• No results found

Nontrivial solutions for an integral boundary value problem involving Riemann–Liouville fractional derivatives

N/A
N/A
Protected

Academic year: 2020

Share "Nontrivial solutions for an integral boundary value problem involving Riemann–Liouville fractional derivatives"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Nontrivial solutions for an integral boundary

value problem involving Riemann–Liouville

fractional derivatives

Zhengqing Fu

1

, Shikun Bai

2

, Donal O’Regan

3

and Jiafa Xu

2*

*Correspondence: xujiafa292@sina.com

2School of Mathematical Sciences,

Chongqing Normal University, Chongqing, China

Full list of author information is available at the end of the article

Abstract

In this paper using topological degree we study the existence of nontrivial solutions

for a fractional differential equation involving integral boundary conditions. Here, the

nonlinear term may be sign-changing and may also depend on the derivatives of the

unknown function.

Keywords:

Fractional integral boundary value problems; Nontrivial solutions;

Topological degree

1 Introduction

We study the existence of nontrivial solutions for the following integral boundary value

problem involving Riemann–Liouville fractional derivatives:

D

β0+

D

α

0+

u

(

t

) =

f

(

t

,

u

(

t

),

u

(

t

), –

D

α0+

u

(

t

)),

0 <

t

< 1,

u

(0) =

u

(0) = 0,

u

(1) =

01

g

(

t

)

u

(

t

)

dt

,

D

α

0+

u

(0) =

D

α0++1

u

(0) = 0,

D

α0++1

u

(1) =

1

0

h

(

t

)

D

α+1 0+

u

(

t

)

dt

,

(1.1)

where

α,

β

(2, 3] are two real numbers,

D

α

0+

,

D

β

0+

are the Riemann–Liouville fractional

derivatives, and

f

C

([0, 1]

×

R

3

,

R

) (

R

= (–

, +

)). Moreover, the functions

g

,

h

are

defined on [0, 1] and satisfy the condition:

(H0)

g

,

h

0

with

01

g

(

t

)

t

α–2

dt

[0, 1)

, and

1 0

h

(

t

)

t

β–2

dt

[0, 1)

.

Fractional-order problems arise naturally in engineering and scientific disciplines such

as physics, biophysics, chemistry, control theory, signal and image processing, and

aero-dynamics; we refer the reader to [

1

3

]. For example, in [

4

,

5

] the authors introduced a

fractional-order model of infection of CD4

+

T-cells, and the system takes the following

form:

D

α1

(

T

) =

s

KVT

dT

+

bI

,

D

α2

(

I

) =

KVT

– (

b

+

δ)

I

,

D

α3

(

I

) =

N

δ

I

cV

,

(2)

where

D

αi

are fractional derivatives,

i

= 1, 2, 3. Many results on the existence and

multiplic-ity of solutions (or positive solutions) of nonlinear fractional differential equations can be

found for example in [

6

37

] and the references therein. In [

6

11

,

19

,

20

,

26

], the authors

used the fixed point index theory to study the existence of (positive) solutions for various

boundary value problems of fractional differential equations, for example, Bai in [

6

]

ob-tained positive solutions for the nonlocal fractional-order differential equation boundary

value problem

D

α

0+

u

(

t

) +

f

(

t

,

u

(

t

)) = 0,

0 <

t

< 1,

u

(0) = 0,

β

u

(η) =

u

(1),

where 1 <

α

2, 0 <

βη

α–1

< 1, 0 <

η

< 1,

f

is continuous on [0, 1]

×

R

+

and satisfies the

conditions

(H)

B1

lim inf

u→0+

f

(

t

,

u

)

u

>

λ

1

,

lim sup

u→+∞

f

(

t

,

u

)

u

<

λ

1

,

uniformly on

t

[0, 1],

and

(H)

B2

lim inf

u→+∞

f

(

t

,

u

)

u

>

λ

1

,

lim sup

u→0+

f

(

t

,

u

)

u

<

λ

1

,

uniformly on

t

[0, 1],

where

λ

1

is the first eigenvalue corresponding of the relevant linear operator. These

con-ditions can also be found in some integer-order differential equations; we refer the reader

to [

38

52

] and the references therein. Integral boundary conditions arise in thermal

con-duction problems, semiconductor problems and hydrodynamic problems (see [

11

]) and

we refer the reader to [

10

,

11

,

18

,

19

,

26

,

28

30

,

33

,

34

,

39

,

43

,

50

52

] and the references

therein. In [

26

] the authors studied the integral boundary value problem of the nonlinear

Hadamard fractional differential equation

D

β

p

(

D

α

u

(

t

))) =

f

(

t

,

u

(

t

)),

1 <

t

<

e

,

u

(1) =

u

(1) =

u

(

e

) = 0,

D

α

u

(1) = 0,

ϕ

p

(

D

α

u

(

e

)) =

μ

e

1

ϕ

p

(

D

α

u

(

t

))

dt t

,

where

α

(2, 3],

β

(1, 2] and

D

α

,

D

β

are Hadamard fractional derivatives.

Many papers in the literature also considered sign-changing nonlinearity problems; see

[

4

,

5

,

7

9

,

13

19

,

22

30

,

34

,

35

,

38

52

] and the references therein. In [

15

], the authors

studied the fractional differential equation with a singular decreasing nonlinearity and a

p

-Laplacian operator:

D

α

0+

p

(–

D

γ0+

z

))(

x

) =

f

(

x

,

z

(

x

)),

0 <

x

< 1,

z

(0) = 0,

D

γ0+

z

(0) =

D

γ0+

z

(1) = 0,

z

(1) =

01

z

(

x

)

d

χ(

x

).

Using a double iterative technique, they showed that the above problem has a unique

pos-itive solution, and from an iterative technique, they established an appropriate sequence,

which converges uniformly to the unique positive solution.

