• No results found

Macroalgae biorefinery Produc3on of bioethanol and protein for fish feed from brown seaweed, Laminaria digitata

N/A
N/A
Protected

Academic year: 2021

Share "Macroalgae biorefinery Produc3on of bioethanol and protein for fish feed from brown seaweed, Laminaria digitata"

Copied!
36
0
0

Loading.... (view fulltext now)

Full text

(1)

Macroalgae  biorefinery–  

Produc3on  of  bioethanol  and  

protein  for  fish  feed  from  

brown  seaweed,    

Laminaria  digitata  

 

Anne-­‐Belinda  Bjerre,  Chem  Eng  PhD    

Senior  Scien)st,    Danish  Technological  Ins)tute   Adjunct  Professor,  Ålborg  University  

Co-­‐authors:  Karin  Svane  Bech,  Xiarou  Hou,  Lars  Nikolaisen  

(2)
(3)

Division  for  Energy  and  Climate  

Center  for  Biomass  &  Biorefinery

 

 

4  locaHons  in  Denmark  

Several  projects  related  to  solid  and  liquid  biofuels  

–  EU-­‐projects  /  NaHonal  projects  /  Industry    

Grenå – Algae Center Denmark

Aarhus – Biomass Laboratory and Offices

Sdr. Stenderup – Pilot plant and production facilities

Taastrup – Enzyme Laboratory and Offices

(4)

Ø

Background

   

Ø

Processes  on  macroalgae  

       

 

CulHvaHon  

           

 Harvest  

           

 CondiHoning  

           

 EnzymaHc  hydrolysis  

           

 Ethanol  producHon  

Ø

Sustainability  and  economic  feasibility  

 

 

 

Contents  

(5)

M

acro

A

lgae

B

iorefinery  for  

3

G  bioenergy  and  fish  feed  

 

An  integrated  biorefinery  concept  to  be  developed  for  conversion  of  two   species  of  macro  algae  Laminaria  digitata  and  Saccharina  la)ssima  into   energy  carriers,  together  with  a  protein  enriched  fish  feed  derived  as  a   residual  from  the  energy  conversion  processes  

Ø  Financed:  the  Danish  Strategic  Research  Council    

Ø  Total  budget  of  24  million  DKK  

Ø  Project  period:  March  1st,  2012  -­‐-­‐-­‐-­‐  March  1st,  2016  

Ø  12  Partners  from  Denmark,  Germany,  Ireland,  Italy  

Ø  EducaHon  of  4  PhD  and  2  postdoc  

 

Ø  Coordinator:  Danish  Technological  InsHtute  v/  Anne-­‐Belinda  Bjerre  

(6)

Partners  

•  Danish  Technological  InsHtute  (Coordinator)  (DK)  

•  Aarhus  University  (2  insHtutes)  (DK)  

•  Technical  University  of  Denmark  (3  insHtutes)  

•  NaHonal  University  of  Ireland,  Galway  (IRL)  

•  University  of  Hamburg  (DE)  

•  University  of  Sienna  (IT)  

•  Orbicon  (DK)  

•  DONG  Energy  (DK)  

•  Aller  Aqua  (DK)  

•  VitaLys  (DK)  

•  DanGrønt  Products  (DK)  

Affiliated  partner:  Novozymes  (DK)  [delivery  of  enzymes  and  parHcipaHng  in  the   advisory  board]  

(7)
(8)

Why  Algae?  Growth  rate  of  up  to    0,35  day

-­‐1      

1  cm²  

 

1  m²   9.000  3mes  increase  of  the    biomass  

(9)

For  comparison:  Land-­‐based  biomass  

produc3on  

Grain  and    straw  

Biom ass  yie ld ,  tons  ha -­‐1  

Grain  and  straw  (total)  

20  

(10)

Marine  biomass  produc3on   Seaweed   høstudby_ e,   tons   ha -­‐1  

korn  og  halm  

20   10   høstudby_ e,   tons   ha -­‐1  

korn  og  halm  

20  

(11)

Marine  biomass  produc3on   Seaweed   To tal  pr oduc 3on  yie ld ,  tons  ha -­‐1  

Grain  and  straw  

20  

10   20  

10  

(12)

Which  species  are  of  relevance?  

