All authors read and approved the final manuscript.

Acknowledgment

This study was supported by a grant from the Korea Institute of Oriental Medicine (K13030).

Author details

1

Herbal Medicine Formulation Research Group, Korea Institute of Oriental Medicine, 483 Expo-ro, Yusung-gu, Daejeon 305-811, Republic of Korea. 2

Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, O-chang uep, Cheongwon-gun, Cheongju-si, Chungbuk 363-883, Republic of Korea.3Pharmacology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea.

Received: 19 August 2014 Accepted: 18 February 2015

References

1. Hamid Q, Tulic M. Immunobiology of asthma. Annu Rev Physiol. 2009;71:489–507.

2. Romagnani S. The role of lymphocytes in allergic disease. J Allergy Clin Immunol. 2000;105:399–408.

3. Mosmann TR, Moore KW. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol Today. 1991;12:A49–53.

4. Woodfolk JA. Cytokines as a therapeutic target for allergic diseases: a complex picture. Curr Pharm Des. 2006;12:234963.

5. Spina D, Shah S, Harrison S. Modulation of sensory nerve function in the airways. Trends Pharmacol Sci. 1998;19:4606.

6. Ricciardolo FL. Multiple roles of nitric oxide in the airways. Thorax. 2003;58:175–82.

7. Robbins RA, Barnes PJ, Springall DR, Warren JB, Kwon OJ, Buttery LD, et al. Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun. 1994;203:20918.

8. Zhou DY, Du Q, Li RR, Huang M, Zhang Q, Wei GZ. Grape seed proanthocyanidin extract attenuates airway inflammation and hyperresponsiveness in a murine model of asthma by downregulating inducible nitric oxide synthase. Planta Med. 2011;77:157581. 9. Yoo D, Guk K, Kim H, Khang G, Wu D, Lee D. Antioxidant polymeric

nanoparticles as novel therapeutics for airway inflammatory diseases. Int J Pharm. 2013;450:87–94.

10. Lu AP, Jia HW, Xiao C, Lu QP. Theory of traditional Chinese medicine and therapeutic method of diseases. World J Gastroenterol. 2004;10:18546. 11. Ryu NH, Park SM, Kang H, Shim BS, Kim SH, Chio SH, et al. Effect of

Samsoeum on cytokine regulation of Mouse T cell. Korean J Orient Physiol Pathol. 2008;22:856–62.

12. Lee SE, Shin JY, Lee SH. Anti-allergic effects of shensuyin. Korean J Orient Int Med. 2005;26:119–28.

13. Lee MY, Lee JA, Seo CS, Ha H, Lee NH, Shin HK. Protective effects of Mentha haplocalyx ethanol extract (MH) in a mouse model of allergic asthma. Phytother Res. 2011;25:863–9.

14. Lynch KR, ONeill GP, Liu Q, Im DS, Sawyer N, Metters KM, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999;399:78993.

15. Korenblat PE, Antileukotriene Working Group. The role of antileukotrienes in the treatment of asthma. Ann Allergy Asthma Immunol. 2001;86:319. 16. Bensky D, Barolet R. Chinese herbal medicine: formulas and strategies.

Seattle: Eastland Press; 1990.

17. Kang YS, Lee SC, Shin HD, Shin MK, Kim JH, Song HJ. Studies on the allergy asthma effect of Folium Perillae. Kor J Herbology. 2004;19:25–34. 18. Jeong DH, Kim JH, Park SY, Choi JH. Effects of Pinelliae Rizoma (PR) on

asthma induced intra-nasal instillation of ovalbumin in mice. J Korean Med Ophthalmol Otolaryngol Dermatol. 2008;21:3854.

(10)

20. Kim SN, Kim HS, Nam GS, Hwang SW, Hwang SY. Inhibition of inflammatory-cytokines production and prostaglandin E2 activity by Puerariae Radix extracts. J Food Sci Nutr. 2006;35:28–34.

21. Fuchs SM, Heinemann C, Schliemann-Willers S, Härtl H, Fluhr JW, Elsner P. Assessment of anti-inflammatory activity of Poria cocos in sodium lauryl sulphate-induced irritant contact dermatitis. Skin Res Technol. 2006;12:223–7. 22. Kim SJ, Park SK. Antioxidative and anti-inflammatory effects of Aurantii

Fructus Immaturus pharmacopuncture. Korean J Acupunct. 2010;27:13–24. 23. Yoon MY, Jun KI, Son ES, Kim JH, Kim Y, Park E, et al. Induction of

glutathione S-transferase activity by the extracts of Glycyrrhiza uralensis Fischer. J Korean Soc Appl Biol Chem. 2008;51:228–32.