(3)

function

u

and its integer-order, fractional-order derivatives

u

, –

D

α

0+

u

, (2) the nonlinearity

can be unbounded on [0, 1]

×

R

3

, which improves results on semipositone problems (i.e.,

boundedness from below); see [

5

,

21

,

42

,

43

,

45

].

2 Preliminaries

We present some definitions and notations from fractional calculus theory involving

Riemann–Liouville fractional derivatives; for details see the books [

1

3

].

Definition 2.1

(see [

1

3

]) The Riemann–Liouville fractional derivative of order

α

> 0 of

a continuous function

f

: (0, +

)

(–

, +

) is given by

D

α0+

f

(

t

) =

1

Γ

(

n

α)

d

d

t

n t

0

(

t

s

)

nα–1

f

(

s

)

ds

,

where

n

= [α] + 1, [α] denotes the integer part of number

α, provided that the right side is

pointwise defined on (0, +

).

Definition 2.2

(see [

1

3

]) The Riemann–Liouville fractional integral of order

α

> 0 of a

function

f

: (0, +

)

(–

, +

) is given by

I

α

0+

f

(

t

) =

1

Γ

(α)

t

0

(

t

s

)

α–1

f

(

s

)

ds

,

provided that the right side is pointwise defined on (0, +

).

Lemma 2.3

(see [

5

, Lemma 2.3])

Let

α

> 0,

then

,

for u

,

D

α

0+

u

C

(0, 1)

L

(0, 1),

we have

I

0+α

D

α0+

u

(

t

) =

u

(

t

) +

c

1

t

α–1

+

c

2

t

α–2

+

· · ·

+

cN

t

αN

,

for some ci

R

,

i

= 1, 2, . . . ,

N

,

where N is the smallest integer greater than or equal to

α.

Lemma 2.4

Suppose that

(H0)

holds

.

If let

D

α

0+

u

:=

v

,

then the fractional boundary value

problem

D

α

0+

u

(

t

) =

v

(

t

),

0 <

t

< 1,

u

(0) =

u

(0) = 0,

u

(1) =

01

g

(

t

)

u

(

t

)

dt

,

(2.1)

can be transformed into its equivalent Hammerstein integral equation

,

which takes the

form

u

(

t

) =

1

0

G

1(

t

,

s

)

v

(

s

)

ds

,

(2.2)

where

G

1(

t

,

s

) =

G

1(

t

,

s

) +

t

α–1

1 –

01

g

(

t

)

t

α–2

dt

1

0

(4)

G

1(

t

,

s

) =

1

Γ

(α)

t

α–1

(1 –

s

)

α–2

– (

t

s

)

α–1

,

0

s

t

1,

t

α–1

(1 –

s

)

α–2

,

0

t

s

1,

(2.3)

G

2(

t

,

s

) =

1

Γ

(α)

t

α–2

(1 –

s

)

α–2

– (

t

s

)

α–2

,

0

s

t

1,

t

α–2

(1 –

s

)

α–2

,

0

t

s

1.

Proof

From Lemma

2.3

we have

u

(

t

) = –

I

α

0+

v

(

t

) +

c

1

t

α–1

+

c

2

t

α–2

+

c

3

t

α–3

,

for

c

i

R

,

i

= 1, 2, 3.

Note that

u

(0) =

u

(0) = 0, and we obtain

c

2

=

c

3

= 0. Then we have

u

(

t

) = –

I

α

0+

v

(

t

) +

c

1

t

α–1

= –

t

0

(

t

s

)

α–1

Γ

(α)

v

(

s

)

ds

+

c

1

t

α–1

.

Therefore, from the condition

u

(1) =

01

g

(

t

)

u

(

t

)

dt

, we have the equation

1

0

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

+

c

1

= –

1

0

g

(

t

)

t

0

(

t

s

)

α–2

Γ

(α)

v

(

s

)

ds dt

+

c

1 1

0

g

(

t

)

t

α–2

dt

.

Solving this, we have

c

1

=

1

1 –

01

g

(

t

)

t

α–2

dt

1

0

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

1

0

g

(

t

)

t

0

(

t

s

)

α–2

Γ

(α)

v

(

s

)

ds dt

=

1

1 –

01

g

(

t

)

t

α–2

dt

1

0

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

1

0

g

(

t

)

1

s

(

t

s

)

α–2

Γ

(α)

v

(

s

)

dt ds

.

As a result, we obtain

u

(

t

) = –

t

0

(

t

s

)

α–1

Γ

(α)

v

(

s

)

ds

+

1

1 –

01

g

(

t

)

t

α–2

dt

1

0

t

α–1

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

t

α–1

1 –

01

g

(

t

)

t

α–2

dt

1

0

g

(

t

)

1

s

(

t

s

)

α–2

Γ

(α)

v

(

s

)

dt ds

= –

t

0

(

t

s

)

α–1

Γ

(α)

v

(

s

)

ds

+

1

0

t

α–1

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

1

0

t

α–1

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

+

1

1 –

01

g

(

t

)

t

α–2

dt

1

0

t

α–1

(1 –

s

)

α–2

Γ

(α)

v

(

s

)

ds

t

α–1

1 –

01

g

(

t

)

t

α–2

dt

1

0

g

(

t

)

1

s

(

t

s

)

α–2

Γ

(α)

v

(

s

)

dt ds

=

1

0

G

1(

t

,

s

)

v

(

s

)

ds

+

t

α–1

1 –

01

g

(

t

)

t

α–2

dt

1

0 1

0

g

(

t

)

G

2(

t

,

s

)

dtv

(

s

)

ds

=

1

0

G

1

(

t

,

s

)

v

(

s

)

ds

.