Experiences  from  the  North  AtlanHc  Sea  show  promising  results  from  

•  Laminaria  digitata  –  Fingertang  (a)  

•  Saccharina  la)ssima  –  Sukkertang  (b)  

•  Palmaria  palmata  –  Søl  (c)  

a  

c   b  

(13)

CollecHion  of  

fer3le  seaweed  

Proces  steps  for  culHvaHon  of  seaweeds:      

Ex:  Laminaria  digitata  

Spraying  on   strings   Downstream   processing  -­‐   Bioraffinering   HarvesHng   by  boat   CulHvaHon  of   seaweed  at  sea    

(6-­‐7  months)    

Deployments  of   strings  to  strong   ropes  in  deep  sea  

waters   Development  of   baby  seaweeds   under  controlled   condiHons   PreparaHon  of  L.   digitata  culture   under  controlled   lab  condi3ons  

(14)

Sexual  breeding  of  

Laminaria  digitata  

Kønnet  formering:    

1.  Der  dannes  sporer  i  specielle  

celler  på  både  over-­‐  og  underside   på  bladet.  Disse    områder  kaldes   ”sori”,  og  som  fremstår  

velafgrænsede  og  mørke.    

2.  Når  sporerne  frigives  

(sporolering)  omdannes  de  Hl   henholdsvis  hanlige  og  hunlige  

gametofyQer.    

3.  På  de  hanlige  gametofyier  

dannes  hanlige  gameter  med   flageller  og  de  svømmer  hen  Hl   den  hunlige  ubevægelige  ægcelle   (og  så  kaldet  gamet).  

4.  Hunlige  feromoner  Hltrækker  de  

hanlige  gameter  Hl  ægcellen,  og   der  sker  en  befrugtning.      

5.  Det  befrugtede  æg  zygoten  kan  

spire  på  fast  materiale    direkte   på  sten  eller  et  f.eks.  et  reb.  

(15)

1st  step  in  culHvaHon  of  

Laminaria  digitata  

in  

laboratory  

Kønnet  formering:    

1.  Der  dannes  sporer  i  specielle  

celler  på  både  over-­‐  og  underside   på  bladet.  Disse    områder  kaldes   ”sori”,  og  som  fremstår  

velafgrænsede  og  mørke.     2.  Når  sporerne  frigives  

(sporrolering)  omdannes  de  Hl   henholdsvis  hanlige  og  hunlige  

gametofyQer.    

3.  På  de  hanlige  gametofyier  

dannes  hanlige  gameter  med   flageller  og  de  svømmer  hen  Hl   den  hunlige  ubevægelige  ægcelle   (og  så  kaldet  gamet).  

4.  Hunlige  feromoner  Hltrækker  de  

hanlige  gameter  Hl  ægcellen,  og   der  sker  en  befrugtning.      

5.  Det  befrugtede  æg  zygoten  kan  

spire  på  fast  materiale    direkte   på  sten  eller  et  f.eks.  et  reb.  

(16)

Spraying  on  culHvaHon-­‐strings  

Kønnet  formering:    

1.  Der  dannes  sporer  i  specielle  

celler  på  både  over-­‐  og  underside   på  bladet.  Disse    områder  kaldes   ”sori”,  og  som  fremstår  

velafgrænsede  og  mørke.     2.  Når  sporerne  frigives  

(sporolering)  omdannes  de  Hl   henholdsvis  hanlige  og  hunlige  

gametofyQer.    

3.  På  de  hanlige  gametofyier  

dannes  hanlige  gameter  med   flageller  og  de  svømmer  hen  Hl   den  hunlige  ubevægelige  ægcelle   (og  så  kaldet  gamet).  

4.  Hunlige  feromoner  Hltrækker  de  

hanlige  gameter  Hl  ægcellen,  og   der  sker  en  befrugtning.    Det   befrugtede  æg  zygoten  kan  spire   på  fast  materiale    direkte  på  sten   eller  et  f.eks.  et  reb.  

(17)

Development  of  seaweed  adsporbed  to  strings    

under  controlled  lab  condiHons  

(18)

Deployment  of  culHvaHon  strings  in  Autumn  at  sea  

DK  potenHale:  ~  2-­‐10  tons/ha   (tørvægt)  

(19)

Harvest  

 

Most  harvests  nowadays   are  carried  out  by  hand  on   a  ship.    

 

Needs  further   development  for  

automaHc  methods    to  be   mature.  

(20)

10  km  of  seeded  lines  

Saccharina  la)ssima  

Laminaria  digitata  

Deployed  in  September  2012  

Line  mussel  system  

Limmorden,  Denmark  

(21)

Saccharina  la)ssima

 

Harvest  Hme:  May  2013

 

Growth  period:  7-­‐8  months  

Yield:  2  wet  tons  of  

S.  la)ssima  

(2  km  line)  

Harvest  technology:  line-­‐mussel  culHvaHon  

(22)

Laminaria  digitata

 

Natural  populaHon  

300  kg  

August  2012  

HARVEST  

(23)