24. Jeong GS, Li B, Lee DS, Choi HG, Kim YC. Neuroprotective Effects of the extract of Zingiberis Rhizoma. Kor J Pharmacogn. 2010;41:190–5. 25. Jeong HM, Kim YS, Ahn SJ, Auh MS, Ahn JB, Kim KY. Effects of Zizyphus

jujuba var. boeunesis extracts on the growth of intestinal microflora and its antioxidant activities. J Korean Soc Food Nutr. 2011;40:500–8.

26. Shin JK, Cha GY, Kim HJ, Hwang JH, Han KH, Seo HJ, et al. Exmination of anti-obesity effect of regional special natural products of Anthrisci radix, Psoraleae semen, Siegesbeckiae herba and Corni fructus. KSBB J. 2009;24:549–55.

27. Park CH, Jung HK, Jeong YK, Hong JH, Lee GD, Park CD. Effects of Citrus Peel ethanol extract on serum lipid and body fat of high-fat-diet-fed rats. Korean J Food Preserv. 2011;18:567–74.

28. Liou CJ, Huang WC, Tseng J. Long-term oral administration of ginseng extract modulates humoral immune response and spleen cell functions. Am J Chin Med. 2005;33:651–61.

29. Kay AB. The role of eosinophils in the pathogenesis of asthma. Trends Mol Med. 2005;11:148–52.

30. Jacobsen EA, Zellner KR, Colbert D, Lee NA, Lee JJ. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J Immunol. 2011;187:6059–68.

31. Lukacs NW, Strieter RM, Chensue SW, Widmer M, Kunkel SL. TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol. 1995;154:5411–7.

32. Corrigan CJ, Kay AB. T cells and eosinophils in the pathogenesis of asthma. Immunol Today. 1992;13:501–7.

33. Lee MY, Shin IS, Lim HS, Shin HK. A water extract of Samchulkunbi-tang attenuates airway inflammation by inhibiting iNOS and MMP-9 activities in an ovalbumin-induced murine asthma model. BMC Complement Altern Med. 2012;12:257.

34. Ma C, Ma Z, Liao XL, Liu J, Fu Q, Ma S. Immunoregulatory effects of Glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4 + CD25 + Foxp3+ regulatory T cells in ovalbumin-sensitized mice. J Ethnopharmacol. 2013;148:755–62. 35. Hamelmann E, Tadeda K, Oshiba A, Gelfand EW. Role of IgE in the

development of allergic airway inflammation and airway hyperresponsiveness–a murine model. Allergy. 1999;54:297–305.

36. Islam T, Breton C, Salam MT, McConnell R, Wenten M, Gauderman WJ, et al. Role of inducible nitric oxide synthase in asthma risk and lung function growth during adolescence. Thorax. 2010;65:139–45.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Figure

Table 1 Crude components of Samsoeum
Figure 1 Asthmatic mouse model: airway inflammation and treatment with SSEW.
Figure 2 Effect of SSEW on inflammatory cell accumulation in the BALF of OVA-induced mice
Figure 3 Effect of SSEW on Th1 cytokines and Th2 chemokine the in BALF of OVA-induced mice.OVA-induced group (positive control); SSEW-100, SSEW (100 mg/kg) + OVA-induced group; SSEW-200, SSEW (200 mg/kg) + OVA-induced group.The values represent the mean ±
+4

References

Related documents

Solving Time − fractional Chemical Engineering Equations by Modified Variational Iteration Method as Fixed Point Iteration MethodA. The Lagrange multipliers of the VIM

In this sense, during the interaction between different democratic practices of China and America, the solution--empathy through mutual understanding and the

This paper presents a face and non-face recognition system using feature recognition from DCT that is image compression factors, along with a SOM neural network based

DATA QUALITY SCHEME FOR ODMRP: ODMRP is a based on multicast mesh and for creation of stable routes in multicast mesh various control packets such as route request, route reply

Children’s physical aggression (based on the CBCL) is predicted from maternal distress reactions through children’s emotion regulation problems, controlling for family

By this comparison we may conclude that V ataja Ashmari is calcium Oxalate calculus, Pittaja Ashmari is uric acid, urate, cystine calculus, Kaphaja Ashmari is

Bayesian inference, computational principles, Efficient coding, grid cells, neural computation, perception...