(5)

For convenience, let

G

2(

t

,

s

) =

t

G

1(

t

,

s

)

= (α

– 1)

G

2(

t

,

s

) +

t

α–2

1 –

01

g

(

t

)

t

α–2

dt

+

1

0

g

(

t

)

G

2(

t

,

s

)

dt

,

for

t

,

s

[0, 1].

Lemma 2.5

Suppose that

(H0)

holds

.

If

α,

β

,

f are as in

(

1.1

),

then the fractional boundary

value problem

(

1.1

)

is equivalent to the Hammerstein integral equation

v

(

t

) =

1

0

H

1(

t

,

s

)

f

s

,

1

0

G

1(

s

,

τ

)

v

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

)

d

τ

,

v

(

s

)

ds

,

(2.4)

where

H

1

(

t

,

s

) =

H

1

(

t

,

s

) +

t

β–1

1 –

01

h

(

t

)

t

β–2

dt

1

0

h

(

t

)

H

2

(

t

,

s

)

dt

,

H

1(

t

,

s

) =

1

Γ

(β)

t

β–1

(1 –

s

)

β–2

– (

t

s

)

β–1

,

0

s

t

1,

t

β–1

(1 –

s

)

β–2

,

0

t

s

1,

H

2

(

t

,

s

) =

1

Γ

(β)

t

β–2

(1 –

s

)

β–2

– (

t

s

)

β–2

,

0

s

t

1,

t

β–2

(1 –

s

)

β–2

,

0

t

s

1.

(2.5)

Proof

Substituting –

D

α

0+

u

=

v

into (

1.1

), we have

D

β0+

v

(

t

) =

f

(

t

,

01

G

1(

t

,

s

)

v

(

s

)

ds

,

01

G

2(

t

,

s

)

v

(

s

)

ds

,

v

(

t

)),

0 <

t

< 1,

v

(0) =

v

(0) = 0,

v

(1) =

01

h

(

t

)

v

(

t

)

dt

.

(2.6)

Using

f

(

t

) to replace

f

(

t

,

·

,

·

,

·

), and from Lemma

2.3

we obtain

v

(

t

) = –

I

0+β

f

(

t

) +

c

1

t

β–1

+

c

2

t

β–2

+

c

3

t

β–3

,

for

ci

R

,

i

= 1, 2, 3.

Note that

v

(0) =

v

(0) = 0 implies

c

2

=

c

3

= 0. Hence,

v

(

t

) = –

t

0

(

t

s

)

β–1

Γ

(β)

f

(

s

)

ds

+

c

1

t

β–1

.

From the condition

v

(1) =

01

h

(

t

)

v

(

t

)

dt

, we get

1

0

(1 –

s

)

β–2

Γ

)

f

(

s

)

ds

+

c

1

= –

1

0

h

(

t

)

t

0

(

t

s

)

β–2

Γ

(β)

f

(

s

)

ds dt

+

c

1 1

0

h

(

t

)

t

β–2

dt

.

Solving this equation, we obtain

c

1

=

1

1 –

01

h

(

t

)

t

β–2

dt

1

0

(1 –

s

)

β–2

Γ

(β)

f

(

s

)

ds

1

1 –

01

h

(

t

)

t

β–2

dt

1

0

h

(

t

)

t

0

(

t

s

)

β–2
(6)

=

1

1 –

01

h

(

t

)

t

β–2

dt

1

0

(1 –

s

)

β–2

Γ

(β)

f

(

s

)

ds

1

1 –

01

h

(

t

)

t

β–2

dt

1

0

h

(

t

)

1

s

(

t

s

)

β–2

Γ

)

f

(

s

)

dt ds

.

Consequently, we have

v

(

t

) = –

t

0

(

t

s

)

β–1

Γ

(β)

f

(

s

)

ds

+

1

1 –

01

h

(

t

)

t

β–2

dt

1

0

t

β–1

(1 –

s

)

β–2

Γ

)

f

(

s

)

ds

t

β–1

1 –

01

h

(

t

)

t

β–2

dt

1

0

h

(

t

)

1

s

(

t

s

)

β–2

Γ

(β)

f

(

s

)

dt ds

= –

t

0

(

t

s

)

β–1

Γ

(β)

f

(

s

)

ds

+

1

0

t

β–1

(1 –

s

)

β–2

Γ

)

f

(

s

)

ds

1

0

t

β–1

(1 –

s

)

β–2

Γ

(β)

f

(

s

)

ds

+

1

1 –

01

h

(

t

)

t

β–2

dt

1

0

t

β–1

(1 –

s

)

β–2

Γ

(β)

f

(

s

)

ds

t

β–1

1 –

01

h

(

t

)

t

β–2

dt

1

0

h

(

t

)

1

s

(

t

s

)

β–2

Γ

(β)

f

(

s

)

dt ds

=

1

0

H

1

(

t

,

s

)

f

(

s

)

ds

+

t

β–1

1 –

01

h

(

t

)

t

β–2

dt

1

0 1

0

h

(

t

)

H

2

(

t

,

s

)

dt

f

(

s

)

ds

=

1

0

H

1(

t

,

s

)

f

(

s

)

ds

.

This completes the proof.

Lemma 2.6

The functions Gi

,

H

1

(

i

= 1, 2)

satisfy the properties

:

(i)

Gi

(

t

,

s

),

H

1(

t

,

s

)

0

for

t

,

s

[0, 1]

×

[0, 1]

,

(ii)

t

β–1

φ

β

(

s

)

H

1(

t

,

s

)

φ

β

(

s

)

for

t

,

s

[0, 1]

×

[0, 1]

,

where

φ

β

(

s

) =

s(1–s)

β–2

Γ(β)

+

1

0h(t)H2(t,s)dt

1–01h(t)–2dt

,

s

[0, 1]

.

Proof

We only prove (ii). From [

20

] we have

t

β–1

1

Γ

(β)

s

(1 –

s

)

β–2

H

1(

t

,

s

)

1

Γ

)

s

(1 –

s

)

β–2

,

for

t

,

s

[0, 1]

×

[0, 1].