RAW  MATERIAL  CHARACTERISATON  

Species Harvesting Time Protein (%) Sulphated fucoidan (%) Mannitol (%) Glucose (%) Minerals (%) Xylose +Mannose (%) Residues (%) SUM (%) Laminaria digitata 2012.04. 14.6 6.8 3.7 7.7 31.8 1.2 5,5 71.3 Laminaria digitata 2012.08. 3.9 3.5 6.4 56.9 8.1 0.5 2.7 82.1 Saccharina latissima 2013.05. 20.1 4.3 5.1 5.8 35.4 0.6 8.6 79.9

(24)

Screw  Pressing  

           -­‐Algae  juice  

Drying  

Laminaria  78%              75%   Saccharina  89%                88%   50°C  (4  days):       Laminaria:  78%  à    10%   Saccharina:  89%  à  9%      

CONDITIONING  MAB3  

Water  content   Water  content  

(25)

Wet   Brown   Seaweed   Dried   and   Grinded   Re-­‐adjust   DM  by   water   Enzyma3c   Hydrolysis  

PRETREATMENT  AND  ENZYMATIC  HYDROLYSIS  

Wet   Brown   Seaweed   Wet-­‐ milled  by   Disc  mill   Collect  

fibers   Hydrolysis  Enzyma3c  

(26)

Laminaria  digitata    

(approx.  2m,  DM  27%)   (Picture:  Anneie  Bruhn)  

Sprout-­‐Bauer  12”   Lab  disc  mill    

(disc  distances  1.0  and   0.2mm)  

(Picture:  Dirk  Manns  DTU)  

PRETREATMENT  AND  ENZYMATIC  HYDROLYSIS  MAB3  

Wet  Brown  

Seaweed   by  Disc  mill  Wet-­‐milled  

Collect   fibers  by   centrifug-­‐ a3on   Enzyma3c   Hydrolysis   Disc  distance   0.2  mm   1.0  mm  

Glucose  [%  dry  fibers]   22.8  ±  0.9     32.7  ±  0.7  

1.0  mm  

(Picture:  SHnus  Andersen  DTU)  

0.2  mm  

EnzymaHc  hydrolysis  

(Picture:  Dirk  Manns  DTU)  

pH  5.1,  T  40    ̊C,  t  72h,  4%  [S]/[V],       CellicCTec2  (Novozymes):  5%  [E]/[S]     Alginate  Lyase  (EC  4.2.2.3  ):  0.25%  [E]/[S]    

(27)

pretreatment Hydrolysis Hexose fermentation Destillation

EtOH

           

3.  generaHon  bioethanol    

Fucoidan extract Protein C6 sugars Recovery of Fucoidan Enzymes yeast Fucoidan   (value-­‐added  product)   Protein  

(28)

Fotosyntesen   H20   CO2   glucan   enzymer   glucose   gær   ethanol  +  C02  

3G  Bioethanol  

(29)

FermentaHon  

to  ethanol:  

SSF-­‐proces  

(30)

 

 

ETHANOL  PRODUCTION  

MAB3  

Exp ID Lam 1 Lam 2 Lam 3 Lam 4

Pretreatment Wet-milled by disc

mill (0.2 mm)

Wet-milled by disc mill (1 mm) Dried, grinded by pin-mill and screened (ø 1 mm) Dried, grinded by pin-mill and screened (ø 1 mm) Substrate DM (%, w/v) 4 4 5 10 Glucose (g/L) 9.12 13.1 28.5 56.9

Enzyme loading CellicCtec2:

5 % v/w [E]/[S] Alginate Lyase (EC 4.2.2.3): 0.25 % v/w [E]/[S]

CellicCtec2: 5 % v/w [E]/[S] Alginate Lyase (EC 4.2.2.3): 0.25 % v/w [E]/ [S]

Celluclast 1.5L: 40 U/g DM

Alginate lyase (EC 4.2.2.3):

2 U/g DM

Celluclast 1.5L: 40 U/g DM

Alginate lyase (EC 4.2.2.3):

2 U/g DM

Hydrolysis temperature (°C) 40 40 40 40

Yeast inoculation conc. (g/ L)

2 2 2 2

Fermentation temperature (°C)

32 32 32 32

Ethanol yield (% theoretical value), after 48 h fermentation 73 77 73 75 Ethanol concentration (g/L) 3.4 5.2 10.5 21.8 0   2   4   6   8   10   12   BF   AF   3,8   11,5   Pro tei n  Co ncen tra 3o n     (g /100   g   m ate rial)  

(31)

100  kg  wet  algae   biomass  (Laminaria  digitata)  

CondiHoning  

Pretreatment   EnzymaHc  pre-­‐

hydrolysis   C6-­‐FermentaHon     SeparaHon  of  liquid  

and  solid   Residual  sugars   fermentaHon    1  kg  Value   added  products   (Fucoidan,  etc.)   7,4  kg  Ethanol    +  7,1  kg  CO2   1  kg  Protein   2  kg  Amino  acids   Residuals   3  kg    ferHlizer  

Input:  construcHon  and   building  materials,   enzymes,  energy  and  

electricity,  water  

Other  output   Emission  in  air,  

water  and  soil  

MAB3   MacroalgaeBiorefinery   Output   CO2eq   Bio-­‐ ethanol   Proteins   2  kg  Algae  juice   (dry  maier)  

ECONOMIC  POTENTIAL  

(32)

        Price  (€/kg)   €      

    Weight  (kg)   Scenario  1a   Scenario  2b   Scenario  1   Scenario  2      

Wet  algae   100.0   1.12   0.08   112   8   Cost  

Value  added  products  (e.g.  