Combining this with (

2.5

), we easily obtain the inequalities in (ii). This completes the

proof.

Let

E

:=

C

[0, 1],

v

:=

max

t[0,1]

|

v

(

t

)

|

(here

v

E

),

P

:=

{

v

E

:

v

(

t

)

0,

t

[0, 1]

}

. Then

(

E

,

·

) is a real Banach space, and

P

is a cone on

E

. Now, we define an operator

A

:

E

E

as follows:

(

Av

)(

t

) :=

1

0

H

1(

t

,

s

)

f

s

,

1

0

G

1(

s

,

τ

)

v

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

)

d

τ

,

v

(

s

)

ds

,

(2.7)

for all

v

E

. Moreover, we note that the continuity of

G

1

,

G

2,

H

1

and

f

implies that

A

:

(7)

equivalent to that of fixed points of

A

, and then from (

1.1

) and (

2.6

) (–

D

α

0+

u

=

v

), we see

that if there exists a

y

E

such that

Ay

=

y

, then

y

is a solution for (

1.1

). Therefore, in what

follows we study the existence of fixed points of

A

. For this purpose we need to define a

linear operator

La

,b,c

:

E

E

as follows:

(

La

,b,cv

)(

t

) :=

1

0

Ha

,b,c

(

t

,

s

)

v

(

s

)

ds

,

v

E

,

(2.8)

where

H

a,b,c

(

t

,

s

) :=

aH

3

(

t

,

s

) +

bH

2

(

t

,

s

) +

cH

1

(

t

,

s

),

t

,

s

[0, 1], with

a

,

b

,

c

0 and

a

2

+

b

2

+

c

2

= 0; here

H

2(

t

,

s

) =

1

0

H

1(

t

,

τ

)

G

2(τ

,

s

)

d

τ

,

H

3(

t

,

s

) =

1

0

H

1(

t

,

τ

)

G

1(τ

,

s

)

d

τ

,

t

,

s

[0, 1].

Moreover, we know that the continuity of

Hi

(

i

= 1, 2, 3) implies that

La

,b,c

is a completely

continuous operator and

La

,b,c

(

P

)

P

. Let

r

(

La

,b,c

) denote the spectral radius of

La

,b,c

, and

from Gelfand’s theorem we see that

r

(

La

,b,c

) > 0 (the proof is standard; see [

20

, Lemma 5]).

Let

P

0

=

{

v

P

:

v

(

t

)

t

β–1

v

,

t

[0, 1]

}

. Then if we define an operator (

A

1

v

)(

t

) =

1

0

H

1(

t

,

s

)

v

(

s

)

ds

, where

H

1

is defined by (

2.5

), and from Lemma

2.6

(ii) we have

A

1(

P

)

P

0.

(2.9)

Indeed, if

v

P

, Lemma

2.6

(ii) implies that

1

0

t

β–1

φ

β

(

s

)

v

(

s

)

ds

1

0

H

1(

t

,

s

)

v

(

s

)

ds

1

0

φ

β

(

s

)

v

(

s

)

ds

,

and

(

A

1

v

)(

t

)

t

β–1

A

1

v

.

Lemma 2.7

(see [

53

, Theorem 19.3])

Let P be a reproducing cone in a real Banach space

E and let L

:

E

E be a compact linear operator with L

(

P

)

P

.

Let r

(

L

)

be the spectral

radius of L

.

If r

(

L

) > 0,

then there exists

ϕ

P

\ {

0

}

such that L

ϕ

=

r

(

L

)ϕ.

Therefore, from Lemma

2.7

we see that there exists

ϕ

a,b,c

P

\ {

0

}

such that

L

a,b,c

ϕ

a,b,c

=

r

(

L

a,b,c

a,b,c

.

(2.10)

In what follows, we prove that

ϕ

a,b,c

P

0.

(2.11)

Indeed, from (

2.10

) we have

ϕ

a,b,c

(

t

) =

1

r

(

La

,b,c

)

(

La

,b,c

ϕ

a,b,c

)(

t

) =

1

r

(

La

,b,c

)

1

0

Ha

,b,c

(

t

,

s

a,b,c

(

s

)

ds

=

1

r

(

La

,b,c

)

1

0

aH

3

(

t

,

s

) +

bH

2

(

t

,

s

) +

cH

1

(

t

,

s

)

(8)

Using Lemma

2.6

(ii) and the definitions of

Hi

(

i

= 1, 2, 3), we have

ϕ

a,b,c

1

r

(

L

a,b,c

)

1

0

a

1

0

φ

β

)

G

1(τ

,

s

)

d

τ

+

b

1

0

φ

β

)

G

2(τ

,

s

)

d

τ

+

c

φ

β

(

s

)

×

ϕ

a,b,c

(

s

)

ds

and

ϕ

a,b,c

(

t

)

1

r

(

La

,b,c

)

1

0

a

1

0

t

β–1

φ

β

)

G

1

,

s

)

d

τ

+

b

1

0

t

β–1

φ

β

)

G

2

,

s

)

d

τ

+

ct

β–1

φ

β

(

s

)

ϕ

a,b,c

(

s

)

ds

t

β–1

ϕ

a,b,c

.

Therefore, (

2.11

) is true.

Lemma 2.8

(see [

54

])

Let E be a Banach space and

Ω

a bounded open set in E

.

Suppose

that A

:

Ω

E is a continuous compact operator

.

If there exists u

0

E

\ {

0

}

such that

u

Au

=

μ

u

0

,

u

∂Ω

,

μ

0,

then the topological degree

deg

(

I

A

,

Ω, 0) = 0.

Lemma 2.9

(see [

54

])

Let E be a Banach space and

Ω

a bounded open set in E with

0

Ω

.

Suppose that A

:

Ω

E is a continuous compact operator

.

If

Au

=

μ

u

,

u

∂Ω,

μ

1,

then the topological degree

deg

(

I

A

,

Ω, 0) = 1.

3 Main results

Let

α

i

,

β

i

,

γ

i

0 (

i

= 1, 2) with

α

12

+

β

12

+

γ

12

= 0,

α

22

+

β

22

+

γ

22

= 0, and

r

–1

(

L

αi,βi,γi

) =

λ

αi,βi,γi

for

i

= 1, 2. Now, we list our assumptions for

f

as follows:

(H1)

f

C

([0, 1]

×

R

3

,

R

)

.

(H2) There exist two nonnegative functions

b

(

t

),

c

(

t

)

C

[0, 1]

with

c

(

t

)

0

and a

function

K

(

x

1

,

x

2

,

x

3

)

C

[

R

3

,

R

+

]

such that

f

(

t

,

x

1

,

x

2

,

x

3

)

b

(

t

) –

c

(

t

)

K

(

x

1

,

x

2

,

x

3

),

x

i

R

,

t

[0, 1],

i

= 1, 2, 3.

(H3)

lim

α1|x1|+β1|x2|+γ1|x3|→+∞α1|x1K|+(x1β1,|x2x2,|x3+γ)1|x3|

= 0

.

(H4)

lim inf

α1|x1|+β1|x2|+γ1|x3|→+∞

f(t,x1,x2,x3)

α1|x1|+β1|x2|+γ1|x3|

>

λ

α1,β1,γ1

, uniformly for

t

[0, 1]

.

(H5)

lim sup

α2|x1|+β2|x2|+γ2|x3|→0α |f(t,x1,x2,x3)|

2|x1|+β2|x2|+γ2|x3|

<

λ

α2,β2,γ2

, uniformly for

t

[0, 1]

.

We now present our main result.

(9)

Proof

From (H4) there exist

ε

0

> 0 and

X

0

> 0 such that

f

(

t

,

x

1,

x

2,

x

3)

α1,β1,γ1

+

ε

0)

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

,

t

[0, 1],

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

>

X

0.

(3.1)

For any given

ε

with

ε

0

c

ε

> 0, and from (H3) there exists

X

1

>

X

0

such that

K

(

x

1

,

x

2

,

x

3

)

ε

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

,

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

>

X

1

.

(3.2)

It follows from (H2), (

3.1

), (

3.2

) that

f

(

t

,

x

1,

x

2,

x

3)

α1,β1,γ1

+

ε

0)

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

b

(

t

) –

c

(

t

)

K

(

x

1,

x

2,

x

3)

α1,β1,γ1

+

ε0)

α1

|

x

1

|

+

β1

|

x

2

|

+

γ1

|

x

3

|

b

(

t

) –

ε

c

(

t

)

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

λ

α1,β1,γ1

+

ε

0

ε

c

(

t

)

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

b

(

t

)

λ

α1,β1,γ1

+

ε

0

ε

c

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

b

,

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

>

X

1.

(3.3)

Let

CX1

= (λ

α1,β1,γ1

+

ε

0

ε

c

)

X

1

+

max

0≤t≤1,α1|x1|+β1|x2|+γ1|x3|≤X1

|

f

(

t

,

x

1,

x

2,

x

3)

|

,

K

=

max

α1|x1|+β1|x2|+γ1|x3|≤X1

K

(

x

1,

x

2,

x

3). Then it easy to see that

f

(

t

,

x

1,

x

2,

x

3)

λ

α1,β1,γ1

+

ε

0

ε

c

α

1

|

x

1

|

+

β

1

|

x

2

|

+

γ

1

|

x

3

|

b

(

t

) –

CX1

,

(

t

,

x

1,

x

2,

x

3)

[0, 1]

×

R

3

.

(3.4)

Note that

ε

can be chosen arbitrarily small, and we let

R

>

max

(

b

+

c

K

+

CX1

)

01

φ

h

(

s

)

ds

1 –

ε

M

α1,β1,γ1

c

,

α1,β1,γ1

+ 2ε

0

– 2

c

ε)(

b

+

c

K

+

CX1

)

1 0

φ

h

(

s

)

ds

ε

0

c

ε

ε

c

M

α1,β1,γ1

α1,β1,γ1

+ 2ε

0

– 2

c

ε)

,

where

M

α1,β1,γ1

=

1

0

φ

h

(

s

)(α

1

1

0

G

1

(

s

,

τ

)

d

τ

+

β

1

1

0

G

2

(

s

,

τ

)

d

τ

+

γ

1

)

ds

, and

φ

h

(

s

) =

(1–s)β–2

Γ(β)

+

1

0h(t)H2(t,s)dt

1–01h(t)–2dt

,

s

[0, 1].

Now we prove that

v

Av

=

μϕ

α1,β1,γ1

,

v

BR

,

μ

0,

(3.5)

where

ϕ

α1,β1,γ1

is the positive eigenfunction of

L

α1,β1,γ1

corresponding to the eigenvalue

λ

α1,β1,γ1

, and then

ϕ

α1,β1,γ1

=

λ

α1,β1,γ1

L

α1,β1,γ1

ϕ

α1,β1,γ1

and

ϕ

α1,β1,γ1

P

0

by (

2.11

).

Suppose (

3.5

) is not true. Then there exists

v

0

BR

and

μ

0

> 0 such that

(10)

Let

v

(

t

) =

1

0

H

1

(

t

,

s

)

b

(

s

) +

c

(

s

)

K

1

0

G

1

(

s

,

τ

)

v

0

)

d

τ

,

1

0

G

2

(

s

,

τ

)

v

0

)

d

τ

,

v

0

(

s

)

+

CX1

ds

,

t

[0, 1].