Fucoidan)   1   2.9   2.9   2.9   2.9   Income   Ethanol   7.4   1   1   7.4   7.4   Protein   1.0   1.5   1.5   1.5   1.5   Amino  acids   2.0   1   1   2   2   Fer3lizers   3.0   0.35   0.35   1.05   1.05                   -­‐97.15   6.85   Margin  

a    Scenario  1:  Price  of  macroalgae  from  Watson,  L.  and  Dring,  M.,  2011.   Business  plan  for  the  establishment  of  a  seaweed  hatchery  &  grow-­‐out   farm.  Irish  sea  Fisheries  Board,  pp  41.  

B   Scenario   2:   Price   of   macroalgae   from   Michael   Bo   Rasmussen   personal  communicaHon.  

(33)

Input:  cul3va3on   system  (lines,   buoys,  water,  

nutrients)  

Other  outputs:   Emissions  in  air   and  water     Macroalgae     cul3va3on  and   harves3ng   Output:   CO2eq   Algae       Amounts  (g/kg)  

Macroalgae  carbon  content     43-­‐50   Macroalgae  nitrogen  content       3-­‐5  

CO2  assimilaHon     158-­‐182  

Avoided  N2O  emission  from  N  assimilaHon   4-­‐8  

Total  CO2  eq     1524-­‐2519  

GHG  savings  on  the  climate  mi3ga3on  bank  account  

According  to  IPCC  guidelines  

(34)

Macroalgae  culHvaHon  has  high  potenHal  for  

CO

2

 saving  

providing  

water  quality  protec3on  

by  assimilaHng  excess  

nutrients  

Raw  material  price  

is  essen3al  

for  the  overall  feasibility  

Knowledge  about  

biomass  composi3on  

is  important  for  

the  choice  of  biorefinery  processes  

Ethanol  and  protein  are  realisHc  products  from  Laminaria  

digitata,  however  

the  algal  biomass  must  be  harvested  

at  the  

right  3me  in  August/September  

due  to  the  need  

of  high  C6-­‐sugar  contents    

(35)

ACKNOWLEDGEMENT  

Thanks  to  the  Danish  Council  for  Strategic  Research  for  financing  

the  MAB3  project  

 

More  informaHon:  www.mab3.dk  

(36)

Anne-­‐Belinda  Bjerre  

(Professor,  Chem.  Eng.  PhD):  

anbj@d3.dk  

Coordinator  of  MAB3  

bioethanol  design,  pretreatment  and  enzymaHc  hydrolysis  

Biorefinery  

         

Lars  Steenberg  Nikolajsen  

(Senior  Consultant):  

lsn@d3.dk  

Macroalgae  culHvaHon  and  harvesHng  

CondiHoning  and  Storage  

Karin  Svane  Bech  

(Consultant):  ksb@dH.dk  

Macroalgae  culHvaHon    

Newsleier  and  disseminaHon  

Xiaoru  Hou  (Post  Doc):  xih@dH.dk  

§

Ethanol  fermentaHon  (C6  and  C5)  

 

 

 

DTI  CONTACTS:  

References

Related documents

The Diplomatic Leadership Training is a unique blend that combines the practices of diplomacy, the techniques of non- linguistic programming and the strategies of story-telling to

There are classical control examples, which are used to illustrate the general purpose of the control technique and validate or benchmark an algorithmic im- plementation. Two

Refer to Huaming tap changer type selecting manual for overall dimensions and table 5 for technical data of motor drive unit.. Motor drive unit is mounted on the side of

You may not be able to accept patients yet, but you can start generating interest by letting people know the business name, the general area, and when you are expecting to begin

Figure 4-2: Illustration of Walker Constellation Orbits (Looking Down on North Pole) For the analysis, we varied the number of satellites per orbital plane to

o Further research is needed to discover specific models to promote partnerships with regional hospitals and enhance the sustainability of rural hospitals which could support

At least 67 percent of users reporting the first 12 systems shown in the chart (from Practice Fusion through Allscripts Professional) come from practices of one to 10

Andrilla and colleagues (2007) surveyed Washington’s ARNPs in 2003 and described their demographic, education and practice characteristics, finding that more ARNPs in