(3.7)

Then we have

v

(

t

)

1

0

H

1

(

t

,

s

)

b

(

s

) +

c

(

s

)

ε

α

1

1 0

G

1

(

s

,

τ

)

v

0

)

d

τ

+

β1

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

+

γ1

v

0(

s

)

+

K

+

C

X1

ds

1 0

t

β–1

φ

h

(

s

)

b

(

s

) +

c

(

s

)

ε

α1

1 0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

+

β

1 1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

+

γ

1

v

0(

s

)

+

K

+

CX1

ds

t

β–1

1

0

φ

h

(

s

)

b

+

c

ε

α

1 1 0

G

1(

s

,

τ

)

d

τ

+

β

1 1

0

G

2(

s

,

τ

)

d

τ

+

γ

1

v

0

+

K

+

CX1

ds

t

β–1

b

+

c

K

+

CX1

1

0

φ

h

(

s

)

ds

+

t

β–1

ε

c

1

0

φ

h

(

s

)

α

1

1

0

G

1(

s

,

τ

)

d

τ

+

β

1 1

0

G

2(

s

,

τ

)

d

τ

+

γ

1

v

0

ds

b

+

c

K

+

CX1

1

0

φ

h

(

s

)

ds

+

ε

c

R

1

0

φ

h

(

s

)

α1

1

0

G

1(

s

,

τ

)

d

τ

+

β1

1

0

G

2(

s

,

τ

)

d

τ

+

γ1

ds

.

(3.8)

Consequently, we have

v

b

+

c

K

+

CX1

1

0

φ

h

(

s

)

ds

+

ε

c

R

1

0

φ

h

(

s

)

α1

1

0

G

1(

s

,

τ

)

d

τ

+

β1

1

0

G

2(

s

,

τ

)

d

τ

+

γ1

ds

<

R

.

(3.9)

Note that

v

P

0, and then from (

2.9

),

ϕ

α1,β1,γ1

P

0, and

v

0(

t

) +

v

(

t

) =

Av

0(

t

) +

μ

0

ϕ

α1,β1,γ1

(

t

) +

v

(

t

)

=

1

0

H

1

(

t

,

s

)

f

s

,

1 0

G

1

(

s

,

τ

)

v

0

)

d

τ

,

1

0

(11)

+

b

(

s

) +

c

(

s

)

K

1

0

G

1

(

s

,

τ

)

v

0

)

d

τ

,

1

0

G

2

(

s

,

τ

)

v

0

)

d

τ

,

v

0

(

s

)

+

CX1

ds

+

μ

0

ϕ

α1,β1,γ1

(

t

),

we have

v

0

+

v

P

0

,

(3.10)

using the fact that

f

s

,

1

0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

,

v

0(

s

)

+

b

(

s

)

+

c

(

s

)

K

1

0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

,

v

0(

s

)

+

CX1

P

.

Therefore, (

2.10

), (

3.4

) and (

3.7

) enable us to obtain

Av

0

(

t

) +

v

(

t

)

=

1

0

H

1(

t

,

s

)

f

s

,

1

0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

,

v

0(

s

)

ds

+

1

0

H

1(

t

,

s

)

b

(

s

) +

c

(

s

)

K

1

0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

,

v

0(

s

)

+

CX1

ds

λ

α1,β1,γ1

+

ε

0

ε

c

1 0

H

1(

t

,

s

)

α

1

01

G

1(

s

,

τ

)

v

0(τ

)

d

τ

+

β

1

01

G

2(

s

,

τ

)

v

0(τ

)

d

τ

+

γ

1

v

0(

s

)

ds

1

0

H

1(

t

,

s

)

b

(

s

) +

CX1

ds

+

1

0

H

1(

t

,

s

)

b

(

s

) +

c

(

s

)

K

1

0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

,

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

,

v

0(

s

)

+

CX1

ds

λ

α1,β1,γ1

+

ε

0

ε

c

1

0

H

1(

t

,

s

)

α

1

1

0

G

1(

s

,

τ

)

v

0(τ

)

d

τ

+

β

1

1

0

G

2(

s

,

τ

)

v

0(τ

)

d

τ

+

γ

1

v

0(

s

)

ds

λ

α1,β1,γ1

+

ε

0

ε

c

α

1

1

0

H

1

(

t

,

s

)

1

0

G

1

(

s

,

τ

)

v

0

)

d

τ

ds

+

β

1 1

0

H

1

(

t

,

s

)

1

0

G

2

(

s

,

τ

)

v

0

)

d

τ

ds

+

γ

1 1

0

H

1

(

t

,

s

)

v

0

(

s

)

ds

λ

α1,β1,γ1

+

ε

0

ε

c

α

1 1

0

H

3

(

t

,

τ

)

v

0

)

d

τ

+

β

1 1

0

(12)

+

γ

1 1

0

H

1

(

t

,

s

)

v

0

(

s

)

ds

=

λ

α1,β1,γ1

+

ε

0

ε

c

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0

(

s

)

ds

λ

α1,β1,γ1

+

ε

0

ε

c

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0

(

s

)

ds

.

(3.11)

From the definition of operator

L

α1,β1,γ1

, we get

λ

α1,β1,γ1

+

ε

0

c

ε

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0

(

s

)

ds

=

λ

α1,β1,γ1

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0(

s

) +

v

(

s

)

ds

+

ε

0

c

ε

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0(

s

)

ds

λ

α1,β1,γ1

1

0

H

α1,β1,γ1

(

t

,

s

)

v

(

s

)

ds

=

λ

α1,β1,γ1

L

α1,β1,γ1

(

v

0

+

v

)(

t

) +

ε0

c

ε

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0(

s

) +

v

(

s

)

ds

λ

α1,β1,γ1

+

ε

0

c

ε

1

0

H

α1,β1,γ1

(

t

,

s

)

v

(

s

)

ds

.

(3.12)

From (

3.10

), we get

v

0(

t

) +

v

(

t

)

t

β–1

v

0

+

v

t

β–1

(

v

0

v

),

t

[0, 1], and hence from

(

3.8

) we have

ε0

c

ε

1

0

H

α1,β1,γ1

(

t

,

s

)

v

0(

s

) +

v

(

s

)

ds

λ

α1,β1,γ1

+

ε

0

c

ε

1

0

H

α1,β1,γ1

(

t

,

s

)

v

(

s

)

ds

ε

0

c

ε

R

v

1

0

s

β–1

H

α1,β1,γ1

(

t

,

s

)

ds

λ

α1,β1,γ1

+

ε

0

c

ε

×

b

+

c

K

+

CX1

1

0

φ

h

(

s

)

ds

+

ε

c

RM

α1,β1,γ1

1

0

s

β–1

H

α1,β1,γ1

(

t

,

s

)

ds

0.

(3.13)

Combining (

3.11

), (

3.12

) and (

3.13

), and we obtain

Av

0(

t

) +

v

(

t

)

λ

α1,β1,γ1

L

α1,β1,γ1

(

v

0

+

v

)(

t

),

t

[0, 1].

(3.14)

Therefore, using (

3.6

) and (

3.14

) we have

v

0

+

v

=

Av

0

+

μ

0

ϕ

α1,β1,γ1

+

v

λ

α1,β1,γ1

L

α1,β1,γ1

(

v

0

+

v

) +

μ

0

ϕ

α1,β1,γ1

μ

0

ϕ

α1,β1,γ1

.

Define

(13)

It is easy to see that

μ

μ

0

and

v

0

+

v

μ

ϕ

α1,β1,γ1

. From

ϕ

α1,β1,γ1

=

λ

α1,β1,γ1

L

α1,β1,γ1

×

ϕ

α1,β1,γ1

, we obtain

λ

α1,β1,γ1

L

α1,β1,γ1

(

v

0

+

v

)

λ

α1,β1,γ1

L

α1,β1,γ1

μ

ϕ

α1,β1,γ1

=

μ

ϕ

α1,β1,γ1

.

Hence

v

0

+

v

λ

α1,β1,γ1

L

α1,β1,γ1

(

v

0

+

v

) +

μ

0

ϕ

α1,β1,γ1

μ

0

+

μ

ϕ

α1,β1,γ1

,

which contradicts the definition of

μ

. Therefore, (

3.5

) holds, and from Lemma

2.8

we

obtain

deg

(

I

A

,

BR

, 0) = 0.

(3.15)

From (H5) there exist 0 <

ε1

<

λ

α2,β2,γ2

and 0 <

r

<

R

such that

f

(

t

,

x

1

,

x

2

,

x

3

)

α2,β2,γ2

ε

1

)

α

2

|

x

1

|

+

β

2

|

x

2

|

+

γ

2

|

x

3

|

,

for all

xi

R

,

i

= 1, 2, 3,

t

[0, 1] with 0

α

2

|

x

1

|

+

β

2

|

x

2

|

+

γ

2

|

x

3

|

<

r

. Consequently, we

obtain

(

Av

)(

t

)

α2,β2,γ2

ε

1

)

1

0

H

1

(

t

,

s

)

α

2

1

0

G

1

(

s

,

τ

)

v

)

d

τ

+

β

2

01

G

2

(

s

,

τ

)

v

)

d

τ

+

γ

2

v

(

s

)

ds

α2,β2,γ2

ε1)

1

0

H

1(

t

,

s

)

α2

1

0

G

1(

s

,

τ

)

v

)

d

τ

+

β

2 1

0

G

2(

s

,

τ

)

v

)

d

τ

+

γ

2

v

(

s

)

ds

= (λ

α2,β2,γ2

ε

1)

1

0

H

α2,β2,γ2

(

t

,

s

)

v

(

s

)

ds

= (λ

α2,β2,γ2

ε

1)

L

α2,β2,γ2

|

v

|

(

t

),

t

[0, 1],

v

E

,

v

r

.

Now for this

r

, we prove that

Av

=

λ

v

,

v

Br

,

λ

1.

(3.16)

Assume the contrary. Then there exist

v

0

Br

and

λ

0

1 such that

Av

0

=

λ

0

v

0. Let

ω(

t

) =

|

v

0(

t

)

|

. Then

ω

Br

P

and

ω

1

λ0

α2,β2,γ2

ε

1)

L

α2,β2,γ2

ω

α2,β2,γ2

ε

1)

L

α2,β2,γ2

ω.

By induction, we have

ω

α2,β2,γ2

ε

1

)

n

L

n

α2,β2,γ2

ω, for

n

= 1, 2, . . . . As a result, we have

ω

α2,β2,γ2

ε

1) n

L

n
(14)

and thus

1

α2,β2,γ2

ε

1

)

n

L

n

α2,β2,γ2

.

Therefore, by Gelfand’s theorem, we have

α2,β2,γ2

ε

1)

r

(

L

α2,β2,γ2

) = (λ

α2,β2,γ2

ε

1)

lim

n→∞

n

L

2,β2,γ2

1.

This contradicts

α2,β2,γ2

ε

1)

r

(

L

α2,β2,γ2

) = 1 –

ε

1

r

(

L

α2,β2,γ2

) < 1.

Thus (

3.16

) holds and from Lemma

2.9

we have

deg

(

I

A

,

Br

, 0) = 1.

(3.17)

Now (

3.15

) and (

3.17

) imply that

deg

(

I

A

,

BR

\

Br

, 0) =

deg

(

I

A

,

BR

, 0) –

deg

(

I

A

,

Br

, 0) = –1.

Therefore the operator

A

has at least one fixed point in

BR

\

Br

. Equivalently, (

1.1

) has at

least one nontrivial solution. This completes the proof.

Acknowledgements Not applicable.

Funding

Research supported by the National Natural Science Foundation of China (Grant No. 11601048), Natural Science Foundation of Chongqing (Grant No. cstc2016jcyjA0181), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800533), Natural Science Foundation of Chongqing Normal University (Grant No. 16XYY24).

Availability of data and materials Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors conceived of the study, drafted the manuscript, and approved the final manuscript.

Author details

1College of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao, China.2School

of Mathematical Sciences, Chongqing Normal University, Chongqing, China. 3School of Mathematics, Statistics and

Applied Mathematics, National University of Ireland, Galway, Ireland.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 February 2019 Accepted: 8 April 2019

References

1. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

2. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

(15)

4. Jiang, J., Liu, L., Wu, Y.: Positive solutions to singular fractional differential system with coupled boundary conditions. Commun. Nonlinear Sci. Numer. Simul.18(11), 3061–3074 (2013)

5. Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput.258, 312–324 (2015)

6. Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal.72, 916–924 (2010) 7. Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal.74(11),

3599–3605 (2011)

8. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett.51, 48–54 (2016)

9. Wang, Y., Liu, L.: Positive solutions for a class of fractional infinite-point boundary value problems. Bound. Value Probl.

2018, Article ID 118 (2018)

10. Liu, X., Liu, L., Wu, Y.: Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl.2018, Article ID 24 (2018) 11. Jiang, J., Liu, W., Wang, H.: Positive solutions for higher order nonlocal fractional differential equation with integral

boundary conditions. J. Funct. Spaces2018, Article ID 6598351 (2018)

12. Hao, X., Wang, H., Liu, L., Cui, Y.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters andp-Laplacian operator. Bound. Value Probl.2017, Article ID 182 (2017)

13. Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl.2017, Article ID 161 (2017) 14. Zhang, X., Liu, L., Zou, Y.: Fixed-point theorems for systems of operator equations and their applications to the

fractional differential equations. J. Funct. Spaces2018, Article ID 7469868 (2018)

15. Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: The convergence analysis and error estimation for unique solution of a

p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl.2018, Article ID 82 (2018)

16. Zhang, X., Wu, J., Liu, L., Wu, Y., Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal.23(4), 611–626 (2018)

17. He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl.2018, Article ID 189 (2018)

18. Zhang, X., Liu, L., Wu, Y., Zou, Y.: Existence and uniqueness of solutions for systems of fractional differential equations with Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ.2018, Article ID 204 (2018)

19. Liu, B., Li, J., Liu, L., Wang, Y.: Existence and uniqueness of nontrivial solutions to a system of fractional differential equations with Riemann–Stieltjes integral conditions. Adv. Differ. Equ.2018, Article ID 306 (2018)

20. Xu, J., Wei, Z.: Positive solutions for a class of fractional boundary value problems. Nonlinear Anal., Model. Control

21(1), 1–17 (2016)

21. Pu, R., Zhang, X., Cui, Y., Li, P., Wang, W.: Positive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions. J. Funct. Spaces2017, Article ID 5892616 (2017)

22. Guo, Y.: Nontrivial solutions for boundary-value problems of nonlinear fractional differential equations. Bull. Korean Math. Soc.47(1), 81–87 (2010)

23. Zhang, K.: On a sign-changing solution for some fractional differential equations. Bound. Value Probl.2017, Article ID 59 (2017)

24. Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal., Model. Control23(1), 31–39 (2018)

25. Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett.74, 68–73 (2017)

26. Zhang, K., Wang, J., Ma, W.: Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations. J. Funct. Spaces2018, Article ID 2193234 (2018)

27. Zhang, Y.: Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance. J. Inequal. Appl.2018, Article ID 198 (2018)

28. Ma, W., Meng, S., Cui, Y.: Resonant integral boundary value problems for Caputo fractional differential equations. Math. Probl. Eng.2018, Article ID 5438592 (2018)

29. Ma, W., Cui, Y.: The eigenvalue problem for Caputo type fractional differential equation with Riemann–Stieltjes integral boundary conditions. J. Funct. Spaces2018, Article ID 2176809 (2018)

30. Sun, Q., Meng, S., Cui, Y.: Existence results for fractional order differential equation with nonlocal Erdélyi–Kober and generalized Riemann–Liouville type integral boundary conditions at resonance. Adv. Differ. Equ.2018, Article ID 243 (2018)

31. Zhong, Q., Zhang, X., Lu, X., Fu, Z.: Uniqueness of successive positive solution for nonlocal singular higher-order fractional differential equations involving arbitrary derivatives. J. Funct. Spaces2018, Article ID 6207682 (2018) 32. Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems ofp-Laplacian with fractional derivative.

Bound. Value Probl.2017, Article ID 5 (2017)

33. Song, Q., Bai, Z.: Positive solutions of fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ.2018, Article ID 183 (2018)

34. Zhang, X.

References

Related documents

Mycobacterium chlorophenolicum is an actinomycete which, like other members of the genus Mycobacterium , is ubiquitous in the environment. chlorophenolicum is most closely

Covering wide areas of roads is part of the Nericell [1] project that consists on monitoring road and traffic conditions by using the sensors in the users

The competition strategies adopted by the airline companies involved in the ASP (cheap, differentiation, focusing), the content of service standards, and

The aim of this research was to find the relationship of human resource management practices and Perception of performance among employees of selected small and medium

We analyze the absolute amount of mispricing with respect to five parameters: the type of option, moneyness of the option, time to maturity, traded volume and

The study concluded that there was moderate utilization of traditional medicine for treatment of malaria in the study area, and recommended ensuring

Therefore the reason of the study is to find out how welfare measure are provided by the private organisation and how the employees are satisfied with the company

The knowledge- based economy is characterized by the need for continuous learning of both codified information and the competencies to use this information (OECD,